Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = viral RNA synthesis, virus assembly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2012 KiB  
Review
Multidimensional Regulatory Mechanisms and Targeting Strategies of the eEF1 Family in RNA Virus Infection
by Xin Wang, Kaituo Liu, Xiaoquan Wang and Xiufan Liu
Viruses 2025, 17(5), 682; https://doi.org/10.3390/v17050682 - 7 May 2025
Viewed by 560
Abstract
The eukaryotic translation elongation factor 1 (eEF1) family exhibits critical roles in RNA viral infection beyond its canonical function in protein synthesis. This review analyzes the structural characteristics of eEF1A and the eEF1B complex, and their regulatory mechanisms during viral infection. eEF1A impacts [...] Read more.
The eukaryotic translation elongation factor 1 (eEF1) family exhibits critical roles in RNA viral infection beyond its canonical function in protein synthesis. This review analyzes the structural characteristics of eEF1A and the eEF1B complex, and their regulatory mechanisms during viral infection. eEF1A impacts viral replication by stabilizing viral RNA-dependent RNA polymerase (RdRp) complexes, modulating genomic RNA synthesis, and facilitating viral assembly through cytoskeletal regulation. eEF1B subunits contribute through enhancing viral mRNA translation, regulating nuclear transport of viral components, and mediating post-translational modifications. The high conservation of eEF1 proteins across species and their involvement in multiple stages of viral replication establish them as promising broad-spectrum antiviral targets. Current eEF1-targeting compounds like plitidepsin demonstrate efficacy against diverse viral families, though therapeutic development faces challenges in balancing antiviral activity with host toxicity. This review provides a theoretical foundation for developing novel antiviral strategies targeting host–virus interaction interfaces and offers insights into addressing emerging infectious diseases. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

23 pages, 456 KiB  
Review
Influenza Virus Host Restriction Factors: The ISGs and Non-ISGs
by Matloob Husain
Pathogens 2024, 13(2), 127; https://doi.org/10.3390/pathogens13020127 - 29 Jan 2024
Cited by 11 | Viewed by 4941
Abstract
Influenza virus has been one of the most prevalent and researched viruses globally. Consequently, there is ample information available about influenza virus lifecycle and pathogenesis. However, there is plenty yet to be known about the determinants of influenza virus pathogenesis and disease severity. [...] Read more.
Influenza virus has been one of the most prevalent and researched viruses globally. Consequently, there is ample information available about influenza virus lifecycle and pathogenesis. However, there is plenty yet to be known about the determinants of influenza virus pathogenesis and disease severity. Influenza virus exploits host factors to promote each step of its lifecycle. In turn, the host deploys antiviral or restriction factors that inhibit or restrict the influenza virus lifecycle at each of those steps. Two broad categories of host restriction factors can exist in virus-infected cells: (1) encoded by the interferon-stimulated genes (ISGs) and (2) encoded by the constitutively expressed genes that are not stimulated by interferons (non-ISGs). There are hundreds of ISGs known, and many, e.g., Mx, IFITMs, and TRIMs, have been characterized to restrict influenza virus infection at different stages of its lifecycle by (1) blocking viral entry or progeny release, (2) sequestering or degrading viral components and interfering with viral synthesis and assembly, or (3) bolstering host innate defenses. Also, many non-ISGs, e.g., cyclophilins, ncRNAs, and HDACs, have been identified and characterized to restrict influenza virus infection at different lifecycle stages by similar mechanisms. This review provides an overview of those ISGs and non-ISGs and how the influenza virus escapes the restriction imposed by them and aims to improve our understanding of the host restriction mechanisms of the influenza virus. Full article
(This article belongs to the Special Issue Host-Virus Interactions in Viral Infectious Diseases)
22 pages, 3157 KiB  
Review
Picornavirus 3C Proteins Intervene in Host Cell Processes through Proteolysis and Interactions with RNA
by Somnath Mondal, Gisoo Sarvari and David D. Boehr
Viruses 2023, 15(12), 2413; https://doi.org/10.3390/v15122413 - 12 Dec 2023
Cited by 8 | Viewed by 3582
Abstract
The Picornaviridae family comprises a large group of non-enveloped viruses with enormous impact on human and animal health. The picornaviral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteases. The picornaviral 3C proteases share similar [...] Read more.
The Picornaviridae family comprises a large group of non-enveloped viruses with enormous impact on human and animal health. The picornaviral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteases. The picornaviral 3C proteases share similar three-dimensional structures and play a significant role in the viral life cycle and virus–host interactions. Picornaviral 3C proteins also have conserved RNA-binding activities that contribute to the assembly of the viral RNA replication complex. The 3C protease is important for regulating the host cell response through the cleavage of critical host cell proteins, acting to selectively ‘hijack’ host factors involved in gene expression, promoting picornavirus replication, and inactivating key factors in innate immunity signaling pathways. The protease and RNA-binding activities of 3C are involved in viral polyprotein processing and the initiation of viral RNA synthesis. Most importantly, 3C modifies critical molecules in host organelles and maintains virus infection by subtly subverting host cell death through the blocking of transcription, translation, and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Here, we discuss the molecular mechanisms through which 3C mediates physiological processes involved in promoting virus infection, replication, and release. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

