Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = vibratory gyro

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8179 KiB  
Article
An Interface ASIC Design of MEMS Gyroscope with Analog Closed Loop Driving
by Huan Zhang, Weiping Chen, Liang Yin and Qiang Fu
Sensors 2023, 23(5), 2615; https://doi.org/10.3390/s23052615 - 27 Feb 2023
Cited by 7 | Viewed by 6807
Abstract
This paper introduces a digital interface application-specific integrated circuit (ASIC) for a micro-electromechanical systems (MEMS) vibratory gyroscope. The driving circuit of the interface ASIC uses an automatic gain circuit (AGC) module instead of a phase-locked loop to realize a self-excited vibration, which gives [...] Read more.
This paper introduces a digital interface application-specific integrated circuit (ASIC) for a micro-electromechanical systems (MEMS) vibratory gyroscope. The driving circuit of the interface ASIC uses an automatic gain circuit (AGC) module instead of a phase-locked loop to realize a self-excited vibration, which gives the gyroscope system good robustness. In order to realize the co-simulation of the mechanically sensitive structure and interface circuit of the gyroscope, the equivalent electrical model analysis and modeling of the mechanically sensitive structure of the gyro are carried out by Verilog-A. According to the design scheme of the MEMS gyroscope interface circuit, a system-level simulation model including mechanically sensitive structure and measurement and control circuit is established by SIMULINK. A digital-to-analog converter (ADC) is designed for the digital processing and temperature compensation of the angular velocity in the MEMS gyroscope digital circuit system. Using the positive and negative diode temperature characteristics, the function of the on-chip temperature sensor is realized, and the temperature compensation and zero bias correction are carried out simultaneously. The MEMS interface ASIC is designed using a standard 0.18 μM CMOS BCD process. The experimental results show that the signal-to-noise ratio (SNR) of sigma-delta (ΣΔ) ADC is 111.56 dB. The nonlinearity of the MEMS gyroscope system is 0.03% over the full-scale range. Full article
(This article belongs to the Special Issue Advanced Sensors in MEMS)
Show Figures

Figure 1

17 pages, 4455 KiB  
Article
Three-Dimensional Performance Evaluation of Hemispherical Coriolis Vibratory Gyroscopes
by Mehrdad Mahmoudian, Joel Filho, Rui Melicio, Eduardo Rodrigues, Mojgan Ghanbari and Paulo Gordo
Micromachines 2023, 14(2), 254; https://doi.org/10.3390/mi14020254 - 19 Jan 2023
Cited by 6 | Viewed by 2318
Abstract
In this paper, the oscillation patterns and characteristics of gyroscopic reaction to rotation-induced Coriolis force and phase relations are reviewed by examining the main principles of operation of Coriolis vibratory gyroscopes based on the dynamic relations and proposed improvements in performance using parameter [...] Read more.
In this paper, the oscillation patterns and characteristics of gyroscopic reaction to rotation-induced Coriolis force and phase relations are reviewed by examining the main principles of operation of Coriolis vibratory gyroscopes based on the dynamic relations and proposed improvements in performance using parameter changes. Coriolis vibratory gyroscopes (CVGs) are among the most modern applicable gyroscopes in position detection that have replaced traditional gyroscopes due to some great features of the design of vibrating proof mass and elastic suspension. Given the key characteristics of capacitive versus piezoelectric excitation technologies for determining the vibration type in sensors, their operating principles and equations have completely changed. Therefore, two-dimensional finite element analysis is required to evaluate their optimal performance. Since the sensor space is constantly vibrating, a general equation is presented in this paper to explain the impact of parameters on the frequency of different operating modes. The main purposes of building vibrating gyroscopes are replacing the constant spinning of the rotor with a vibrating structure and utilizing the Coriolis effect, based on which the secondary motion of the sensitive object is generated according to the external angular velocity. Full article
(This article belongs to the Special Issue MEMS Sensors: Past, Present and Future)
Show Figures

