Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = volumetric median diameter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 8090 KiB  
Article
Prediction of Airfoil Icing and Evaluation of Hot Air Anti-Icing System Effectiveness Using Computational Fluid Dynamics Simulations
by Yifan Niu, Zhiqiang Wang, Jieyao Su, Jiawei Yao and Hainan Wang
Aerospace 2025, 12(6), 492; https://doi.org/10.3390/aerospace12060492 - 30 May 2025
Viewed by 482
Abstract
Icing poses a serious threat to flight safety, and ice accretion simulations are essential for addressing aircraft icing problems. In ice accretion prediction, systematic research covering all icing conditions based on actual flight phases is lacking, and the performance of anti-icing systems has [...] Read more.
Icing poses a serious threat to flight safety, and ice accretion simulations are essential for addressing aircraft icing problems. In ice accretion prediction, systematic research covering all icing conditions based on actual flight phases is lacking, and the performance of anti-icing systems has not been investigated. In this study, maximum ice thickness prediction models for airfoils considering all flight phases were developed, and the performance of hot air anti-icing systems was analyzed. A hot air anti-icing system model was established, and the anti-icing effectiveness of the system under severe icing conditions was evaluated via conjugate heat transfer (CHT) calculations. The calculation results showed that during climbing above 10,000 ft under glaze ice conditions, the maximum ice thickness reached 13.47 mm at −6 °C, with a median volumetric diameter (MVD) of 20 μm. Under rime ice conditions, the maximum thickness exhibited linear relationships with the icing parameters, remaining below 5 mm. The calculation results revealed nonlinear relationships between maximum ice thickness on the airfoil leading edge and the icing conditions. Ice thickness models were established via polynomial regression. The maximum ice thickness data were classified, and 15 regression models were obtained. The relative errors between the predicted and calculated values remained below 3%, demonstrating high predictive accuracy. These models were employed to estimate the effectiveness of piccolo tube hot air anti-icing systems under the most severe icing conditions. The results indicated that 100% anti-icing efficiency was achieved at high ambient temperatures (above −10 °C). During takeoff, holding, and climbing phases with a high speed of 154.3 m/s, the system may face challenges in maintaining anti-icing protection, resulting in runback ice with a maximum thickness exceeding 5 mm. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 11147 KiB  
Article
Numerical Study of Wind Tunnel Wall Effects on Icing Cloud Distribution and Water Collection in Aero-Engine Nacelles
by Cong Li, Ningli Chen, Xian Yi and Qingren Lai
Aerospace 2025, 12(4), 335; https://doi.org/10.3390/aerospace12040335 - 13 Apr 2025
Viewed by 1606
Abstract
Icing wind tunnel tests play a critical role in evaluating ice accretion on aero-engine nacelles. However, the effects of the wind tunnel wall (WTW) on the dynamics of the icing cloud remain insufficiently quantified. This study employs an experimentally validated Eulerian–Eulerian multiphase approach [...] Read more.
Icing wind tunnel tests play a critical role in evaluating ice accretion on aero-engine nacelles. However, the effects of the wind tunnel wall (WTW) on the dynamics of the icing cloud remain insufficiently quantified. This study employs an experimentally validated Eulerian–Eulerian multiphase approach to quantify WTW-induced alterations in Liquid Water Content (LWC) distribution inside the nacelle and droplet collection efficiency (β) on its surfaces. The results show that the WTW-induced flow deflection redirects droplets toward the outer nacelle surface, leading to an increase in the maximum droplet collection efficiency (βmax) and the total collected water mass on the nacelle under baseline conditions (Mach Number = 0.206) and causing a banded regime of the deviation in LWC. Parametric analysis further shows that higher inflow velocities and Median Volumetric Diameters (MVDs) enhanced the WTW’s effect on the change in LWC inside the nacelle and increased the maximum droplet collection efficiency on the nacelle’s surface. However, the increase in the intake flow rates exhibits a counteracting trend for the effect of the WTW for both the deviation in LWC and the maximum droplet collection efficiency and the total collected water mass. The findings highlight the necessity of accounting for WTW effects in icing wind tunnel testing protocols to improve flight condition extrapolation accuracy. Full article
Show Figures