18 pages, 8108 KiB  
Article
Hardening of Respiratory Syncytial Virus Inclusion Bodies by Cyclopamine Proceeds through Perturbation of the Interactions of the M2-1 Protein with RNA and the P Protein
by Cédric Diot, Charles-Adrien Richard, Jennifer Risso-Ballester, Davy Martin, Jenna Fix, Jean-François Eléouët, Christina Sizun, Marie-Anne Rameix-Welti and Marie Galloux
Int. J. Mol. Sci. 2023, 24(18), 13862; https://doi.org/10.3390/ijms241813862 - 8 Sep 2023
Cited by 10 | Viewed by 2497
Abstract
Respiratory syncytial virus (RSV) RNA synthesis takes place in cytoplasmic viral factories also called inclusion bodies (IBs), which are membrane-less organelles concentrating the viral RNA polymerase complex. The assembly of IBs is driven by liquid-liquid phase separation promoted by interactions between the viral [...] Read more.
Respiratory syncytial virus (RSV) RNA synthesis takes place in cytoplasmic viral factories also called inclusion bodies (IBs), which are membrane-less organelles concentrating the viral RNA polymerase complex. The assembly of IBs is driven by liquid-liquid phase separation promoted by interactions between the viral nucleoprotein N and the phosphoprotein P. We recently demonstrated that cyclopamine (CPM) inhibits RSV multiplication by disorganizing and hardening IBs. Although a single mutation in the viral transcription factor M2-1 induced resistance to CPM, the mechanism of action of CPM still remains to be characterized. Here, using FRAP experiments on reconstituted pseudo-IBs both in cellula and in vitro, we first demonstrated that CPM activity depends on the presence of M2-1 together with N and P. We showed that CPM impairs the competition between P and RNA binding to M2-1. As mutations on both P and M2-1 induced resistance against CPM activity, we suggest that CPM may affect the dynamics of the M2-1-P interaction, thereby affecting the relative mobility of the proteins contained in RSV IBs. Overall, our results reveal that stabilizing viral protein-protein interactions is an attractive new antiviral approach. They pave the way for the rational chemical optimization of new specific anti-RSV molecules. Full article
Show Figures

Figure 1

14 pages, 2378 KiB  
Review
The Formation and Function of Birnaviridae Virus Factories
by Andrew J. Brodrick and Andrew J. Broadbent
Int. J. Mol. Sci. 2023, 24(10), 8471; https://doi.org/10.3390/ijms24108471 - 9 May 2023
Cited by 7 | Viewed by 3660
Abstract
The use of infectious bursal disease virus (IBDV) reverse genetics to engineer tagged reporter viruses has revealed that the virus factories (VFs) of the Birnaviridae family are biomolecular condensates that show properties consistent with liquid–liquid phase separation (LLPS). Although the VFs are not [...] Read more.
The use of infectious bursal disease virus (IBDV) reverse genetics to engineer tagged reporter viruses has revealed that the virus factories (VFs) of the Birnaviridae family are biomolecular condensates that show properties consistent with liquid–liquid phase separation (LLPS). Although the VFs are not bound by membranes, it is currently thought that viral protein 3 (VP3) initially nucleates the formation of the VF on the cytoplasmic leaflet of early endosomal membranes, and likely drives LLPS. In addition to VP3, IBDV VFs contain VP1 (the viral polymerase) and the dsRNA genome, and they are the sites of de novo viral RNA synthesis. Cellular proteins are also recruited to the VFs, which are likely to provide an optimal environment for viral replication; the VFs grow due to the synthesis of the viral components, the recruitment of other proteins, and the coalescence of multiple VFs in the cytoplasm. Here, we review what is currently known about the formation, properties, composition, and processes of these structures. Many open questions remain regarding the biophysical nature of the VFs, as well as the roles they play in replication, translation, virion assembly, viral genome partitioning, and in modulating cellular processes. Full article
Show Figures

