Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = viral insertion site

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1445 KiB  
Article
Importance of Target Gene Locus on the Stability of Recombinant Viruses in the Baculovirus Expression System
by Jong Ho Lee, Dong-Hyun Lee, Hyuk-Jin Moon and Soo Dong Woo
Viruses 2025, 17(7), 902; https://doi.org/10.3390/v17070902 - 26 Jun 2025
Viewed by 365
Abstract
In the baculovirus expression system, recombinant viruses generated via bacmids often exhibit reduced expression and genetic stability of target genes during serial passages. This instability is thought to arise from the proximity of non-essential exogenous genes to the target gene insertion site. This [...] Read more.
In the baculovirus expression system, recombinant viruses generated via bacmids often exhibit reduced expression and genetic stability of target genes during serial passages. This instability is thought to arise from the proximity of non-essential exogenous genes to the target gene insertion site. This study investigated the impact of the target gene insertion locus on its expression and stability within the recombinant viral genome. In addition to the conventional polyhedrin (polh) locus, we evaluated four additional loci located distal to the non-essential exogenous genes. Among them, the ODV-e56 and ChiA/v-cath loci maintained target gene expression and genetic stability more effectively than the polh and p10 loci, even after ten consecutive undiluted viral passages. Notably, essential or functionally important viral genes were located near the ODV-e56 and ChiA/v-cath loci, whereas such genes were absent near the p10 locus. These findings suggest that enhanced stability and expression are associated with the proximity to essential viral genes. Therefore, the strategic selection of target gene insertion sites in close proximity to essential viral elements, rather than simply avoiding non-essential exogenous regions, represents a promising strategy to enhance recombinant protein production in baculovirus expression systems. Full article
Show Figures

Graphical abstract

14 pages, 1967 KiB  
Article
Genomic Evolution of White Spot Syndrome Virus in Shrimp: Insights from Transposon Dynamics
by Zhouquan Li, Guanghua Huang, Jingyi Zhang, Mingyou Li, Zhizhi Liu, Sihua Peng, Rui Wang and Dong Liu
Biology 2025, 14(6), 653; https://doi.org/10.3390/biology14060653 - 4 Jun 2025
Viewed by 618
Abstract
White spot syndrome virus (WSSV) has emerged as a significant threat to global shrimp aquaculture, causing economic losses because of its rapid spread and high mortality rates. This study aims to elucidate the genetic and evolutionary dynamics of WSSV through a comprehensive genome [...] Read more.
White spot syndrome virus (WSSV) has emerged as a significant threat to global shrimp aquaculture, causing economic losses because of its rapid spread and high mortality rates. This study aims to elucidate the genetic and evolutionary dynamics of WSSV through a comprehensive genome analysis. Utilizing 27 complete genome sequences sourced from public databases, this study investigates the genetic variability, potential recombination events, and evolutionary patterns of WSSV. Our results identified multiple genomic deletions, 14 novel single-nucleotide polymorphism sites, and variable number tandem repeats across different strains, underscoring the virus’s genetic diversity. A recombination event between freshwater and marine strains highlights a complex transmission pathway, potentially facilitated by aquaculture practices. A phylogenetic tree constructed using ancestral genes suggests that WSSV originated in Southeast Asia and subsequently globally spread, influenced by both natural and anthropogenic factors. Genomic shrinkage of the virus occurred in time series, while the host’s viral infection induced transposon transposition and insertion into the earlier virus genome to provide a basis for genomic shrinkage. Our research emphasizes the importance of advanced molecular characterization and evolutionary models of the virus in understanding the spread of viral pathogens in aquaculture environments. Full article
(This article belongs to the Special Issue Internal Defense System and Evolution of Aquatic Animals)
Show Figures