Figure 1

10 pages, 6229 KiB  
Article
Synthesis and Evaluation of Porous Nanosynt Block (FGM®) as Synthetic Bone Substitute for Bone Tissue Engineering
by Jaqueline Silva dos Santos, Ana Carla Gonçales Souza, Ricardo Fantasia, Rafael Cury Cecato, Gabriela Aline Dias, Victor Eduardo de Souza Batista, Roberta Okamoto and Fellippo Ramos Verri
Coatings 2025, 15(3), 297; https://doi.org/10.3390/coatings15030297 - 4 Mar 2025
Viewed by 888
Abstract
Synthetic bone substitutes based on hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) are widely used in regenerative dentistry due to their favorable biocompatibility and osteoconductive properties. This study aimed to evaluate, through laboratory-based analyses, the porosity and surface characteristics of the Nanosynt Block (FGM [...] Read more.
Synthetic bone substitutes based on hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) are widely used in regenerative dentistry due to their favorable biocompatibility and osteoconductive properties. This study aimed to evaluate, through laboratory-based analyses, the porosity and surface characteristics of the Nanosynt Block (FGM Dental Group®) for bone regeneration applications. The Nanosynt Block, consisting of 60% HA and 40% β-TCP, was analyzed using scanning electron microscopy (SEM) for surface morphology characterization, micro-computed tomography (Micro-CT) for internal structure evaluation, and mercury intrusion porosimetry for porosity assessment. SEM imaging followed the ASTM E1829-02 standard, while Micro-CT and porosimetry provided detailed quantitative data. SEM analysis revealed a homogeneous pore distribution on the surface. Micro-CT indicated high structural stability and consistent volumetric porosity, ranging from 73.27% to 77.08%. Porosimetry indicated a total porosity of 94.9%, with a median pore diameter of 799 nm, characteristics suitable for promoting cellular adhesion and fluid infiltration. The structural and morphological properties of the Nanosynt Block highlight its potential to support initial bone formation and mechanical stability in clinical applications. These findings provide a robust basis for subsequent in vivo investigations to validate its clinical efficacy. Full article
(This article belongs to the Special Issue Machine Learning-Driven Advancements in Coatings)
Show Figures

Figure 1

13 pages, 4106 KiB  
Article
Characterization of the Droplet Population Generated by Centrifugal Atomization Nozzles of UAV Sprayers
by Fábio Henrique Rojo Baio, Job Teixeira de Oliveira, Marcos Eduardo Miranda Alves, Larissa Pereira Ribeiro Teodoro, Fernando França da Cunha and Paulo Eduardo Teodoro
AgriEngineering 2025, 7(1), 15; https://doi.org/10.3390/agriengineering7010015 - 13 Jan 2025
Cited by 3 | Viewed by 1321
Abstract
The use of unmanned aerial spraying systems is currently being explored and applied worldwide. The objective of this study was to characterize the droplet population generated by hydraulic nozzles and centrifugal atomization nozzles used in sprayers mounted on remotely piloted aircraft (RPA). Two [...] Read more.
The use of unmanned aerial spraying systems is currently being explored and applied worldwide. The objective of this study was to characterize the droplet population generated by hydraulic nozzles and centrifugal atomization nozzles used in sprayers mounted on remotely piloted aircraft (RPA). Two spray nozzle technologies were tested using a Malvern SprayTech laser particle size meter. The hydraulic nozzle evaluated was model 11001, which generates a wide-use fan spray. The centrifugal atomization nozzle, used in RPA sprayers, was manufactured by Yuenhoang, model DC12V. The experimental design was implemented in a completely randomized scheme, containing variations in the nozzles (hydraulic nozzle and centrifugal atomization nozzle) and application rate (AR) (5, 10, and 15 L ha−1 in the test with the hydraulic nozzle; and 9.2, 12.8, and 15.6 L ha−1 in the test with the centrifugal nozzle), with five replicates per treatment. The hydraulic nozzle test data showed a coefficient of variation of 6.8% VMD for all treatments, with droplet sizes within the fine classification ranging from 132.8 to 163.2 µm. It is noteworthy that the average relative span (span) of the droplet population generated by the hydraulic nozzle was 1.2, i.e., 20% higher than the desired reference value of 1. This value exceeds the general average reported for the centrifugal atomization nozzle, which has a span of 1.1. The relative span of the droplet size distribution for the hydraulic nozzles is greater than that observed with the centrifugal atomization nozzles. Excluding the extreme rotational speeds of the centrifugal atomization nozzle, the percentage of droplets generated with a volume smaller than 100 µm is lower compared to those produced by the hydraulic nozzle. Full article
Show Figures

