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Abstract: The Picornaviridae family comprises a large group of non-enveloped viruses with enormous
impact on human and animal health. The picornaviral genome contains one open reading frame
encoding a single polyprotein that can be processed by viral proteases. The picornaviral 3C proteases
share similar three-dimensional structures and play a significant role in the viral life cycle and virus–
host interactions. Picornaviral 3C proteins also have conserved RNA-binding activities that contribute
to the assembly of the viral RNA replication complex. The 3C protease is important for regulating
the host cell response through the cleavage of critical host cell proteins, acting to selectively ‘hijack’
host factors involved in gene expression, promoting picornavirus replication, and inactivating key
factors in innate immunity signaling pathways. The protease and RNA-binding activities of 3C are
involved in viral polyprotein processing and the initiation of viral RNA synthesis. Most importantly,
3C modifies critical molecules in host organelles and maintains virus infection by subtly subverting
host cell death through the blocking of transcription, translation, and nucleocytoplasmic trafficking
to modulate cell physiology for viral replication. Here, we discuss the molecular mechanisms
through which 3C mediates physiological processes involved in promoting virus infection, replication,
and release.

Keywords: picornavirus; 3C protease; virus replication; host cell defense; protein structure;
protein dynamics

1. Introduction

The positive-strand RNA viruses from Picornaviridae have tremendous medical, veteri-
nary, and agricultural importance [1–4]. These viruses affect the digestive and respiratory
systems, skin, liver, and heart in humans and animals. This family of monocistronic
positive-strand RNA viruses consists of 63 genera and 285 different virus species, including
enterovirus, rhinovirus, hepatovirus, and cardiovirus [5].

The picornaviral virion and genome structures are highly conserved in nature. The
genome consists of one open reading frame coding for a single polyprotein that can be
targeted by viral proteases [3,6–8]. The P1 region encodes for the capsid proteins of the
virus, while the P2 and P3 portions encode the non-structural proteins (Figure 1). The
genome incorporates an open reading frame (ORF), a 5′ untranslated region (5′ UTR), and a
3′ untranslated region (3′ UTR) [9–12]. There is a polyadenylated (poly(A)) tail in the 3′ UTR.
These viruses are non-enveloped and confine single-stranded RNA (length: 7–10 kb) with
an icosahedral symmetric structure, having a diameter of about 30 nm (Figure 1) [13,14].
A covalently attached viral nucleotidylylated protein that caps a genome (VPg or, 3B) is
present at the 5′ end of 5′ UTR [9]. The RNA genome carries an internal ribosome entry
site (IRES) segment within the 5′ UTR to direct viral protein synthesis while employing
ribosomes and other host factors [15,16].

The monocistronic single-strand RNA encodes only one polyprotein that is proteolyti-
cally cleaved by virally encoded proteases into several mature proteins, varying upon the
genus [17,18]. The N-terminal region of the polyprotein is joined to a leader protein (L) in
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some viruses from various genera, including cardiovirus and aphthovirus [19–22]. The co-
and post-translation processing of the polyprotein results in the expression of structural
proteins 1A to 1D (VP4, VP2, VP3 and VP1), non-structural proteins (2A, 2B, 2C, 3A, 3B,
3C, 3D), or their intermediates (e.g., 3ABCD, 3ABC, 3BCD and 3CD) [1,23,24]. The 3C or
its 3CD precursor are predominantly responsible for the proteolytic transformation of the
polyprotein [25,26].
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Figure 1. The genome and proteome of poliovirus. (a) Structure of poliovirus. (b) The processing
of polyproteins and the poliovirus genome are shown schematically. The poly (A) tail, broad open
reading frame, and 3′ and 5′ non-translated regions (NTR) comprise the poliovirus genome. The
type II internal ribosome entry site (IRES) and a cloverleaf structure comprise the 5′NTR. The virus-
encoded 3B (VPg) protein is attached to the 5′ end of the RNA. The viral genome encodes a single
polyprotein; the P1 region encodes the structural proteins of the virus, while the P2 and P3 portions
encode the non-structural proteins. The P3 region is cleaved by viral proteases via two main pathways,
resulting in the production of the 3C and 3D proteins, either separately or collectively as 3CD. The
RNA-dependent RNA polymerase 3D replicates the viral RNA, while 3C, a protease, cleaves at
specific, conserved motifs located within flexible linkers that separate discrete proteins within the
viral polyprotein. Because 3CD lacks polymerase activity and has a unique protease specificity that
enables it to cleave the P1 capsid region differently than 3C, the functional activity changes when the
3C and 3D proteins are combined to produce 3CD [27–30].