Figure 1

18 pages, 1152 KiB  
Review
Understanding HAT1: A Comprehensive Review of Noncanonical Roles and Connection with Disease
by Miguel A. Ortega, Diego De Leon-Oliva, Cielo Garcia-Montero, Oscar Fraile-Martinez, Diego Liviu Boaru, María del Val Toledo Lobo, Ignacio García-Tuñón, Mar Royuela, Natalio García-Honduvilla, Julia Bujan, Luis G. Guijarro, Melchor Alvarez-Mon and Miguel Ángel Alvarez-Mon
Genes 2023, 14(4), 915; https://doi.org/10.3390/genes14040915 - 14 Apr 2023
Cited by 11 | Viewed by 4420
Abstract
Histone acetylation plays a vital role in organizing chromatin, regulating gene expression and controlling the cell cycle. The first histone acetyltransferase to be identified was histone acetyltransferase 1 (HAT1), but it remains one of the least understood acetyltransferases. HAT1 catalyzes the acetylation of [...] Read more.
Histone acetylation plays a vital role in organizing chromatin, regulating gene expression and controlling the cell cycle. The first histone acetyltransferase to be identified was histone acetyltransferase 1 (HAT1), but it remains one of the least understood acetyltransferases. HAT1 catalyzes the acetylation of newly synthesized H4 and, to a lesser extent, H2A in the cytoplasm. However, 20 min after assembly, histones lose acetylation marks. Moreover, new noncanonical functions have been described for HAT1, revealing its complexity and complicating the understanding of its functions. Recently discovered roles include facilitating the translocation of the H3H4 dimer into the nucleus, increasing the stability of the DNA replication fork, replication-coupled chromatin assembly, coordination of histone production, DNA damage repair, telomeric silencing, epigenetic regulation of nuclear lamina-associated heterochromatin, regulation of the NF-κB response, succinyl transferase activity and mitochondrial protein acetylation. In addition, the functions and expression levels of HAT1 have been linked to many diseases, such as many types of cancer, viral infections (hepatitis B virus, human immunodeficiency virus and viperin synthesis) and inflammatory diseases (chronic obstructive pulmonary disease, atherosclerosis and ischemic stroke). The collective data reveal that HAT1 is a promising therapeutic target, and novel therapeutic approaches, such as RNA interference and the use of aptamers, bisubstrate inhibitors and small-molecule inhibitors, are being evaluated at the preclinical level. Full article
(This article belongs to the Special Issue Epigenetic Regulation of Cell Fate)
Show Figures

Figure 1

12 pages, 2438 KiB  
Article
Deubiquitinating Enzyme Inhibitors Block Chikungunya Virus Replication
by Lady S. López, Eliana P. Calvo and Jaime E. Castellanos
Viruses 2023, 15(2), 481; https://doi.org/10.3390/v15020481 - 9 Feb 2023
Cited by 6 | Viewed by 3062
Abstract
Ubiquitination and deubiquitination processes are widely involved in modulating the function, activity, localization, and stability of multiple cellular proteins regulating almost every aspect of cellular function. Several virus families have been shown to exploit the cellular ubiquitin-conjugating system to achieve a productive infection: [...] Read more.
Ubiquitination and deubiquitination processes are widely involved in modulating the function, activity, localization, and stability of multiple cellular proteins regulating almost every aspect of cellular function. Several virus families have been shown to exploit the cellular ubiquitin-conjugating system to achieve a productive infection: enter the cell, promote genome replication, or assemble and release viral progeny. In this study, we analyzed the role of deubiquitinating enzymes (DUBs) during chikungunya virus (CHIKV) infection. HEK293T, Vero-E6, and Huh-7 cells were treated with two DUB inhibitors (PR619 or WP1130). Then, infected cells were evaluated by flow cytometry, and viral progeny was quantified using the plaque assay method. The changes in viral proteins and viral RNA were analyzed using Western blotting and RT-qPCR, respectively. Results indicate that treatment with DUB inhibitors impairs CHIKV replication due to significant protein and viral RNA synthesis deregulation. Therefore, DUB activity may be a pharmacological target for blocking CHIKV infection. Full article
(This article belongs to the Special Issue Chikungunya Virus and Emerging Alphaviruses)
Show Figures