Figure 1

17 pages, 5110 KiB  
Article
A Laboratory Investigation into the Effect of Coarse-Grained Layer Mixing with Fine Particles on the Water Storage Capacity of a Capillary Barrier Cover
by Chong Sun, Junjie Yang, Qiang Liu, Yalei Wu and Jiali Miao
Water 2025, 17(2), 183; https://doi.org/10.3390/w17020183 - 10 Jan 2025
Viewed by 813
Abstract
A capillary barrier cover (CBC) is a geotechnical structure which a coarse-grained soil layer covered by a fine-grained soil layer. A CBC can retain downward water infiltration, increase water storage capacity and lateral diversion, and prevent capillary rise. Geotextiles are usually set up [...] Read more.
A capillary barrier cover (CBC) is a geotechnical structure which a coarse-grained soil layer covered by a fine-grained soil layer. A CBC can retain downward water infiltration, increase water storage capacity and lateral diversion, and prevent capillary rise. Geotextiles are usually set up as isolation layers between fine-grained and coarse-grained layers to prevent fine particles entering the coarse-grained layer, resulting in a decrease in downward water infiltration and water storage capacity. However, crustal stress, farming, animal, plant activities, and other factors may cause damage to the isolation layer. At present, there is no reliable and accurate method to determine the location and degree of damage to the isolation layer. The existing methods search for the damage location by excavating the whole fine layer, which incurs high maintenance costs. If the damaged position of the CBC isolation layer can be accurately obtained, it can reduce maintenance costs. Therefore, this study investigated the influence of a coarse-grained layer mixed with different particle sizes and proportions of fine particles on water storage capacity through laboratory soil column experiments. The results are as follows: (1) Fine particle mixing into the coarse-grained layer will reduce water storage capacity, and there is a worse admixture ratio that minimizes water storage capacity. (2) The CBC enhances the fine-grained layer volumetric water content (VWC), but the enhancement degree decreases as the distance from the fine–coarse interface increases. (3) A method has been proposed to determine the location and degree of damage to the isolation layer. When the VWC at the fine–coarse interface reaches a stable level during breakthrough, the CBC effect exists, the higher the VWC at the fine–coarse interface, the stronger the CBC; when the VWC at the fine–coarse interface is unstable during breakthrough, the CBC effect disappears, and the median diameter of the fine particles mixed into the coarse-grained layer is finer than or equal to the fine-grained particles’ median diameter. Full article
Show Figures

Figure 1

21 pages, 4072 KiB  
Article
Effect of Adjuvants on Physical–Chemical Properties, Droplet Size, and Drift Reduction Potential
by Sérgio Basílio, Marconi Ribeiro Furtado Júnior, Cleyton Batista de Alvarenga, Edney Leandro da Vitória, Beatriz Costalonga Vargas, Salvatore Privitera, Luciano Caruso, Emanuele Cerruto and Giuseppe Manetto
Agriculture 2024, 14(12), 2271; https://doi.org/10.3390/agriculture14122271 - 11 Dec 2024
Cited by 3 | Viewed by 1900
Abstract
Adjuvants alter the physical–chemical properties of pesticide formulations, influencing either the droplet size or drift phenomenon. Selecting the appropriate adjuvant and understanding its characteristics can contribute to the efficiency of Plant Protection Product (PPP) application. This reduces drift losses and promotes better deposition [...] Read more.
Adjuvants alter the physical–chemical properties of pesticide formulations, influencing either the droplet size or drift phenomenon. Selecting the appropriate adjuvant and understanding its characteristics can contribute to the efficiency of Plant Protection Product (PPP) application. This reduces drift losses and promotes better deposition on the crop. The objective of this study was to evaluate the effects of four commercial adjuvants based on mineral oil (Agefix and Assist), vegetable oil (Aureo), and polymer (BREAK-THRU) on the physical–chemical properties (surface tension, contact angle, volumetric mass, electrical conductivity, and pH), droplet size, and drift, using pure water as the control treatment (no adjuvant). Surface tension and contact angle were measured with a DSA30 droplet shape analyzer, while droplet size measurements were determined through a laser diffraction particle analyzer (Malvern Spraytec), using a single flat fan spray nozzle (AXI 110 03) operating at 0.3 MPa. Drift reduction potential was evaluated inside a wind tunnel with an air speed of 2 m s−1. All adjuvants reduced surface tension and contact angle compared to water. volumetric median diameter (VMD) increased for Aureo, Assist, and Agefix, generating coarse, medium, and medium droplets, respectively, while BREAK-THRU formed fine droplets, similar to those generated by water. Aureo had the greatest reduction in Relative Span Factor (RSF), with a reduction of 30.3%. Overall, Aureo, Assist, and Agefix adjuvants significantly reduced the percentage of droplets <100 µm and increased those >500 µm. Drift reduction potential was achieved for all adjuvants, with Aureo showing the highest reduction of 59.35%. The study confirms that selecting the appropriate adjuvant can improve PPP application and promote environmental sustainability in agricultural practices. Full article
(This article belongs to the Special Issue Pesticides in the Environment: Impacts and Challenges in Agriculture)
Show Figures