Almost fifty years ago, proteolytic processing was demonstrated to be crucial for pi-
cornavirus capsid protein synthesis and the construction of virions [27–30]. The 3C protein
is recruited to perform this activity [31]. The 3C protein participates in the processing of
polypeptides, binding of RNA, initialization of protein-priming of RNA synthesis, and
viral translation to replication steps [1,3,19]. Antiviral therapeutic targets for 3C and similar
viral proteases have been already identified [32]. In this Review, we emphasize various
functional roles of 3C, including in the regulation of RNA replication, transcription, and
translation, as well as its ability to inhibit nucleocytoplasmic transport and trigger apopto-
sis. Considering all these vast functions of 3C, this protease acts as an important virulence
factor of picornaviruses [3].
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2. Structure and Functions of 3C
2.1. Catalytic and RNA-Binding Sites

The 3C protease has a catalytic triad resembling those of serine proteases belonging
to the trypsin-like family, although the catalytic nucleophile is a cysteine (Cys) residue
rather than a serine (Ser) [33,34]. The X-ray crystal structure of human rhinovirus (3C)
was determined nearly three decades ago (PDB ID:1CQQ) [35], followed by structure
determination of 3C from other viruses including poliovirus (PV; PDB ID:1L1N) [36],
hepatitis A virus (HAV; PDB ID:1QA7) [37], foot-and-mouth disease virus (FMDV; PDB
ID:2BHG) [38,39], coxsackievirus B (CVB; PDB ID:2ZU1) [40–42], and enterovirus 71 (EV71;
PDB ID:3OSY) [43]. All these 3C proteins are highly structurally similar.

Protein sequence similarities and phylogenetic relationships were previously estab-
lished using the maximum likelihood method [44]. The catalytic triad, consisting of a Cys,
His, and either Glu or Asp, was found to be highly conserved among the 3C proteases.
The N-terminal alpha-helix, an important structural element involved in lipid membrane
interactions, and the RNA binding region are not so conserved among picornaviral 3C pro-
teases [45,46]. Six primary classes of 3C proteases from picornaviruses were identified by
the phylogenetic study, in which the 3C proteases exhibited 38–45% amino acid similarity,
a higher degree of sequence similarity than that observed in other picornaviruses.

Our own research is primarily focused on PV 3C [47–49]. The PV 3C protein structure
has a traditional trypsin-like fold (Figure 2) [36,50], despite having less than 10% sequence
identity with the trypsin protease family. It includes six β-sheets that fold into two β-
barrel subdomains arranged at right angles [36,51]. The surface groove connecting these
subdomains serves as the substrate-binding site, housing the central catalytic triad in the
active site [36]. The 3C proteins from HRV [35], PV [36], CVB [41], and EV71 [43] have a
Glu as part of the catalytic triad, whereas in HAV and FMDV it is an Asp [37,38]. The first
member of the catalytic triad, the absolutely conserved Cys residue, serves as the catalytic
nucleophile, which is then aided by the His general base and the carboxylate group of either
the Asp or Glu residue. Despite the structural similarity to Ser proteases, mutagenesis of
the active site Cys for a Ser gives an enzyme with a drastically reduced activity. Caspases
also employ a Cys/His diad, but appear to be much more active than 3C [37]. As the third
component of the triad (Glu or Asp) is not rigorously conserved across all 3C proteases
and the side chains tend to point away from the active site His, its necessity to catalyze is
not as clear.

The substrate-binding capsule is formed by a surface groove that sits between two
β-barrel domains. The β-ribbons and substrates form a strong association once they
are bound, enhancing catalytic effectiveness [34,36,43]. The 3C groove ensures accurate
substrate binding, with the overlying β-strands directing the configuration and depth of
the active-site region [36]. The X-ray crystal structure shows that the β-barrel adopts a
flexible conformation to increase the likelihood of substrate identification when a substrate
is absent [7,36,37,43,52]. The flexible loop that comes before the catalytic Cys most likely
changes conformation in response to substrate binding [36]. The groove of 3C determines
its substrate specificity, as the β-ribbon above it influences the shape and depth of the active
site. In EV71 3C, Gly123 and His133, two significant residues (not part of the catalytic
triad) near the β-ribbon base, function as hinges to control the ribbon inherent flexibility.
Studies using structure-guided mutagenesis have demonstrated the significance of the
hinge residues for the proteolytic function of EV71 3C [43,53].
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crystal structure (PDB: 1L1N) is shown, and the β-barrels of domains I and II are represented in
wheat and blue colors, respectively. The catalytic triad (His40 (orange), Glu71 (light wheat), Cys147
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of poliovirus 3CD (PDB: 2IJD); the wheat and pink colors represent 3D and 3C, respectively. The
active site residues are shown on both subdomains using spheres (3C: His40 (orange), Glu71 (light
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blue. (C) The 3C region of 3C (pink) and 3CD (wheat) are structurally comparable as evidenced by
an overlay with an RMSD value of 0.46 angstroms.