Figure 1

23 pages, 5738 KiB  
Article
Viral Hemorrhagic Septicemia Virus Activates Integrated Stress Response Pathway and Induces Stress Granules to Regulate Virus Replication
by Barkha Ramnani, Shelby Powell, Adarsh G. Shetty, Praveen Manivannan, Brian R. Hibbard, Douglas W. Leaman and Krishnamurthy Malathi
Viruses 2023, 15(2), 466; https://doi.org/10.3390/v15020466 - 7 Feb 2023
Cited by 3 | Viewed by 3596
Abstract
Virus infection activates integrated stress response (ISR) and stress granule (SG) formation and viruses counteract by interfering with SG assembly, suggesting an important role in antiviral defense. The infection of fish cells by Viral Hemorrhagic Septicemia Virus (VHSV), activates the innate immune recognition [...] Read more.
Virus infection activates integrated stress response (ISR) and stress granule (SG) formation and viruses counteract by interfering with SG assembly, suggesting an important role in antiviral defense. The infection of fish cells by Viral Hemorrhagic Septicemia Virus (VHSV), activates the innate immune recognition pathway and the production of type I interferon (IFN). However, the mechanisms by which VHSV interacts with ISR pathway regulating SG formation is poorly understood. Here, we demonstrate that fish cells respond to heat shock, oxidative stress and VHSV infection by forming SG that localized key SG marker, Ras GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1). We show that PKR-like endoplasmic reticulum kinase (PERK), but not (dsRNA)-dependent protein kinase (PKR), is required for VHSV-induced SG formation. Furthermore, in VHSV Ia infected cells, PERK activity is required for IFN production, antiviral signaling and viral replication. SG formation required active virus replication as individual VHSV Ia proteins or inactive virus did not induce SG. Cells lacking G3BP1 produced increased IFN, antiviral genes and viral mRNA, however viral protein synthesis and viral titers were reduced. We show a critical role of the activation of ISR pathway and SG formation highlighting a novel role of G3BP1 in regulating VHSV protein translation and replication. Full article
(This article belongs to the Special Issue Fish Antiviral Immunity)
Show Figures

Figure 1

10 pages, 1871 KiB  
Article
Simple Webserver-Facilitated Method to Design and Synthesize Artificial miRNA Gene and Its Application in Engineering Viral Resistance
by Muhammad Yasir, Mohamed Motawaa, Qingwei Wang, Xi Zhang, Annum Khalid, Xingkui Cai and Feng Li
Plants 2022, 11(16), 2125; https://doi.org/10.3390/plants11162125 - 15 Aug 2022
Cited by 10 | Viewed by 2588
Abstract
Plant viruses impose serious threats on crop production. Artificial miRNAs can mediate specific and effective gene silencing in plants and are widely used in plant gene function studies and to engineer plant viral resistance. To facilitate the design of artificial miRNA genes, we [...] Read more.
Plant viruses impose serious threats on crop production. Artificial miRNAs can mediate specific and effective gene silencing in plants and are widely used in plant gene function studies and to engineer plant viral resistance. To facilitate the design of artificial miRNA genes, we developed a webserver, AMIRdesigner, which can be used to design oligos for artificial miRNA synthesis using wild-type and permutated MIR171 and MIR164 backbones. The artificial miRNA genes designed by AMIRdesigner can be easily assembled into miRNA clusters for multiple target sites. To validate the server functionality, we designed four artificial miRNA genes targeting four conserved regions in the potato leafroll virus genome using AMIRdesigner. These genes were synthesized with the server-designed oligos and further assembled into a quadruple miRNA cluster, which was cloned into an overexpression vector and transformed into potato plants. Small RNA Northern blot and virus inoculation analyses showed that a high level of artificial miRNA expression and good viral resistance were achieved in some of the transgenic lines. These results demonstrate the utility of our webserver AMIRdesigner for engineering crop viral resistance. Full article
(This article belongs to the Special Issue Effects of Small RNA on Plant-Pathogen Interactions)
Show Figures