Figure 1

20 pages, 2832 KiB  
Article
Comparison between Liquid Immersion, Laser Diffraction, PDPA, and Shadowgraphy in Assessing Droplet Size from Agricultural Nozzles
by Salvatore Privitera, Emanuele Cerruto, Giuseppe Manetto, Sebastian Lupica, David Nuyttens, Donald Dekeyser, Ingrid Zwertvaegher, Marconi Ribeiro Furtado Júnior and Beatriz Costalonga Vargas
Agriculture 2024, 14(7), 1191; https://doi.org/10.3390/agriculture14071191 - 19 Jul 2024
Cited by 4 | Viewed by 1672
Abstract
Spray droplet diameters play a key role in the field of liquid plant protection product (PPP) application technology. However, the availability of various measurement techniques, each with its unique operating principles for evaluating droplet size spectra, can lead to different interpretations of spray [...] Read more.
Spray droplet diameters play a key role in the field of liquid plant protection product (PPP) application technology. However, the availability of various measurement techniques, each with its unique operating principles for evaluating droplet size spectra, can lead to different interpretations of spray characteristics. Therefore, in this study, four measurement techniques—Liquid Immersion (LI), Laser Diffraction (LD), Phase Doppler Particle Analysis (PDPA), and Shadowgraphy (SG)—were utilized to evaluate the droplet size distribution of agricultural spray nozzles. Additionally, PDPA and SG were used to assess the average velocity of spray droplets. Experiments were conducted in three different laboratories with the main aim of comparing results obtained with various types of equipment utilized under ordinary practical conditions. Spraying tests were carried out using three flat fan nozzles and an air-induction flat fan nozzle. As a general trend, the lowest values for droplet diameters were measured using the Laser Diffraction technique, followed by Shadowgraphy. The PDPA technique provided the highest values for mean diameters (D10, D20, and D30) and the numeric median diameter (Dn0.5), whereas the Liquid Immersion method yielded the highest values for the Sauter mean diameter (D32) and volumetric diameters (Dv0.1, Dv0.5, and Dv0.9). Importantly, all measurement techniques were able to discriminate the four nozzles based on their Dv0.5 diameter. Average droplet velocities showed a similar pattern across the four nozzles with the PDPA and the SG measurement techniques. The differences in diameter values observed with the four measurement techniques underline the necessity of always including reference nozzles in spray quality assessments to base classifications on relative rather than absolute values. Full article
(This article belongs to the Special Issue Advanced Technology for the Development of Agricultural Sprays)
Show Figures