Figure 1

16 pages, 4009 KiB  
Article
A Fluorescent Reporter Virus Toolkit for Interrogating Enterovirus Biology and Host Interactions
by Mireya Martínez-Pérez, Sebastian Velandia-Álvarez, Cristina Vidal-Verdú, Beatriz Álvarez-Rodríguez and Ron Geller
Viruses 2025, 17(6), 796; https://doi.org/10.3390/v17060796 - 30 May 2025
Viewed by 595
Abstract
Enteroviruses are a group of highly prevalent human pathogens responsible for a wide range of illnesses, ranging from common cold symptoms to life-threatening diseases. A deep understanding of enterovirus biology, evolution, and host interaction is required for the development of effective vaccines and [...] Read more.
Enteroviruses are a group of highly prevalent human pathogens responsible for a wide range of illnesses, ranging from common cold symptoms to life-threatening diseases. A deep understanding of enterovirus biology, evolution, and host interaction is required for the development of effective vaccines and antivirals. Recombinant reporter viruses encoding luminescent or fluorescent proteins have been developed to facilitate such investigation. In this work, using coxsackievirus B3 as our model, we analyze how the insertion of fluorescent reporter genes at three distinct sites within the viral polyprotein affects viral fitness, identifying the most tolerant site for reporter insertion. We then describe a set of experimental workflows for measuring viral fitness, sera neutralization, antiviral efficacy, and recombination using fluorescent reporter viruses. The high homology between different enteroviruses suggests these assays can be readily adapted to study additional members of this medically and economically relevant group of viruses. Full article
Show Figures

Figure 1

18 pages, 3649 KiB  
Article
Diversity and Role of Prophages in Pseudomonas aeruginosa: Resistance Genes and Bacterial Interactions
by Keyla Vitória Marques Xavier, Adrianne Maria de Albuquerque Silva, Ana Carolina de Oliveira Luz, Felipe Santana Caboclo da Silva, Beatriz Souza Toscano de Melo, João Luiz de Lemos Padilha Pitta and Tereza Cristina Leal-Balbino
Genes 2025, 16(6), 656; https://doi.org/10.3390/genes16060656 - 29 May 2025
Viewed by 793
Abstract
Pseudomonas aeruginosa is a major pathogen associated with hospital-acquired infections, and the spread of carbapenem-resistant isolates highlights the urgency of developing non-conventional therapies, such as phage therapy. For this alternative to be effective, understanding phage–host interactions is crucial for the selection of candidate [...] Read more.
Pseudomonas aeruginosa is a major pathogen associated with hospital-acquired infections, and the spread of carbapenem-resistant isolates highlights the urgency of developing non-conventional therapies, such as phage therapy. For this alternative to be effective, understanding phage–host interactions is crucial for the selection of candidate phages and offers new insights into these dynamics. Background/Objectives: This study aimed to characterize prophage diversity in clinical P. aeruginosa genomes, assess the relationship between phages and the CRISPR/Cas system, and investigate the potential role of prophages in disseminating resistance genes. Methods: A total of 141 genomes from Brazilian hospitals were analyzed. Prophage detection was performed using VIBRANT, and in silico analyses were conducted to evaluate taxonomic diversity, the presence of resistance genes, phage life cycle, genomic distribution, and the presence of the CRISPR/Cas system. Results: A total of 841 viral sequences were identified by the VIBRANT tool, of which 498 were confirmed by CheckV, with a predominance of the class Caudoviricetes and high overall phage diversity. No statistically significant difference was observed in the number of prophages between isolates with and without CRISPR/Cas systems. Prophages carrying resistance genes such as rsmA, OXA-56, SPM-1, and others were detected in isolates harboring the type I-C CRISPR/Cas system. Additionally, prophages showed no preference for specific insertion sites along the bacterial genome. Conclusions: These findings provide evidence of a well-established phage–host relationship. The dual role of prophages—as vectors of antimicrobial resistance and as potential therapeutic agents—reflects their dynamic impact on bacterial communities and reinforces their importance in developing new strategies to combat antimicrobial resistance. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Graphical abstract