Figure 1

19 pages, 5420 KiB  
Article
A Reverse Mutation E143K within the PrM Protein of Zika Virus Asian Lineage Natal RGN Strain Increases Infectivity and Cytopathicity
by Chen-Sheng Lin, Wei-Jing Li, Chih-Yi Liao, Ju-Ying Kan, Szu-Hao Kung, Su-Hua Huang, Hsueh-Chou Lai and Cheng-Wen Lin
Viruses 2022, 14(7), 1572; https://doi.org/10.3390/v14071572 - 20 Jul 2022
Cited by 6 | Viewed by 2763
Abstract
Zika virus (ZIKV) is a positive-sense single-stranded RNA virus in the Flaviviridae, which is classified into two different lineages Asian and African. The outbreak of ZIKV Asian lineage isolates in 2015–2016 is associated with the increase in cases with prenatal microcephaly and Guillain–Barré [...] Read more.
Zika virus (ZIKV) is a positive-sense single-stranded RNA virus in the Flaviviridae, which is classified into two different lineages Asian and African. The outbreak of ZIKV Asian lineage isolates in 2015–2016 is associated with the increase in cases with prenatal microcephaly and Guillain–Barré syndrome, and has sparked attention throughout the world. Genome sequence alignment and the analysis of Asian and African lineage isolates indicate that amino acid changes, particular in positively charged amino acid substitutions in the pr region of prM protein might involve a phenotypic change that links with the global outbreak of ZIKV Asian-lineage. The study generated and characterized the virological properties of wild type and mutants of single-round infectious particles (SRIPs) and infectious clones (i.c.s) of ZIKV Asian-lineage Natal RGN strain, and then identified the function of amino acid substitutions at the positions 139 [Asn139→Ser139 (N139S)] and 143 [Glu143→Lys143 (E143K)] in ZIKV polyproteins (located within the pr region of prM protein) in the infectivity and cytopathogenicity. The E143K SRIP and i.c. of Natal RGN strain exhibited relatively higher levels of cytopathic effect, EGFP reporter, viral RNA and protein synthesis, and virus yield in three types of human cell lines, TE617, SF268 and HMC3, compared to wild type (WT), N139S SRIPs and i.c.s, which displayed more efficiency in replication kinetics. Additionally, E143K Natal RGN i.c. had greater activities of virus attachment and entry, yielded higher titers of intracellular and extracellular virions, and assembled the E proteins near to the plasma membrane in infected cells than the other i.c.s. The results indicate that the positively charged amino acid residue Lys143, a conserved residue in the pr region of prM of ZIKV African lineages, plays a crucial role in viral replication kinetics, including viral attachment, entry, assembly and egress. Thus, the negatively charged amino acid residue Glu143 within the pr region of prM leads to an alteration of the phenotypes, in particular, a lower replication efficiency of ZIKV Asian-lineage isolates with the attenuation of infectivity and cytopathicity. Full article
(This article belongs to the Special Issue Virology Research in Taiwan)
Show Figures

Figure 1

12 pages, 1909 KiB  
Article
Targeted Virome Sequencing Enhances Unbiased Detection and Genome Assembly of Known and Emerging Viruses—The Example of SARS-CoV-2
by Vasiliki Pogka, Gethsimani Papadopoulou, Vaia Valiakou, Dionyssios N. Sgouras, Andreas F. Mentis and Timokratis Karamitros
Viruses 2022, 14(6), 1272; https://doi.org/10.3390/v14061272 - 11 Jun 2022
Cited by 6 | Viewed by 4382
Abstract
Targeted virome enrichment and sequencing (VirCapSeq-VERT) utilizes a pool of oligos (baits) to enrich all known—up to 2015—vertebrate-infecting viruses, increasing their detection sensitivity. The hybridisation of the baits to the target sequences can be partial, thus enabling the detection and genomic reconstruction of [...] Read more.
Targeted virome enrichment and sequencing (VirCapSeq-VERT) utilizes a pool of oligos (baits) to enrich all known—up to 2015—vertebrate-infecting viruses, increasing their detection sensitivity. The hybridisation of the baits to the target sequences can be partial, thus enabling the detection and genomic reconstruction of novel pathogens with <40% genetic diversity compared to the strains used for the baits’ design. In this study, we deploy this method in multiplexed mixes of viral extracts, and we assess its performance in the unbiased detection of DNA and RNA viruses after cDNA synthesis. We further assess its efficiency in depleting various background genomic material. Finally, as a proof-of-concept, we explore the potential usage of the method for the characterization of unknown, emerging human viruses, such as SARS-CoV-2, which may not be included in the baits’ panel. We mixed positive samples of equimolar DNA/RNA viral extracts from SARS-CoV-2, coronavirus OC43, cytomegalovirus, influenza A virus H3N2, parvovirus B19, respiratory syncytial virus, adenovirus C and coxsackievirus A16. Targeted virome enrichment was performed on a dsDNA mix, followed by sequencing on the NextSeq500 (Illumina) and the portable MinION sequencer, to evaluate its usability as a point-of-care (PoC) application. Genome mapping assembly was performed using viral reference sequences. The untargeted libraries contained less than 1% of total reads mapped on most viral genomes, while RNA viruses remained undetected. In the targeted libraries, the percentage of viral-mapped reads were substantially increased, allowing full genome assembly in most cases. Targeted virome sequencing can enrich a broad range of viruses, potentially enabling the discovery of emerging viruses. Full article
(This article belongs to the Special Issue Metagenomics of Emerging Viruses)
Show Figures