2.2. Viral Polyprotein Processing and Substrate Recognition

Viral proteins are produced by the picornavirus family via the polyprotein process-
ing. The majority of cleavage sites, including at the VP2–VP3, VP3–VP1, 2B–2C, 2C–3A,
3A–3B, 3B–3C, and 3C–3D junctions [18,28], (see Figure 1), are processed by 3C, with four
exceptions: L–VP4, VP4–VP2, P1–2A, and 2A–2B [54,55]. For example, the leader protein
(L) in aphthoviruses and erboviruses releases itself from VP0 [1]. In some picornaviruses
(i.e., aphthoviruses, cardioviruses), ribosome skipping at the Asn–Pro–Gly–Pro site causes
cleavage of 2A–2B. Almost all secondary cleavages in picornaviruses are caused by 3C [1].
Only 3C and the 3CD precursor are needed to accomplish all cleavages in the case of
the Aichi virus, as L and 2Apro lack proteolytic activity. Studies on enteroviruses and
apthoviruses have demonstrated that 3CDpro can cleave at VP2–VP3 and VP3–P1 more
effectively than 3C [56,57]. SVV 3C protease cleaves the P1 polypeptide to provide VP0,
VP1, and VP3 [58]. Most 3C proteases cleave at single sites such as (Q|G), (Q|S), (Q|R),
(E|Q), and (E|G) [7] (see Table 1 for example).
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Table 1. The 3C cleavage of proteins involved in cellular translation. Cleavage site identified by underline.

Virus Protein from the
Host Cell Activity Cleaving Site Reference(s)

Poliovirus (PV)

eIF5B Inserts the initiation tRNA for
methionine on the start codon of mRNA LeuCysAlaAlaValGluValMetGluGln478GlyValProGluLysGluGluThr De Bryne S et al. (2008) [59]

PCBP2 Regulation of gene expression through
translational activation

AlaMetGlnGln253SerHisPhePro. . .
IleGlyArgGln306GlyAlaLys

Perera R et al. (2007) [60]

PABP Involved in the start of the translation
and the shortening of poly (A) Not certain Kuyumcu-Martinez NM et al.

(2004) [61]

Foot-and-mouth disease
virus (FMDV)

eIF4A I
Unwinds double-stranded RNA and
allows the ribosomal subunit 40S to

bind capped mRNA
CysIleGlyGlyThrAsnValArgAlaGlu143ValGlnLysLeuGlnMetGluAla Li W et al. (2001) [62]

eIF4G I Transports mRNA to the 40S ribosome
to initiate translation ArgArgSerGlnGlnGlyProArgLysGlu712ProArgLysIleIleAlaThrValLeu Belsham GJ et al. (2000) [63]

Sam68 Responsible for cell growth and division C-terminal region Lawrence P et al. (2012) [64]

Coxsackievirus (CVB)

eIF5B Inserts the initiation tRNA for
methionine on the start codon of mRNA LeuCysAlaAlaValGluValMetGluGln478GlyValProGluLysGluGluThr De Bryne S et al. (2008) [59]

G3BP1 Ras–GAP-interacting RNA-binding
protein GluAlaGlyGluGln325GlyAspIleGluPro Fung G et al. (2013) [65]

Human rhinovirus
(HRV) eIF5B Inserts the initiation tRNA for

methionine on the start codon of mRNA LeuCysAlaAlaValGluValMetGluGln478GlyValProGluLysGluGluThr De Bryne S et al. (2008) [59]

Hepatitis A virus (HAV)
PCBP2 Regulation of gene expression through

translational activation IleGlyArgGln306GlyAlaLysIle (Postulated) Zhang B et al. (2007) [66]

PABP Involved in the start of the translation
and the shortening of poly (A) Not certain Zhang B et al. (2007) [67]

Encephalomyocarditis
virus (EMCV) PABP Involved in the start of the translation

and the shortening of poly (A) ValArgProProAlaAlaIleGln437GlyValGlnAlaGlyAla Mariko K et al. (2012) [68]

Seneca valley
virus (SVV)

TRIP
MAVS
TANK

Suppresses host
type-I interferon

production

Glu-Gln or,
Gln-Gly Qian S et al. (2017) [69]
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Crystal structure analysis has provided some insights into substrate recognition. For
poliovirus 3C, the specificity pockets are clearly delineated, and modelling investigations
help explain the established substrate specificity [36]. For FMDV 3C, the distinct substrate
preferences for specific residue types, as well as the relative promiscuity, are well explained
by the structure of the enzyme–peptide complex [70]. For instance, a similar peptide
binding mechanism is revealed by crystallographic analysis of the complex containing a
modified VP1–2A peptide (APAKE|LLNFD) with a Gln-to-Glu substitution [70]. This also
explains why 3C can cleave sequences containing either P1–Gln or P1–Glu.

In contrast, 3C EV71 takes on an unusually open conformation in which the active
site is highly exposed to solvent because of its open β-ribbon shape. There are insufficient
electron densities to identify the conformations of the active site, and none to define the
side chain conformation of catalytic Glu71 [53]. This inherent flexibility may be important
in recognizing diverse cleavage sites observed in virus and host protein targets.

2.3. 3C(D) Also Interacts with Virus Replication Membranes

How viral proteins specifically target genome replication sites has been a persistent
question in the field of virology [71,72]. Virus infection changes the lipid and protein
composition relative to membranes found in uninfected cells [73–75]. The field has long
known that these RNA viruses manipulate host cell membranes to create specific replication
sites [22], but only in the past decade or so has it been understood how/why virus proteins
are relocalized to these replication membranes.

