Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = volumetric wear loss (V)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 15965 KB  
Article
Parametric Optimization of Dry Sliding Wear Attributes for AlMg1SiCu Hybrid MMCs: A Comparative Study of GRA and Entropy-VIKOR Methods
by Krishna Prafulla Badi, Srinivasa Rao Putti, Maheswara Rao Chapa and Muralimohan Cheepu
J. Compos. Sci. 2025, 9(6), 297; https://doi.org/10.3390/jcs9060297 - 10 Jun 2025
Viewed by 927
Abstract
In recent days, aluminum-based hybrid composites have garnered more interest than monolithic alloys owing to their remarkable properties, encompassing a high strength-to-weight ratio, excellent corrosion resistance, and impressive wear durability. The present study attempts to optimize the multiple wear attribute characteristics of Al6061/SiC/Al [...] Read more.
In recent days, aluminum-based hybrid composites have garnered more interest than monolithic alloys owing to their remarkable properties, encompassing a high strength-to-weight ratio, excellent corrosion resistance, and impressive wear durability. The present study attempts to optimize the multiple wear attribute characteristics of Al6061/SiC/Al2O3 hybrid composites using grey and entropy-based VIKOR techniques. The composites were produced by adding equal proportions of SiC/Al2O3 (0–12 wt.%) ceramics through the stir-casting process, using an ultrasonication setup. Dry sliding wear experiments were executed with tribometer variants, namely reinforcement content (wt.%), load (N), sliding velocity (v), and sliding distance (SD), following L27 OA. The optimal combination of process variables for achieving high GRG values from grey analysis was found to be A3-B3-C3-D3. The S/N ratios and ANOVA results for GRG indicated that RF content (wt.%) is the predominant component determining multiple outcomes, followed by sliding distance, load, and sliding velocity. The multi-order regression model formulated for the VIKOR index (Qi) displayed high significance and more accuracy, with a variance of 0.0216 and a coefficient of determination (R2), and adjusted R2 values of 99.60% and 99.14%. Subsequent morphological studies indicated that plowing, abrasion, and adhesion mechanisms are the dominant modes of wear. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

18 pages, 20818 KB  
Article
Influence of Ball Burnishing on Lubricated Fretting of the Titanium Alloy Ti6Al4V
by Slawomir Swirad
Lubricants 2023, 11(8), 341; https://doi.org/10.3390/lubricants11080341 - 10 Aug 2023
Cited by 8 | Viewed by 1970
Abstract
Ball burnishing is a very promising alternative to grinding because of it produces little environmental pollution. It can cause improvement of the functional properties of machine parts, such as friction and wear. The connection between the ball burnishing and the lubricated fretting has [...] Read more.
Ball burnishing is a very promising alternative to grinding because of it produces little environmental pollution. It can cause improvement of the functional properties of machine parts, such as friction and wear. The connection between the ball burnishing and the lubricated fretting has not been analysed yet. In this study, it was found that ball burnishing discs from titanium alloy Ti6Al4V caused a decrease in the height of the roughness up to 84% and an increase in the microhardness up to 26% compared to the turned surface. Tribological experiments were carried out under lubricated fretting conditions. Ceramic balls from WC material co-acted with the burnished discs. Ball burnishing resulted in significant improvement in the tribological behaviour of the ball-on-disc sliding pair. Due to ball burnishing, the friction coefficient decreased up to 45% and the volumetric wear of the disc decreased up to 50% compared to the turned disc. The smallest friction and disc wear were achieved for the sample burnished with a pressure of 30 MPa; this sample was characterised by a low roughness height and great microhardness. The turned disc sample corresponded to high friction and wear. Wear losses of the balls were negligible due to the large difference between the hardness values of the balls and discs. Full article
(This article belongs to the Special Issue Friction and Wear of Alloys)
Show Figures

Figure 1

14 pages, 7368 KB  
Article
Multidirectional Pin-on-Disk Testing Device to Evaluate the Cross-shear Effect on the Wear of Biocompatible Materials
by Vicente Cortes, Carlos A. Rodriguez Betancourth, Javier A. Ortega and Hasina Huq
Instruments 2019, 3(3), 35; https://doi.org/10.3390/instruments3030035 - 22 Jul 2019
Cited by 6 | Viewed by 6641
Abstract
One of the main causes of hip prostheses failure is the premature wear of their components. Multi-directional motion or “cross-shear” motion has been identified as one of the most significant factors affecting the wear rate of UHMWPE in total hip joint replacement prostheses. [...] Read more.
One of the main causes of hip prostheses failure is the premature wear of their components. Multi-directional motion or “cross-shear” motion has been identified as one of the most significant factors affecting the wear rate of UHMWPE in total hip joint replacement prostheses. To better evaluate the effect of this cross-shear motion on the tribological behavior of different biomaterials, a new wear testing device has been designed and developed. This new instrument is capable to reproduce the “cross-shear” effect with bidirectional motion on bearing materials and to determine coefficient of friction (COF) between surfaces during testing. To validate the functionality of this new testing platform, alumina balls were articulated against Ti-6Al-4V ELI alloy disks in Ringer’s solution. Four different articulation patterns, all with identical path lengths per cycle, were tested. Gravimetric weight loss was converted to volumetric wear data in order to determine the effects of motion patterns on the wear. Worn surfaces were analyzed by scanning electron microscopy. This scientific approach to quantifying the tribological effects of cross-shear provides fundamental data that are crucial in evaluating potential biomaterials for use in knee and hip joint replacements. Full article
Show Figures

Figure 1

Back to TopTop