19 pages, 4600 KiB  
Article
The Junction Between nsp1β and nsp2 in the Porcine Reproductive and Respiratory Syndrome Virus Genome Is a New Site for the Insertion and Expression of Foreign Genes
by Changguang Xiao, Yafang Lin, Hailong Zhang, Zongjie Li, Ke Liu, Beibei Li, Donghua Shao, Yafeng Qiu, Zhiyong Ma and Jianchao Wei
Viruses 2025, 17(5), 656; https://doi.org/10.3390/v17050656 - 30 Apr 2025
Viewed by 467
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is considered a promising viral vector for the expression and delivery of foreign genes for the development of a new generation of multi-valent vaccines against PRRSV and other porcine viruses, as well as for analyses of [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV) is considered a promising viral vector for the expression and delivery of foreign genes for the development of a new generation of multi-valent vaccines against PRRSV and other porcine viruses, as well as for analyses of the immune response against PRRSV and anti-PRRSV component screening. In the present study, the junction site between nsp1β and nsp2 in the PRRSV genome was tested for the insertion and expression of foreign genes. Three foreign genes, including eGFP, iLOV3, and TEVp, were inserted into the intergenic junction between nsp1β and nsp2 and expressed by the respective recombinant PRRSVs (rPRRSV-SH01-eGFP, rPRRSV-SH01-iLOV3, and rPRRSV-SH01-TEVp) in vitro in mammalian cells. Analysis of the growth kinetics of the rescued recombinant PRRSVs showed no significant differences between the recombinant PRRSVs and their parental viruses. The inserted genes were consistently present in the viral genome during serial passage in vitro (for at least 20 passages). In addition, rPRRSV-SH01-eGFP can be used as a reporter virus for rapid detection of neutralizing antibodies against PRRSV through a fluorescent focus unit reduction-based assay. These data demonstrate that the junction between nsp1β and nsp2 is a new site that is suitable for the insertion and expression of foreign genes, providing a new option to express and deliver foreign genes using PRRSV-based vectors for different purposes, such as the development of multi-valent vaccines against PRRSV and other porcine viruses. Full article
(This article belongs to the Special Issue Porcine Viruses 2025)
Show Figures

Figure 1

28 pages, 3695 KiB  
Article
Evaluation of Genomic Surveillance of SARS-CoV-2 Virus Isolates and Comparison of Mutational Spectrum of Variants in Bangladesh
by Abeda Sultana, Laila Anjuman Banu, Mahmud Hossain, Nahid Azmin, Nurun Nahar Nila, Sharadindu Kanti Sinha and Zahid Hassan
Viruses 2025, 17(2), 182; https://doi.org/10.3390/v17020182 - 27 Jan 2025
Cited by 1 | Viewed by 1349
Abstract
The SARS-CoV-2-induced disease, COVID-19, remains a worldwide public health concern due to its high rate of transmission, even in vaccinated and previously infected people. In the endemic state, it continues to cause significant pathology. To elu- cidate the viral mutational changes and screen [...] Read more.
The SARS-CoV-2-induced disease, COVID-19, remains a worldwide public health concern due to its high rate of transmission, even in vaccinated and previously infected people. In the endemic state, it continues to cause significant pathology. To elu- cidate the viral mutational changes and screen the emergence of new variants of concern, we conducted this study in Bangladesh. The viral RNA genomes extracted from 25 ran- domly collected samples of COVID-19-positive patients from March 2021 to February 2022 were sequenced using Illumina COVID Seq protocol and genomic data processing, as well as evaluations performed in DRAGEN COVID Lineage software. In this study, the percentage of Delta, Omicron, and Mauritius variants identified were 88%, 8%, and 4%, respectively. All of the 25 samples had 23,403 A>G (D614G, S gene), 3037 C>T (nsp3), and 14,408 C>T (nsp12) mutations, where 23,403 A>G was responsible for increased transmis- sion. Omicron had the highest number of unique mutations in the spike protein (i.e., sub- stitutions, deletions, and insertions), which may explain its higher transmissibility and immune-evading ability than Delta. A total of 779 mutations were identified, where 691 substitutions, 85 deletions, and 3 insertion mutations were observed. To sum up, our study will enrich the genomic database of SARS-CoV-2, aiding in treatment strategies along with understanding the virus’s preferences in both mutation type and mutation site for predicting newly emerged viruses’ survival strategies and thus for preparing to coun- teract them. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