RNA viruses have been shown to induce the production of a lipid called phosphatidyli-
nositol 4-phosphate (PI4P) in host cells. In 2010, Altan-Bonnet and colleagues found that
PI4P was produced during picornavirus infection and associated with regions of genome
replication [76]. The study revealed that lipids are vital for RNA replication, with viruses
3D RNA polymerase binding to specific lipids such as PI4P [76,77]. It is well known that
phosphatidylinositol phosphate phospholipids (PIPs) serve as a type of “zip code” for
protein sorting to the appropriate subcellular compartment [49,78,79]. For instance, the
pleckstrin homology (PH) domain from phospholipase C is the most extensively stud-
ied PIP-binding determinant, which interacts with phosphatidylinositol 4,5-bisphosphate
(PI(4,5)P2) [80–82]. These domains support latent enzymatic activity until activated by the
proper PIP, limiting enzyme activation to the appropriate subcellular compartment [83–86].
These characteristics are ideal for a virus to direct its enzymes and proteins to the proper
locations and regulate their functions in those areas.

PIP lipids found on the cell membrane can be used by picornaviruses to control
viral RNA replication. PV 3C binds PI4P through its dynamic N-terminal α-helix, which
competes with RNA binding due to the overlap between the PIP- and RNA-binding
sites [49]. PIPs may therefore be used by picornaviruses to control viral RNA replication [76].
NMR and MD simulations have helped to delineate the PIP-binding site (Figure 3) [49].

The roles of 3C in the viral replication cycle may be better understood with further
research into the structural characteristics and functional significance of PV 3C and its
interactions with host cell membranes. The remaining part of the review emphasizes the
ability of picornaviral 3Cs, through their abilities to bind RNA and act as a protease, to
hijack host cell metabolism and defenses.
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Figure 3. MD-derived model of PV 3C interactions with a PI4P-containing lipid membrane. Residues
involved in interactions include Arg13 in the N-terminal alpha helix and Arg84 in the RNA-binding
region. NMR studies with short-chain, soluble PI4P lipids largely confirm this model. In this model,
PV 3C interacts with five clustered PI4P lipid molecules as shown in dark grey sticks with phosphates
colored orange (phosphorus) and red (oxygen). The following specific interactions are listed, with
numbers in parenthesis denoting the panel’s head group: (1) R13 and R84; (2) D32, mediated by
sodium ions; (3) D32 mediated by sodium; (4) K156 and R176; and (5) α-amino group of G1. Reprinted
from Structure, 25(12), D. Shengjuler, Y.M. Chan, S. Sun, I. Moustafa, Z.-L. Li, D.W. Gohara, M. Buck,
P.S. Cremer, D.D. Boehr, C.E. Cameron. The RNA-binding site of poliovirus 3C protein doubles as a
phosphoinositide-binding domain, 1875–1886, Copyright (2017) with permission from Elsevier.

3. The 3C Protease Function Intervenes in Host Cell Processes

The 3C protease cleaves the viral polyprotein and host cell proteins and also binds
RNA which is essential for virus replication and inhibiting host cell responses [1,3]. Viral
infection induces interferon (IFN) production inside the host cells owing to the antiviral
immune response [87]. The co-evolution of viruses and host cells has led to the development
of IFN-evasion techniques, allowing viruses to persist inside host cells, in which 3C plays an
important role [69,87]. For instance, 3C plays a key role in blocking host signaling pathways,
thus allowing the virus to circumvent host cell defenses and readily multiply inside host
cells [88,89]. Picornaviruses inhibit antiviral protein synthesis and transport and block
immune responses through transcription and cap-dependent translation [90,91]. Here, we
discuss the multiple roles that 3C plays in the host cells, including halting transcription,
inhibiting protein synthesis, blocking nucleocytoplasmic transport, and inducing cell death
(see Figure 4).
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Figure 4. The picornavirus life cycle involves 3C interfering with host components to facilitate RNA
replication. Endocytosis, promoted by the attachment of the virus to host receptors, allows the virus
to enter the host cell. In PV, the receptor is CD155. Viral proteases cleave translation initiation factors,
halting cellular cap-dependent translation. Replication occurs in endoplasmic reticulum-derived
membrane vesicles in viral factories, using genomic single-stranded positive-strand RNA (ssRNA(+))
to create a double-stranded RNA intermediate. Transcription and replication produce viral mRNAs
and new ssRNA(+) genomes. The packaging of genomic RNA into prepared procapsids leads to
cell death and virus release. During SVV infection, the virion first attaches itself to the host cell
ANXTR1 receptor before internalizing itself through an endocytic pathway [92,93]. Unlike other
picornaviruses, SVV has a distinct uncoating mechanism and binding mode with its receptor.