Figure 1

19 pages, 1986 KiB  
Article
Advancing the Rose Rosette Virus Minireplicon and Encapsidation System by Incorporating GFP, Mutations, and the CMV 2b Silencing Suppressor
by Cesar D. Urrutia, Gustavo Romay, Brian D. Shaw and Jeanmarie Verchot
Viruses 2022, 14(4), 836; https://doi.org/10.3390/v14040836 - 17 Apr 2022
Cited by 4 | Viewed by 3506
Abstract
Plant infecting emaraviruses have segmented negative strand RNA genomes and little is known about their infection cycles due to the lack of molecular tools for reverse genetic studies. Therefore, we innovated a rose rosette virus (RRV) minireplicon containing the green fluorescent protein (GFP) [...] Read more.
Plant infecting emaraviruses have segmented negative strand RNA genomes and little is known about their infection cycles due to the lack of molecular tools for reverse genetic studies. Therefore, we innovated a rose rosette virus (RRV) minireplicon containing the green fluorescent protein (GFP) gene to study the molecular requirements for virus replication and encapsidation. Sequence comparisons among RRV isolates and structural modeling of the RNA dependent RNA polymerase (RdRp) and nucleocapsid (N) revealed three natural mutations of the type species isolate that we reverted to the common species sequences: (a) twenty-one amino acid truncations near the endonuclease domain (named delA), (b) five amino acid substitutions near the putative viral RNA binding loop (subT), and (c) four amino acid substitutions in N (NISE). The delA and subT in the RdRp influenced the levels of GFP, gRNA, and agRNA at 3 but not 5 days post inoculation (dpi), suggesting these sequences are essential for initiating RNA synthesis and replication. The NISE mutation led to sustained GFP, gRNA, and agRNA at 3 and 5 dpi indicating that the N supports continuous replication and GFP expression. Next, we showed that the cucumber mosaic virus (CMV strain FNY) 2b singularly enhanced GFP expression and RRV replication. Including agRNA2 with the RRV replicon produced observable virions. In this study we developed a robust reverse genetic system for investigations into RRV replication and virion assembly that could be a model for other emaravirus species. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

15 pages, 3456 KiB  
Article
Poly(rC)-Binding Protein 1 Limits Hepatitis C Virus Virion Assembly and Secretion
by Sophie E. Cousineau, Marylin Rheault and Selena M. Sagan
Viruses 2022, 14(2), 291; https://doi.org/10.3390/v14020291 - 29 Jan 2022
Cited by 8 | Viewed by 3702
Abstract
The hepatitis C virus (HCV) co-opts numerous cellular elements, including proteins, lipids, and microRNAs, to complete its viral life cycle. The cellular RNA-binding protein, poly(rC)-binding protein 1 (PCBP1), was previously reported to bind to the 5′ untranslated region (UTR) of the HCV genome; [...] Read more.
The hepatitis C virus (HCV) co-opts numerous cellular elements, including proteins, lipids, and microRNAs, to complete its viral life cycle. The cellular RNA-binding protein, poly(rC)-binding protein 1 (PCBP1), was previously reported to bind to the 5′ untranslated region (UTR) of the HCV genome; however, its importance in the viral life cycle has remained unclear. Herein, we sought to clarify the role of PCBP1 in the HCV life cycle. Using the HCV cell culture (HCVcc) system, we found that knockdown of endogenous PCBP1 resulted in an overall decrease in viral RNA accumulation, yet resulted in an increase in extracellular viral titers. To dissect PCBP1’s specific role in the HCV life cycle, we carried out assays for viral entry, translation, genome stability, RNA replication, as well as virion assembly and secretion. We found that PCBP1 knockdown did not directly affect viral entry, translation, RNA stability, or RNA replication, but resulted in an overall increase in infectious particle secretion. This increase in virion secretion was evident even when viral RNA synthesis was inhibited, and blocking virus secretion could partially restore the viral RNA accumulation decreased by PCBP1 knockdown. We therefore propose a model where endogenous PCBP1 normally limits virion assembly and secretion, which increases viral RNA accumulation in infected cells by preventing the departure of viral genomes packaged into virions. Overall, our findings improve our understanding of how cellular RNA-binding proteins influence viral genomic RNA utilization during the HCV life cycle. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