Figure 1

15 pages, 27307 KiB  
Article
Evaluation of RANO Criteria for the Assessment of Tumor Progression for Lower-Grade Gliomas
by Fabio Raman, Alexander Mullen, Matthew Byrd, Sejong Bae, Jinsuh Kim, Houman Sotoudeh, Fanny E. Morón and Hassan M. Fathallah-Shaykh
Cancers 2023, 15(13), 3274; https://doi.org/10.3390/cancers15133274 - 21 Jun 2023
Cited by 7 | Viewed by 3722
Abstract
Purpose: The Response Assessment in Neuro-Oncology (RANO) criteria for lower-grade gliomas (LGGs) define tumor progression as ≥25% change in the T2/FLAIR signal area based on an operator’s discretion of the perpendicular diameter of the largest tumor cross-section. Potential sources of error include acquisition [...] Read more.
Purpose: The Response Assessment in Neuro-Oncology (RANO) criteria for lower-grade gliomas (LGGs) define tumor progression as ≥25% change in the T2/FLAIR signal area based on an operator’s discretion of the perpendicular diameter of the largest tumor cross-section. Potential sources of error include acquisition inconsistency of 2D slices, operator selection variabilities in both representative tumor cross-section and measurement line locations, and the inability to quantify infiltrative tumor margins and satellite lesions. Our goal was to assess the accuracy and reproducibility of RANO in LG. Materials and Methods: A total of 651 FLAIR MRIs from 63 participants with LGGs were retrospectively analyzed by three blinded attending physicians and three blinded resident trainees using RANO criteria, 2D visual assessment, and computer-assisted 3D volumetric assessment. Results: RANO product measurements had poor-to-moderate inter-operator reproducibility (r2 = 0.28–0.82; coefficient of variance (CV) = 44–110%; mean percent difference (diff) = 0.4–46.8%) and moderate-to-excellent intra-operator reproducibility (r2 = 0.71–0.88; CV = 31–58%; diff = 0.3–23.9%). When compared to 2D visual ground truth, the accuracy of RANO compared to previous and baseline scans was 66.7% and 65.1%, with an area under the ROC curve (AUC) of 0.67 and 0.66, respectively. When comparing to volumetric ground truth, the accuracy of RANO compared to previous and baseline scans was 21.0% and 56.5%, with an AUC of 0.39 and 0.55, respectively. The median time delay at diagnosis was greater for false negative cases than for false positive cases for the RANO assessment compared to previous (2.05 > 0.50 years, p = 0.003) and baseline scans (1.08 > 0.50 years, p = 0.02). Conclusion: RANO-based assessment of LGGs has moderate reproducibility and poor accuracy when compared to either visual or volumetric ground truths. Full article
(This article belongs to the Special Issue The Current Status of Brain Tumors Imaging)
Show Figures

Figure 1

15 pages, 7003 KiB  
Article
A Study on the Sensitivities of an Ice Protection System Combining Thermoelectric and Superhydrophobic Coating to Icing Environment Parameters
by Lei Yu, Yuan Wu, Huanyu Zhao and Dongyu Zhu
Appl. Sci. 2023, 13(11), 6607; https://doi.org/10.3390/app13116607 - 29 May 2023
Cited by 7 | Viewed by 1565
Abstract
The hybrid Ice Protection System combining thermoelectric and superhydrophobic coating is efficient and benefits from low-energy consumption. In order to explore the application details of superhydrophobic coating, this paper investigated the sensitivities of the Ice Protection System parameters including the range of the [...] Read more.
The hybrid Ice Protection System combining thermoelectric and superhydrophobic coating is efficient and benefits from low-energy consumption. In order to explore the application details of superhydrophobic coating, this paper investigated the sensitivities of the Ice Protection System parameters including the range of the superhydrophobic coating, heating range and power to icing environmental parameters. In this paper, an icing wind tunnel test was adopted to study the performance of this Ice Protection System under different icing conditions, as well as the influence of the superhydrophobic coating range, heating range and power variation on ice protection. The results showed that the superhydrophobic coating is effective only when it covers the droplet impingement area, with the heating power requirement emerging as a critical design consideration that is extremely sensitive to environmental temperature changes. Additionally, median volumetric diameter determines the protection area to be protected, while liquid water content variation has little effect on the designed Ice Protection System in contrast. Full article
Show Figures