3.1. Proteolysis by 3C Proteases Suppresses the Host Transcription and Translation Mechanisms

3C proteins play crucial roles in suppressing the host transcription and translation
mechanism, such that energy and resources are redirected towards virus replication. The
picornavirus enters the host cell, followed by the release of the picornaviral genome into
the cytoplasmic matrix, where it can interact with ribosomes [89,94–96]. The 3C protein
acts to suppress transcription and cap-dependent translation of host genes [94,97]. For
instance, the 3C-mediated cleavage of histone H3 at its N-terminus generates a novel
polypeptide Pi in BHK cells, which persists in association with chromatin [98]. This process
provides binding sites for transcription [99,100]. Therefore, the host cell transcription
may be halted by the cleavage of H3 into Pi [98,101]. 3C also proteolyzes transcription
factors, including IIIC, cAMP response element-binding protein-1 (CREB1), octamer bind-
ing protein-1 (OCT1 or POU2F1, p53 (TP53), TATA-binding protein-associated factor 110
(TAF110 or TAF1C), and TATA box-binding protein (TBP), resulting in the blockage of
transcription initiation by host RNA polymerases [102–107]. Recent evidence also shows
that EV71 3C can cleave the cellular CstF-64 protein, which subsequently halts host RNA
processing and polyadenylation [108]. SVV 3C cleaves MAV, TRIF, and TANK which blocks
transcription [92,109,110].
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Picornaviruses inhibit host translation (see Table 1) through various pathways, in-
cluding IRES-dependent translation for viral protein synthesis [18,90,111] (Figure 5). Cap-
dependent protein and DNA repair processes are shut off in infected host cells due to the
fragmentation of cellular components [112].
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Figure 5. Translation initiation can be (a) cap-dependent and/or (b) IRES-dependent. Using the
color code, only the primary factors mentioned in the text have been depicted for simplicity. Cellular
mRNAs functionally pseudo-circularize as a result of the interaction between eIF4G and PABP.
Regarding the FMDV genome, the 5′-3′ long-range communication among the 3′-UTR with the S
fragment (a large stem-loop formed by the folding of the terminal structure at the 5′ end), in addition
to 3′ UTR-IRES interaction, permits a comparable circumstance that is probably stabilized by binding
factors for RNA. IRES-driven translational initiation requires a few eIFs and IRES-transacting factors
(ITAFs), i.e., PCBP2, PTB, and Germin 5 which modulate IRES activity. 3C is crucial because it
guarantees the internal initiation of translation by cleaving certain eIFs and ITAFs.

Seneca Valley Virus 3C (SVV 3C) cleaves eukaryotic initiation factors (eIFs) eIF4AI
and eIF4G1, while PV, CVB, and HRV 3C proteases cleave eIF5B [18,58,63,93,113]. eIF4AI
inhibition alters eIF4AII protein expression [114]. eIF5B cleaves at one site (VVEQ↓G),
cutting the C-terminal and N-terminal regions from the conserved GTPase domain during
infection processes [59,115]. These cleavage events also affect the termination of viral
translation, leading to increased RNA packaging into new viral particles. The 3C protease
cleaves the viral RNA-binding protein PCBP2, causing it to lose its K-homologous domain
(KH3) [62]. This 3C-processed cleavage is also observed in HAV-infected cells [116]. The
polypyrimidine tract-binding protein (PTB), including PTBP1 and PTBP2, is also cleaved



Viruses 2023, 15, 2413 10 of 22

by HAV 3C to inhibit viral translation and improve viral genome replication (and is
also observed for PV 3C) [115,117]. The FMDV and EV71 3C proteases can cleave the
Sam68 nuclear RNA-binding protein, allowing it to play nonnuclear functions in the
cytoplasm [59,64,118,119]. Sam68 can engage with IRES in FMDV during infection and
before viral RNA translation [64].

An indirect way of promoting virus protein translation is through the 3C-directed
cleavage of nuclear pore proteins. Picornaviruses produce RNA in the cytoplasm, while cel-
lular RNA is produced in the nucleus [120]. Picornaviral proteins target five nucleoporins
(Nups; Nup62, Nup98, Nup 153, Nup 214, and Nup 358) to disrupt macromolecule traffick-
ing via the nuclear pore complex (NPC) [121]. These proteins are specifically proteolyzed
by 3C (e.g., as observed with HRV 3C) [3,88,122,123], demonstrating that picornaviruses
change nucleocytoplasmic shuttling to meet nuclear-resident protein requirements but
obstruct cellular mRNA export [124].

3.2. 3C-Promoted Apoptosis for Virus Release

Infected cells can exhibit 3C-induced apoptosis, as shown for SVV, HAV, and
CVB [17,92,125,126]. When a picornavirus infects a cell, 3C causes cell death through
both caspase-dependent and caspase-independent mechanisms, interferes with the cleav-
age of the Golgi apparatus and MAP-4, and controls the secretory pathway and intracellular
membrane trafficking [49,127–129]. The 3C protein regulates apoptosis through various
pathways, triggering Bax and cytochrome c secretion in mitochondria [130].