20 pages, 15671 KiB  
Article
Expression of an Efficient Selection Marker Out of a Duplicated Site in the ITRs of a Modified Vaccinia Virus Ankara (MVA)
by Sirine Abidi, Aurora Elhazaz Fernandez, Nicole Seehase, Lina Hanisch, Alexander Karlas, Volker Sandig and Ingo Jordan
Vaccines 2024, 12(12), 1377; https://doi.org/10.3390/vaccines12121377 - 6 Dec 2024
Viewed by 1222
Abstract
Background/Objectives: Poxviruses are large DNA viruses that replicate in the host cytoplasm without a nuclear phase. As vaccine vectors, they can package and express large recombinant cassettes from different positions of their genomic core region. We present a comparison between wildtype modified [...] Read more.
Background/Objectives: Poxviruses are large DNA viruses that replicate in the host cytoplasm without a nuclear phase. As vaccine vectors, they can package and express large recombinant cassettes from different positions of their genomic core region. We present a comparison between wildtype modified vaccinia Ankara (MVA) and isolate CR19, which has significantly expanded inverted terminal repeats (ITRs). With this expansion, a site in wildtype MVA, called deletion site (DS) IV, has been duplicated at both ends of the genome and now occupies an almost central position in the newly formed ITRs. Methods: We inserted various reporter genes into this site and found that the ITRs can be used for transgene expression. However, ITRs are genomic structures that can rapidly adapt to selective pressure through transient duplication and contraction. To test the potential utility of insertions into viral telomers, we inserted a factor from the cellular innate immune system that interferes with viral replication as an example of a difficult transgene. Results: A site almost in the centre of the ITRs can be used for transgene expression, and both sides are mirrored into identical copies. The example of a challenging transgene, tetherin, proved to be surprisingly efficient in selecting candidate vectors against the large background of parental viruses. Conclusions: Insertion of transgenes into ITRs automatically doubles the gene doses. The functionalisation of viruses with tetherin may accelerate the identification and generation of recombinant vectors for personalised medicine and pandemic preparedness. Full article
(This article belongs to the Section Vaccine Design, Development, and Delivery)
Show Figures

Figure 1

18 pages, 6964 KiB  
Article
Leveraging Synthetic Virology for the Rapid Engineering of Vesicular Stomatitis Virus (VSV)
by Chad M. Moles, Rupsa Basu, Peter Weijmarshausen, Brenda Ho, Manal Farhat, Taylor Flaat and Bruce F. Smith
Viruses 2024, 16(10), 1641; https://doi.org/10.3390/v16101641 - 21 Oct 2024
Viewed by 3782
Abstract
Vesicular stomatitis virus (VSV) is a prototype RNA virus that has been instrumental in advancing our understanding of viral molecular biology and has applications in vaccine development, cancer therapy, antiviral screening, and more. Current VSV genome plasmids for purchase or contract virus services [...] Read more.
Vesicular stomatitis virus (VSV) is a prototype RNA virus that has been instrumental in advancing our understanding of viral molecular biology and has applications in vaccine development, cancer therapy, antiviral screening, and more. Current VSV genome plasmids for purchase or contract virus services provide limited options for modification, restricted to predefined cloning sites and insert locations. Improved methods and tools to engineer VSV will unlock further insights into long-standing virology questions and new opportunities for innovative therapies. Here, we report the design and construction of a full-length VSV genome. The 11,161 base pair synthetic VSV (synVSV) was assembled from four modularized DNA fragments. Following rescue and titration, phenotypic analysis showed no significant differences between natural and synthetic viruses. To demonstrate the utility of a synthetic virology platform, we then engineered VSV with a foreign glycoprotein, a common use case for studying viral entry and developing anti-virals. To show the freedom of design afforded by this platform, we then modified the genome of VSV by rearranging the gene order, switching the positions of VSV-P and VSV-M genes. This work represents a significant technical advance, providing a flexible, cost-efficient platform for the rapid construction of VSV genomes, facilitating the development of innovative therapies. Full article
(This article belongs to the Special Issue Vesicular Stomatitis Virus (VSV))
Show Figures

Figure 1

23 pages, 5143 KiB  
Article
Modular Polymerase Synthesis and Internal Protein Domain Swapping via Dual Opposed Frameshifts in the Ebola Virus L Gene
by David B. Stubbs, Jan A. Ruzicka and Ethan W. Taylor
Pathogens 2024, 13(10), 829; https://doi.org/10.3390/pathogens13100829 - 25 Sep 2024
Viewed by 1481
Abstract
Sequence analysis of the Zaire ebolavirus (EBOV) polymerase (L gene) mRNA, using online tools, identified a highly ranked −1 programmed ribosomal frameshift (FS) signal including an ideal slippery sequence heptamer (UUUAAAA), with an overlapping coding region featuring two tandem UGA codons, immediately followed [...] Read more.
Sequence analysis of the Zaire ebolavirus (EBOV) polymerase (L gene) mRNA, using online tools, identified a highly ranked −1 programmed ribosomal frameshift (FS) signal including an ideal slippery sequence heptamer (UUUAAAA), with an overlapping coding region featuring two tandem UGA codons, immediately followed by an RNA region that is the inverse complement (antisense) to a region of the mRNA of the selenoprotein iodothyronine deiodinase II (DIO2). This antisense interaction was confirmed in vitro via electrophoretic gel shift assay, using cDNAs at the EBOV and DIO2 segments. The formation of a duplex between the two mRNAs could trigger the ribosomal frameshift, by mimicking the enhancing role of a pseudoknot structure, while providing access to the selenocysteine insertion sequence (SECIS) element contained in the DIO2 mRNA. This process would allow the −1 frame UGA codons to be recoded as selenocysteine, forming part of a C-terminal module in a low abundance truncated isoform of the viral polymerase, potentially functioning in a redox role. Remarkably, 90 bases downstream of the −1 FS site, an active +1 FS site can be demonstrated, which, via a return to the zero frame, would enable the attachment of the entire C-terminal of the polymerase protein. Using a construct with upstream and downstream reporter genes, spanning a wildtype or mutated viral insert, we show significant +1 ribosomal frameshifting at this site. Acting singly or together, frameshifting at these sites (both of which are highly conserved in EBOV strains) could enable the expression of several modified isoforms of the polymerase. The 3D modeling of the predicted EBOV polymerase FS variants using the AI tool, AlphaFold, reveals a peroxiredoxin-like active site with arginine and threonine residues adjacent to a putative UGA-encoded selenocysteine, located on the back of the polymerase “hand”. This module could serve to protect the viral RNA from peroxidative damage. Full article
(This article belongs to the Special Issue New Insights in Viral Diseases and Computational Biology)
Show Figures