Figure 1

17 pages, 3433 KiB  
Article
Photosystem II Performance of Coffea canephora Seedlings after Sunscreen Application
by Débora Moro Soela, Edney Leandro da Vitória, Antelmo Ralph Falqueto, Luis Felipe Oliveira Ribeiro, Cátia Aparecida Simon, Luciano Rastoldo Sigismondi, Rodrigo Fraga Jegeski and Leandro Demetriu Becatiini Pereira
Plants 2023, 12(7), 1467; https://doi.org/10.3390/plants12071467 - 27 Mar 2023
Cited by 2 | Viewed by 2346
Abstract
In the conilon coffee tree, the stress caused by high light can reduce the photosynthetic rate, limit the development and also reduce the yield of beans. Considering that the quality of a sunscreen spray can influence photosynthetic performance, the goal was to understand [...] Read more.
In the conilon coffee tree, the stress caused by high light can reduce the photosynthetic rate, limit the development and also reduce the yield of beans. Considering that the quality of a sunscreen spray can influence photosynthetic performance, the goal was to understand the iterations between the quality of the spray and the variation of the chlorophyll a fluorescence when applying sunscreen on conilon coffee trees. The parameters coverage, volumetric median diameter, density, droplet deposition, and the variation of the chlorophyll a fluorescence were evaluated. The nozzle and application rate factors did not show direct effects in the physiological responses of the plants. Plants with no sunscreen application showed high values of energy dissipation flux. The photosystem II (PSII) performance index and PSII photochemical maximum efficiency indicate that the use of sunscreen for plants promotes better performance of photosynthetic activity and that it provides photoprotection against luminous stress, regardless of the application rate and spraying nozzle; however, we recommend using the application rate of 100 L ha−1 and the cone jet nozzle type because they provide lower risks of product loss due to runoff. Full article
(This article belongs to the Special Issue Coffee Breeding and Stress Biology)
Show Figures

Figure 1

19 pages, 4791 KiB  
Article
Development of Inhalable ATRA-Loaded PLGA Nanoparticles as Host-Directed Immunotherapy against Tuberculosis
by Ahmad Z. Bahlool, Sarinj Fattah, Andrew O’Sullivan, Brenton Cavanagh, Ronan MacLoughlin, Joseph Keane, Mary P. O’Sullivan and Sally-Ann Cryan
Pharmaceutics 2022, 14(8), 1745; https://doi.org/10.3390/pharmaceutics14081745 - 21 Aug 2022
Cited by 22 | Viewed by 4275
Abstract
Developing new effective treatment strategies to overcome the rise in multi-drug resistant tuberculosis cases (MDR-TB) represents a global challenge. A host-directed therapy (HDT), acting on the host immune response rather than Mtb directly, could address these resistance issues. We developed an HDT for [...] Read more.
Developing new effective treatment strategies to overcome the rise in multi-drug resistant tuberculosis cases (MDR-TB) represents a global challenge. A host-directed therapy (HDT), acting on the host immune response rather than Mtb directly, could address these resistance issues. We developed an HDT for targeted TB treatment, using All Trans Retinoic Acid (ATRA)-loaded nanoparticles (NPs) that are suitable for nebulization. Efficacy studies conducted on THP-1 differentiated cells infected with the H37Ra avirulent Mycobacterium tuberculosis (Mtb) strain, have shown a dose-dependent reduction in H37Ra growth as determined by the BACT/ALERT® system. Confocal microscopy images showed efficient and extensive cellular delivery of ATRA-PLGA NPs into THP-1-derived macrophages. A commercially available vibrating mesh nebulizer was used to generate nanoparticle-loaded droplets with a mass median aerodynamic diameter of 2.13 μm as measured by cascade impaction, and a volumetric median diameter of 4.09 μm as measured by laser diffraction. In an adult breathing simulation experiment, 65.1% of the ATRA PLGA-NP dose was inhaled. This targeted inhaled HDT could offer a new adjunctive TB treatment option that could enhance current dosage regimens leading to better patient prognosis and a decreasing incidence of MDR-TB. Full article
Show Figures