The cleavage of transcription and translation initiation factors induces the produc-
tion of apoptotic bodies and DNA degradation, while also degrading the transcriptional
activator p53 in vivo and in vitro [1,5,89,129,131]. PV–3C is essential for p53 degradation
in cells infected with PV, promoting apoptosis through transcription-independent mecha-
nisms [5]. CVB-3C activates caspase-9-based apoptosis through caspase 3 activation [127].
3C is essential for SVV-mediated apoptosis following caspase 3, while HAV 3C causes cell
death without the aid of caspase [93,127]. VAD–fmk caspase 1 and DEVD–fmk inhibitors
interfere with 3C-induced apoptosis, suggesting 3C initiates caspase cascades during late
PV infection [132]. The 3C-induced apoptosis in EV 71 is related to its proteolytic activity
as reported in several studies [133].

3.3. 3C Interferes with Host Cell Defenses

Host cells utilize a variety of antiviral mechanisms to combat picornavirus infection,
including stress granule formation, innate inflammatory responses, autophagy, and a
few others [2,125,134]. Picornaviruses must attack the cellular proteins engaged in these
antiviral defenses to survive, and 3C is essential to these processes [87–89].

When an organism is infected with a picornavirus, 3C triggers the host innate immune
system to employ host pattern recognition receptors (PRRs) to identify the presence of
pathogen-associated molecular patterns [87]. These include retinoic-acid-induced gene-I
(RIG-I), cytosolic RIG-like RNA helicases such as melanoma differentiation-associated gene
(MDA-5), and transmembrane PRRs such as Toll-like receptors (TLRs) [135,136]. PRRs
enlist various particular adaptor proteins to initiate a signaling cascade downstream and
stimulate three primary pathways for the production of IFNs: the IFN regulatory factor
(IRF) pathway, the mitogen-activated protein kinase (MAPK) pathway, and the nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway [137]. IFNs have
the ability to trigger hundreds of interferon-stimulated gene factors (ISGs) that strengthen
host defenses through autocrine or paracrine signaling [138]. Table 2 summarizes the key
signaling mechanisms that inhibit the generation of IFNs from picornavirus 3Cs.

Through its caspase-dependent protease activity, 3C degrades STAT1, STAT2, IRF9,
and karyopherin1, thus inhibiting IFN-α signaling in SVV [92]. It was also discovered
that 3C cleaves STAT2 at Gln758 in the transactivation domain. The cleaved products of
STAT2 were found to reduce its capacity to trigger the production of IFN-stimulated genes
and activate IFN-stimulated response element activity [92]. Furthermore, 3C was found
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to hamper the IFN-stimulated gene factor 3 complex nuclear import and formation [87].
Lastly, 3C was found to cause the degradation of karyopherin 1 to prevent STAT1/STAT2
nuclear localization. When combined, SVV 3C can disrupt the type I IFN response by
focusing on STAT1–STAT2–IRF9 and karyopherin α1 signals [92,109]. This reveals a new
way that SVV uses to avoid host defenses. Other viruses may operate through similar
mechanisms, although this would require further research.

Table 2. Key signaling mechanisms in picornaviruses that inhibit the generation of IFNs from 3C.

Virus Signaling Pathways IFN Type References

EV71 Inhibits IRF7 and IRF9 Type I IFNs Lei X et al. 2010 [139]

EMCV
Cleaves TANK and

inhibits TRAF6-mediated
NF-κB signaling

Type I IFNs Huang L et al. 2015 [137]

CVB3 Cleaves MAVS and TRIF Type I IFNs Mukherjee A et al. 2011 [140]

CV–A6, EV–D68 Cleaves TAK1 to inhibit
NF-κB signalling Not clear Yajuan R et al. 2017 [135]

FMDV Cleaving TANK and
NEMO Not clear Zhao T et al. 2007 [141]

HAV Cleaving MAVS and
NEMO Type I IFNs Yang Y et al. 2007 [142]

SVV Cleaving MAVS, TRIF,
and TANK Type I IFNs Qian S et al. 2017 [69]

The recognition of viral infections in the host cell initiates the antiviral response.
Double-stranded RNA, or dsRNA, is a vital ligand for 3C of picornaviruses, as it triggers
the cellular immune response [143]. Cytosolic dsRNA can be sensed by RIG-I-like receptors
(RLRs), which include melanoma differentiation-associated protein 5 (MDA5) [144–146].
The interferon regulatory factor (IRF) family of transcription factors is nuclear translocated
as a result of a signaling cascade that is triggered when MDA5 binds to dsRNA [147].
Nuclear IRFs can cause the expression of antiviral interferon-stimulated genes (ISGs) in
neighboring uninfected cells [148]. They can also induce the transcription of several genes
with antiviral functions, such as IFIT1 and RSAD2, as well as proinflammatory cytokines,
such as IFNs, for which the protein products are secreted [143].