Figure 1

12 pages, 2876 KiB  
Article
Genome-Wide Association Study of Resistance to Largemouth Bass Ranavirus (LMBV) in Micropterus salmoides
by Pinhong Li, Xia Luo, Shaozhi Zuo, Xiaozhe Fu, Qiang Lin, Yinjie Niu, Hongru Liang, Baofu Ma and Ningqiu Li
Int. J. Mol. Sci. 2024, 25(18), 10036; https://doi.org/10.3390/ijms251810036 - 18 Sep 2024
Cited by 3 | Viewed by 1520
Abstract
The disease caused by Largemouth bass ranavirus (LMBV) is one of the most severe viral diseases in largemouth bass (Micropterus salmoides). It is crucial to evaluate the genetic resistance of largemouth bass to LMBV and develop markers for disease-resistance breeding. In [...] Read more.
The disease caused by Largemouth bass ranavirus (LMBV) is one of the most severe viral diseases in largemouth bass (Micropterus salmoides). It is crucial to evaluate the genetic resistance of largemouth bass to LMBV and develop markers for disease-resistance breeding. In this study, 100 individuals (45 resistant and 55 susceptible) were sequenced and evaluated for resistance to LMBV and a total of 2,579,770 variant sites (SNPs-single-nucleotide polymorphisms (SNPs) and insertions–deletions (InDels)) were identified. A total of 2348 SNPs-InDels and 1018 putative candidate genes associated with LMBV resistance were identified by genome-wide association analyses (GWAS). Furthermore, GO and KEGG analyses revealed that the 10 candidate genes (MHC II, p38 MAPK, AMPK, SGK1, FOXO3, FOXO6, S1PR1, IL7R, RBL2, and GADD45) were related to intestinal immune network for IgA production pathway and FoxO signaling pathway. The acquisition of candidate genes related to resistance will help to explore the molecular mechanism of resistance to LMBV in largemouth bass. The potential polymorphic markers identified in this study are important molecular markers for disease resistance breeding in largemouth bass. Full article
(This article belongs to the Special Issue Fish Genomics and Developmental Biology, 2nd Edition)
Show Figures