15 pages, 1206 KiB  
Review
Regulatory Role of Phospholipids in Hepatitis C Virus Replication and Protein Function
by Anna V. Bulankina, Rebecca M. Richter and Christoph Welsch
Pathogens 2022, 11(1), 102; https://doi.org/10.3390/pathogens11010102 - 15 Jan 2022
Cited by 1 | Viewed by 3464
Abstract
Positive-strand RNA viruses such as hepatitis C virus (HCV) hijack key factors of lipid metabolism of infected cells and extensively modify intracellular membranes to support the viral lifecycle. While lipid metabolism plays key roles in viral particle assembly and maturation, viral RNA synthesis [...] Read more.
Positive-strand RNA viruses such as hepatitis C virus (HCV) hijack key factors of lipid metabolism of infected cells and extensively modify intracellular membranes to support the viral lifecycle. While lipid metabolism plays key roles in viral particle assembly and maturation, viral RNA synthesis is closely linked to the remodeling of intracellular membranes. The formation of viral replication factories requires a number of interactions between virus proteins and host factors including lipids. The structure–function relationship of those proteins is influenced by their lipid environments and lipids that selectively modulate protein function. Here, we review our current understanding on the roles of phospholipids in HCV replication and of lipid–protein interactions in the structure–function relationship of the NS5A protein. NS5A is a key factor in membrane remodeling in HCV-infected cells and is known to recruit phosphatidylinositol 4-kinase III alpha to generate phosphatidylinositol 4-phosphate at the sites of replication. The dynamic interplay between lipids and viral proteins within intracellular membranes is likely key towards understanding basic mechanisms in the pathobiology of virus diseases, the mode of action of specific antiviral agents and related drug resistance mechanisms. Full article
(This article belongs to the Special Issue Pathogenesis Associated with Hepatitis Viruses)
Show Figures

Figure 1

13 pages, 2753 KiB  
Article
Coxsackievirus B3 Exploits the Ubiquitin-Proteasome System to Facilitate Viral Replication
by Martin Voss, Vera Braun, Clara Bredow, Peter-Michael Kloetzel and Antje Beling
Viruses 2021, 13(7), 1360; https://doi.org/10.3390/v13071360 - 13 Jul 2021
Cited by 8 | Viewed by 2842
Abstract
Infection by RNA viruses causes extensive cellular reorganization, including hijacking of membranes to create membranous structures termed replication organelles, which support viral RNA synthesis and virion assembly. In this study, we show that infection with coxsackievirus B3 entails a profound impairment of the [...] Read more.
Infection by RNA viruses causes extensive cellular reorganization, including hijacking of membranes to create membranous structures termed replication organelles, which support viral RNA synthesis and virion assembly. In this study, we show that infection with coxsackievirus B3 entails a profound impairment of the protein homeostasis at virus-utilized membranes, reflected by an accumulation of ubiquitinylated proteins, including K48-linked polyubiquitin conjugates, known to direct proteins to proteasomal degradation. The enrichment of membrane-bound ubiquitin conjugates is attributed to the presence of the non-structural viral proteins 2B and 3A, which are known to perturb membrane integrity and can cause an extensive rearrangement of cellular membranes. The locally increased abundance of ubiquitinylated proteins occurs without an increase of oxidatively damaged proteins. During the exponential phase of replication, the oxidative damage of membrane proteins is even diminished, an effect we attribute to the recruitment of glutathione, which is known to be required for the formation of infectious virus particles. Furthermore, we show that the proteasome contributes to the processing of viral precursor proteins. Taken together, we demonstrate how an infection with coxsackievirus B3 affects the cellular protein and redox homeostasis locally at the site of viral replication and virus assembly. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

Back to TopTop