4. RNA Binding and the Viral RNA Template Transformation

The 3C protein is a key factor for the formation of protein-RNA complexes that act
toward viral replication and release from host cells. The virus requires a way to transition
between RNA replication and translation [149]. Viral RNA exists in numerous copies
that are manipulable on their own [150]. The two events may take place concurrently
in the host cell utilizing different copies of identical RNA template. The 5′-NTR of the
picornaviral genome contains cis-acting replication elements (CRE), composed of oriL
(left), oriI (internal), and oriR (right) [18,151]. These three CREs are all thought to interact
with 3C (or 3CD), which may also impact protease activity and/or its interactions with
replication membranes [47]. It has been shown that the conformational energy landscape
of 3C is altered by RNA and peptide binding, potentially leading to different protein-RNA
complex sites [49]. Earlier research from our lab shows that the structural dynamics of
3C are altered by RNA/peptide binding, which has an impact on both the binding site
and predicted binding site of the other ligand [47]. The conformational dynamics on the
pico-to-nanosecond and micro-to-millisecond timescales are also altered by RNA binding.
It has been suggested that RNA binding selects different conformations, influencing peptide
interaction with 3C and that the higher energy conformation may be crucial for interacting
with protein substrates. These actions may also be important for 3C contribution towards
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switching between translation and RNA replication processes, which must use the same
RNA template [149].

Picornaviral RNA serves as a template for translation and RNA replication, en-
abling IRES-driven viral protein generation [66]. A complementary negative-sense RNA
molecule is produced using the same template, leading to the replicative form [88,152].
This intermediate produces a multiple-stranded RNA complex, generating positive-sense
RNA molecules [69,119,153]. These RNA molecules are either recycled or assembled
into offspring virions, using nuclear proteins found in uninfected cells. The 3C from
PV, FMDV, EMCV, CVB3, and EV71 can induce the cleavage of Ras GTPase-activating
protein-binding protein 1 (G3BP), which is also crucial for innate immune responses to
DNA viruses [65,154,155]. As such, cleaving G3BP1 may increase the risk of secondary
DNA viral infections, promoting viral replication. During HAV, CVB3, SVV, and EV-A71
infection, 3C-induced cleavage of Toll/IL-1 receptor-domain-containing adapter-inducing
interferon (TRIF) is significant [110,156,157]. Picornaviruses and host cells both possess
translational regulators, and 3C protease can initiate viral RNA replication by cleaving
translation-associated proteins linked to viral RNA [18,93].

5. Roles of 3C(D) and Other 3C-Containing Polyproteins in Picornavirus
RNA Replication

The 3C protein also exists as a domain in the 3CD precursor protein. As noted, 3C plays
crucial functions in the RNA replication complex assembly and the cleavage of the viral
polyprotein during virus replication [1,20,21,138]. Several RNA replication components,
including the 5′ UTR, CREs, and the 3′ UTR, are necessary to produce newly isolated
picornavirus RNA [15]. Several studies are in agreement with the PV RNA synthesis-
initiating model [158–162]. In this model, 3CD plays a significant role by attaching to the
stem-loop d of the 5′ UTR cloverleaf, enhancing the binding of the poly(rC)-binding protein
2 (PCBP2) to the stem-loop b [163,164].

The RNA-binding ability of the RNA in 3C and 3CD is crucial for efficient uridylylation
of VPg [3,165,166]. HRV-14 3C binds to the stem-loop d of the cloverleaf, while HAV 3C,
3CD, and 3ABC show efficient binding to both the 5′ and 3′ UTR [127,152,167–171]. 3ABC
has a stronger binding capacity, while 3CD has a weaker RNA-binding ability [8]. In
the absence of both 3C and 3CD, 3B33C and 3B1233C serve as alternative substrates for
uridylylation [172]. In cases where FMDV 3C substitutes 3CD in VPg uridylylation, the
efficiency is reduced.

The 3CD cloverleaf complex incorporates 3AB in the replication process, which is
cleaved by either 3AB or VPg, releasing the 3D enzyme with polymerase activity [173,174].
This enables the uridylylation of VPg and interactions with cre, making it a template for
VPg uridylylation [9,67,165]. The complex formation is completed when 3AB–3CD binds
to the 3′ UTR, and PABP—post-cleavage by 3CD—associates with the poly(A) tail, setting
the stage for new RNA strand synthesis [161,175].

The functional differences between 3C, 3D, and 3CD may be due to differences in
protein conformational dynamics [25,48]. We conducted NMR experiments to test these
dynamics across multiple timescales [25]. The results identified differences in conforma-
tional dynamics in crucial regions such as enzyme active sites and RNA and lipid binding
sites. The differences in conformational dynamics near the active site and RNA binding
site may help to differentiate the function between 3C and 3CD [25]. Differences in confor-
mational dynamics may also help to explain allosteric communication between the 3C and
3D domains of 3CD. The expansion of the conformational ensemble in 3CD may enable it
to perform additional functions not achievable in 3C and 3D alone.