Figure 1

19 pages, 380 KiB  
Review
Vaccinia Virus: Mechanisms Supporting Immune Evasion and Successful Long-Term Protective Immunity
by Joy Hsu, Suyon Kim and Niroshana Anandasabapathy
Viruses 2024, 16(6), 870; https://doi.org/10.3390/v16060870 - 29 May 2024
Cited by 5 | Viewed by 2918
Abstract
Vaccinia virus is the most successful vaccine in human history and functions as a protective vaccine against smallpox and monkeypox, highlighting the importance of ongoing research into vaccinia due to its genetic similarity to other emergent poxviruses. Moreover, vaccinia’s ability to accommodate large [...] Read more.
Vaccinia virus is the most successful vaccine in human history and functions as a protective vaccine against smallpox and monkeypox, highlighting the importance of ongoing research into vaccinia due to its genetic similarity to other emergent poxviruses. Moreover, vaccinia’s ability to accommodate large genetic insertions makes it promising for vaccine development and potential therapeutic applications, such as oncolytic agents. Thus, understanding how superior immunity is generated by vaccinia is crucial for designing other effective and safe vaccine strategies. During vaccinia inoculation by scarification, the skin serves as a primary site for the virus–host interaction, with various cell types playing distinct roles. During this process, hematopoietic cells undergo abortive infections, while non-hematopoietic cells support the full viral life cycle. This differential permissiveness to viral replication influences subsequent innate and adaptive immune responses. Dendritic cells (DCs), key immune sentinels in peripheral tissues such as skin, are pivotal in generating T cell memory during vaccinia immunization. DCs residing in the skin capture viral antigens and migrate to the draining lymph nodes (dLN), where they undergo maturation and present processed antigens to T cells. Notably, CD8+ T cells are particularly significant in viral clearance and the establishment of long-term protective immunity. Here, we will discuss vaccinia virus, its continued relevance to public health, and viral strategies permissive to immune escape. We will also discuss key events and populations leading to long-term protective immunity and remaining key gaps. Full article
(This article belongs to the Special Issue Innate and Adaptive Immunity to Cutaneous Virus Infection)
15 pages, 5242 KiB  
Article
Evolutionary Profile of Mayaro Virus in the Americas: An Update into Genome Variability
by Mikaela dos Santos Marinho, Giulia Magalhães Ferreira, Victória Riquena Grosche, Nilson Nicolau-Junior, Túlio de Lima Campos, Igor Andrade Santos and Ana Carolina Gomes Jardim
Viruses 2024, 16(5), 809; https://doi.org/10.3390/v16050809 - 20 May 2024
Cited by 3 | Viewed by 2608
Abstract
The Mayaro virus (MAYV) is an arbovirus with emerging potential, though with a limited understanding of its epidemiology and evolution due to the lack of studies and surveillance. Here, we investigated 71 MAYV genome sequences from the Americas available at GenBank and characterized [...] Read more.
The Mayaro virus (MAYV) is an arbovirus with emerging potential, though with a limited understanding of its epidemiology and evolution due to the lack of studies and surveillance. Here, we investigated 71 MAYV genome sequences from the Americas available at GenBank and characterized the phylogenetic relationship among virus strains. A phylogenetic analysis showed that sequences were grouped according to the genotypes L, D, and N. Genotype D sequences were closely related to sequences collected in adjacent years and from their respective countries, suggesting that isolates may have originated from circulating lineages. The coalescent analysis demonstrated similar results, indicating the continuous circulation of the virus between countries as well. An unidentified sequence from the USA was grouped with genotype D, suggesting the insertion of this genotype in the country. Furthermore, the recombination analysis detected homologous and three heterologous hybrids which presented an insertion into the nsP3 protein. Amino acid substitutions among sequences indicated selective pressure sites, suggesting viral adaptability. This also impacted the binding affinity between the E1–E2 protein complex and the Mxra8 receptor, associated with MAYV entry into human cells. These results provide information for a better understanding of genotypes circulating in the Americas. Full article
(This article belongs to the Special Issue Chikungunya Virus and Emerging Alphaviruses—Volume II)
Show Figures

Figure 1

5 pages, 212 KiB  
Case Report
Onasemnogene Abeparvovec Administration via Peripherally Inserted Central Catheter: A Case Report
by Inmaculada Pitarch Castellano, Eduardo López Briz, Eugenia Ibáñez Albert, Cristina Aguado Codina, Teresa Sevilla and José L. Poveda Andrés
Children 2024, 11(5), 590; https://doi.org/10.3390/children11050590 - 13 May 2024
Cited by 1 | Viewed by 1880
Abstract
Onasemnogene abeparvovec (OA) is the approved intravenous gene therapy for the treatment of spinal muscular atrophy (SMA). A functional copy of the human SMN1 gene was inserted into the target motor neuron cells via a viral vector, AAV9. In clinical trials, OA was [...] Read more.
Onasemnogene abeparvovec (OA) is the approved intravenous gene therapy for the treatment of spinal muscular atrophy (SMA). A functional copy of the human SMN1 gene was inserted into the target motor neuron cells via a viral vector, AAV9. In clinical trials, OA was infused through a peripheral venous catheter, and no data are available on central catheter use. Recently, we had a case where OA was administered directly into the right atrium via a peripherally inserted central catheter (PICC) instead of a peripheral line, as recommended. The patient was a female child aged 4 months, diagnosed as SMA type I. For practical reasons, a dose of OA according to the weight of the patient (1.1 × 1014 vectorial genomes/kg) was administered via PICC in 1 h, as the product information recommends. The drug was well tolerated, with no hypersensitivity reactions or initial elevation of transaminases or other adverse effects. To our knowledge, this is the first case reported where OA was administered via a central line. This type of administration is not contraindicated, but it is not specifically contemplated or recommended. It is unknown whether central line administration could have any implications for transduction efficiency and immunogenicity. Future studies should clarify these aspects, as each gene therapy has a specific optimal dose recorded that depends on the site and route of administration of the drug, the AAV variant and the transgene. Full article
(This article belongs to the Section Pediatric Neurology & Neurodevelopmental Disorders)
Show Figures