Figure 1

23 pages, 2179 KiB  
Article
Nebulised Isotonic Hydroxychloroquine Aerosols for Potential Treatment of COVID-19
by Waiting Tai, Michael Yee Tak Chow, Rachel Yoon Kyung Chang, Patricia Tang, Igor Gonda, Robert B. MacArthur, Hak-Kim Chan and Philip Chi Lip Kwok
Pharmaceutics 2021, 13(8), 1260; https://doi.org/10.3390/pharmaceutics13081260 - 14 Aug 2021
Cited by 11 | Viewed by 7585
Abstract
The coronavirus disease 2019 (COVID-19) is an unprecedented pandemic that has severely impacted global public health and the economy. Hydroxychloroquine administered orally to COVID-19 patients was ineffective, but its antiviral and anti-inflammatory actions were observed in vitro. The lack of efficacy in vivo [...] Read more.
The coronavirus disease 2019 (COVID-19) is an unprecedented pandemic that has severely impacted global public health and the economy. Hydroxychloroquine administered orally to COVID-19 patients was ineffective, but its antiviral and anti-inflammatory actions were observed in vitro. The lack of efficacy in vivo could be due to the inefficiency of the oral route in attaining high drug concentration in the lungs. Delivering hydroxychloroquine by inhalation may be a promising alternative for direct targeting with minimal systemic exposure. This paper reports on the characterisation of isotonic, pH-neutral hydroxychloroquine sulphate (HCQS) solutions for nebulisation for COVID-19. They can be prepared, sterilised, and nebulised for testing as an investigational new drug for treating this infection. The 20, 50, and 100 mg/mL HCQS solutions were stable for at least 15 days without refrigeration when stored in darkness. They were atomised from Aerogen Solo Ultra vibrating mesh nebulisers (1 mL of each of the three concentrations and, in addition, 1.5 mL of 100 mg/mL) to form droplets having a median volumetric diameter of 4.3–5.2 µm, with about 50–60% of the aerosol by volume < 5 µm. The aerosol droplet size decreased (from 4.95 to 4.34 µm) with increasing drug concentration (from 20 to 100 mg/mL). As the drug concentration and liquid volume increased, the nebulisation duration increased from 3 to 11 min. The emitted doses ranged from 9.1 to 75.9 mg, depending on the concentration and volume nebulised. The HCQS solutions appear suitable for preclinical and clinical studies for potential COVID-19 treatment. Full article
(This article belongs to the Special Issue Inhaled Treatment of Respiratory Infections)
Show Figures

Figure 1

11 pages, 828 KiB  
Article
Effect of Non-Alcoholic Liver Disease on Recurrence Rate and Liver Regeneration after Liver Resection for Colorectal Liver Metastases
by N. W. Molla, M. M. Hassanain, Z. Fadel, L. M. Boucher, A. Madkhali, R. M. Altahan, E. A. Alrijraji, E. B. Simoneau, H. Alamri, A. Salman, Z. Gao and Peter P. Metrakos
Curr. Oncol. 2017, 24(3), 233-243; https://doi.org/10.3747/co.24.3133 - 1 Jun 2017
Cited by 15 | Viewed by 1372
Abstract
Background: Resection of metastases is the only potential cure for patients with liver metastasis from colorectal cancer (CRC-LM). But despite an improved overall 5-year survival, the recurrence rate is still as high as 60%. Non-alcoholic fatty liver disease (NAFLD) [...] Read more.
Background: Resection of metastases is the only potential cure for patients with liver metastasis from colorectal cancer (CRC-LM). But despite an improved overall 5-year survival, the recurrence rate is still as high as 60%. Non-alcoholic fatty liver disease (NAFLD) can decrease the liver’s capacity to regenerate after resection and might also affect cancer recurrence, potentially by elevating transforming growth factor β, levels of specific metalloproteinases, and oxidative stress. The objective of the present work was to determine the effect of the histologic features of nafld on cancer recurrence and liver regeneration. Methods: This retrospective analysis considered 60 patients who underwent an R0 hepatectomy for CRC-LM. Volumetric analysis of the liver was calculated using axial view, portovenous phase, 2.5 mm thickness, multiphasic computed tomography images taken before and after surgery. The histologic features of NAFLD (steatosis, inflammation, and ballooning) were scored using the nafld activity score, and the degree of fibrosis was determined. Results: The hepatic recurrence rate was 38.33%. Median overall survival duration was 56 months. Median disease-free survival duration was 14 months, and median hepatic disease-free survival duration was 56 months. Multivariate analysis revealed significant correlations of hepatic disease-free survival with hepatocyte ballooning (p = 0.0009), lesion diameter (p = 0.014), and synchronous disease (p = 0.006). Univariate and multivariate analyses did not reveal any correlation with degree of steatosis or recurrence rate. Conclusions: This study reveals an important potential negative effect of hepatocyte ballooning on hepatic disease-free survival. Full article
Back to TopTop