6. 3C Protease Inhibitors

Drug–protein interactions can be better understood at the molecular level through
computational and bioinformatics tools, which can be used to expedite the design and
development of enhanced antivirals targeting important proteins [176]. A specific field of
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structure-based/ligand-based drug design called computer-aided drug discovery (CADD)
boasts several successes, including in the field of antivirals. The development of FDA-
approved medications such as Saquinavir (anti-HIV) and Oseltamivir (anti-influenza virus)
has confirmed the effectiveness of these methods [176] (see Figure 6 for chemical structures).
One intriguing family of flexible lead compounds among the various peptidomimetic
and small-molecule inhibitors that have been tried against viral proteins is isatin and its
derivatives. Isatins have demonstrated antiviral efficacy against a variety of picornaviruses
through interactions with 3C proteases.
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Initial reports described the usage of tellurium compounds as PV 3C protease in-
hibitors. PV 3C was found to be rapidly inactivated by a stoichiometric and covalent
reaction with both chloro-telluroxetane and bis-vinylic organotellurane [177]. Additionally,
these substances have second-order rate constants for inhibition of human cathepsins B, L,
S, and K that are greater than those found for PV 3C. Under low micromolar concentrations
and below the lethal threshold for host cells, chloro-telluroxetane prevents the replication
of PV in human embryonic rhabdomyosarcoma cells [177]. Although bis-vinylic organ-
otellurane is a more potent antiviral drug, at 10 µM it inhibits cell viability by 20%, a dose
that almost stops virus growth. This is the first account of this family of drugs antiviral
properties through suppression of viral 3C proteinase.

Most clinical compounds have been rejected because of their weak selectivity between
antiviral activity and cytotoxicity or their lack of potency [178]. Two compounds have been
found so far in the results that satisfy the requirements for being considered poliovirus an-
tiviral development candidates. One such substance is pocapavir (V-073), a capsid inhibitor
licensed by ViroDefense Inc. and initially discovered by Schering-Plough (SCH 48973).
The second substance is the 3C protease inhibitor AG7404, a rupintrivir analogue that was
found by Agouron (Pfizer Inc., McPherson, KS, USA) and is currently being developed as
V-7404 by ViroDefense Inc [138]. Initially created by Pfizer as an anti-rhinovirus drug, the
3C protease inhibitor V-7404 also exhibits strong in vitro anti-poliovirus action [179,180].
Although V-7404 is being positioned for combination treatment with pocapavir if drug
resistance arises when treating PID patients with a single compound, pocapavir is currently
being developed as a single-agent treatment. The Task Force for Childhood Development
and Survival has entered into a contract with ViroDefense Inc. to assess the PV antiviral
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candidate V-073. In addition, ViroDefense Inc. is taking part in an NIAID program to
provide specific preclinical services.

V-7404 is an orally accessible, single-dose organic compound which inhibits the human
rhinovirus (HRV) 3C protease irreversibly [180]. The concentration-dependent suppression
of HRV 3C-mediated polyprotein processing in infected cells by this compound directly
confirms that the inhibition of 3C protease is the cause of the cell-based antiviral action.
Nonclinical safety investigations conducted in vitro and in vivo have demonstrated that
V-7404 is safe at the highest doses that could be administered [181]. In a phase-I-ascending
single-dose research study, oral dosages of Compound 1 up to 2000 mg have been shown
to be safe and well tolerated in healthy individuals.

7. Conclusions

Positive-strand RNA viruses act to maximize their genomic information content in
part by encoding multifunctional proteins, as exemplified by 3C. Picornaviral 3C performs
important roles in viral replication and inhibition of host cell responses through its ability
to interact with RNA and act as the main protease. It is noted that many of these functions
may be enacted through its polyprotein precursors (e.g., 3CD). The RNA-binding ability of
3C is crucial for initiating viral RNA synthesis. The mode and interaction specificity of 3C
for binding various RNA is still under investigation.

The 3C protease intervenes in host cell transcription, translation, and replication
events. It also plays critical roles in apoptosis and generation of phosphatidylserine (PS)
lipid-rich vesicles that assist in virus release and spread. The binding of 3C to RNA alters
the structural dynamics of 3C and controls how 3C functions with other cellular substrates.
The cellular substrates of 3C have varying activities in host cells, potentially advantageous
to viruses at different lifecycles [1,17]. Several newly identified substrates for PV and CVB3
3C have been found employing terminal amine isotopic labelling of substrates [182]. High-
throughput technologies may help discover new cellular substrates and better understand
how 3C modifies host processes and pathophysiology [183].

Picornaviruses inhibit antiviral protein synthesis and transport, suppressing im-
mune responses through transcription and cap-dependent translation, and using mech-
anisms such as PARP9–DTX3L complex to regulate ISG expression and the immune re-
sponse [6,24,77,83,128]. Furthermore, 3C precursors are also crucial in viral replication
owing to their ability to hijack cellular resources and establish an optimal intracellular
condition for the virus life cycle. The 3C-mediated cleavage of PABP disrupts mRNA
circularization, and 3C also alters specific cellular components and fragments, such as
eIF4G, PTB, and PCBP2 [66,184–187]. These findings highlight the critical functions that 3C
performs in viral replication by ensuring translation, replication, and the transition from
translation to replication.

Given the central role of 3C (or its precursors) in the many aspects of the picornaviral
life cycle, there has been much effort in the development of 3C inhibitors [188,189]. To
date, there are only a few treatments available for picornavirus infection [190,191]. The
development of new antiviral treatments may become more accessible with a broader
understanding of the roles played by picornavirus 3C. Efforts are currently ongoing to iden-
tify irreversible inhibitors for 3C, with further investigations into its molecular functions,
structure, and dynamics potentially aiding in this goal [176,192].
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