Graphical abstract

16 pages, 2504 KiB  
Article
Expanding the Scope of Adenoviral Vectors by Utilizing Novel Tools for Recombination and Vector Rescue
by Julian Fischer, Ariana Fedotova, Clara Bühler, Laura Darriba, Sabrina Schreiner and Zsolt Ruzsics
Viruses 2024, 16(5), 658; https://doi.org/10.3390/v16050658 - 23 Apr 2024
Cited by 2 | Viewed by 1523
Abstract
Recombinant adenoviruses are widely used in clinical and laboratory applications. Despite the wide variety of available sero- and genotypes, only a fraction is utilized in vivo. As adenoviruses are a large group of viruses, displaying many different tropisms, immune epitopes, and replication characteristics, [...] Read more.
Recombinant adenoviruses are widely used in clinical and laboratory applications. Despite the wide variety of available sero- and genotypes, only a fraction is utilized in vivo. As adenoviruses are a large group of viruses, displaying many different tropisms, immune epitopes, and replication characteristics, the merits of translating these natural benefits into vector applications are apparent. This translation, however, proves difficult, since while research has investigated the application of these viruses, there are no universally applicable rules in vector design for non-classical adenovirus types. In this paper, we describe a generalized workflow that allows vectorization, rescue, and cloning of all adenoviral species to enable the rapid development of new vector variants. We show this using human and simian adenoviruses, further modifying a selection of them to investigate their gene transfer potential and build potential vector candidates for future applications. Full article
(This article belongs to the Special Issue 15th International Adenovirus Meeting)
Show Figures

Figure 1

14 pages, 3896 KiB  
Article
Targeted Integration of siRNA against Porcine Cytomegalovirus (PCMV) Enhances the Resistance of Porcine Cells to PCMV
by Hongzhen Mao, Jinyang Li, Mengyu Gao, Xinmei Liu, Haohan Zhang, Yijia Zhuang, Tianyi He, Wei Zuo, Lang Bai and Ji Bao
Microorganisms 2024, 12(4), 837; https://doi.org/10.3390/microorganisms12040837 - 22 Apr 2024
Viewed by 2366
Abstract
In the world’s first pig-to-human cardiac cytomegalovirus (PCMV), xenotransplant and elevated levels of porcine key factors contributing to patient mortality were considered. This has renewed attention on PCMV, a virus widely prevalent in pigs. Currently, there are no effective drugs or vaccines targeting [...] Read more.
In the world’s first pig-to-human cardiac cytomegalovirus (PCMV), xenotransplant and elevated levels of porcine key factors contributing to patient mortality were considered. This has renewed attention on PCMV, a virus widely prevalent in pigs. Currently, there are no effective drugs or vaccines targeting PCMV, and its high detection difficulty poses challenges for prevention and control research. In this study, antiviral small hairpin RNA (shRNA) was selected and inserted into the Rosa26 and miR-17-92 loci of pigs via a CRISPR/Cas9-mediated knock-in strategy. Further in vitro viral challenge experiments demonstrated that these genetically edited pig cells could effectively limit PCMV replication. Through this process, we constructed a PCMV-infected cell model, validated partial viral interference sites, enhanced gene knock-in efficiency, performed gene editing at two different gene loci, and ultimately demonstrated that RNA interference (RNAi) technology combined with CRISPR/Cas9 has the potential to generate pig cells with enhanced antiviral infection capabilities. This opens up possibilities for the future production of pig populations with antiviral functionalities. Full article
(This article belongs to the Special Issue Diversity and Pathogenesis of Common Human and Animal Viruses)
Show Figures

Figure 1

Back to TopTop