Figure 1

18 pages, 4768 KiB  
Article
Coriolis Vibratory MEMS Gyro Drive Axis Control with Proxy-Based Sliding Mode Controller
by Derya Ünsal Öztürk and Aydan M. Erkmen
Micromachines 2022, 13(3), 446; https://doi.org/10.3390/mi13030446 - 16 Mar 2022
Cited by 7 | Viewed by 3802
Abstract
MEMS (micro electrical mechanical systems) gyroscopes are used to measure the angular rate in several applications. The performance of a MEMS gyroscope is dependent on more than one factor, such as mechanical imperfections, environmental condition-dependent parameter variations, and mechanical–thermal noises. These factors should [...] Read more.
MEMS (micro electrical mechanical systems) gyroscopes are used to measure the angular rate in several applications. The performance of a MEMS gyroscope is dependent on more than one factor, such as mechanical imperfections, environmental condition-dependent parameter variations, and mechanical–thermal noises. These factors should be compensated to improve the performance of the MEMS gyroscope. To overcome this compensation problem, a closed-loop control system is one of the solutions. In this paper, a closed-loop control system is implemented. However, other than previously applied methods, a proxy-based sliding mode control approach is proposed, which is a novelty for the control of the MEMS gyroscope drive axis since, to the best of our knowledge, this method has not been applied to gyroscope control problems. Proxy-based sliding mode controllers do not suffer from the chattering phenomenon. Additionally, we do not need an exact system model to implement the control law. In particular, we are investigating, in this paper, the compatibility and performance of a proxy-based sliding mode controller for a closed-loop gyroscope implementation. We show that our proposed method provides robustness against model uncertainties and disturbances and is easy to implement. We also compare the performance of classical sliding mode controllers and proxy-based sliding mode controllers, which demonstrate the evident superiority of the proxy-based controller in our implementation results. Simulation results show that system error and gyroscope total error reduced by 49.52% and 12.03%, respectively, compared to the sliding mode controller. Simulation results are supported with the experimental data, and experimental results clearly demonstrate the superiority of the proxy-based sliding mode controller. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

16 pages, 3867 KiB  
Article
Design of Readout Circuit with Quadrature Error and Auxiliary PLL for MEMS Vibratory Gyroscope
by Hua Chen and Yanqing Zhong
Sensors 2020, 20(16), 4564; https://doi.org/10.3390/s20164564 - 14 Aug 2020
Cited by 6 | Viewed by 5016
Abstract
Traditional MEMS gyroscope readout eliminates quadrature error and relies on the phase relationship between the drive displacement and the Coriolis position to accomplish a coherent demodulation. This scheme shows some risk, especially for a mode-matching gyro. If only a slight resonant frequency deviation [...] Read more.
Traditional MEMS gyroscope readout eliminates quadrature error and relies on the phase relationship between the drive displacement and the Coriolis position to accomplish a coherent demodulation. This scheme shows some risk, especially for a mode-matching gyro. If only a slight resonant frequency deviation between the drive and sense mode occurs, a dramatic change in the phase relationship follows, which leads to a wrong demodulation. To solve this, this paper proposes a new readout based on the quadrature error and an auxiliary phase-locked loop (PLL). By tuning the phase shifter in the sense-mode circuit, letting the quadrature error and the carrier of the mixer be in 90° phase alignment, the Coriolis was simultaneously in phase with the carrier. Hence, the demodulation was accomplished. The carrier comes from the PLL output of the drive-mode circuit due to its low jitter and independence of the work mode of the gyro. Moreover, an auxiliary PLL is used to filter the quadrature error to enhance the phase alignment accuracy. Through an elaborate design, a printed circuit board was used to verify the proposed idea. The experimental results show the readout circuit functioned well. The scale factor of the gyro was 6.8 mV/°/s, and the bias instability was 204°/h. Full article
(This article belongs to the Collection Inertial Sensors and Applications)
Show Figures

Figure 1

12 pages, 5536 KiB  
Article
MEMS Gyroscopes Based on Acoustic Sagnac Effect
by Yuanyuan Yu, Hao Luo, Buyun Chen, Jin Tao, Zhihong Feng, Hao Zhang, Wenlan Guo and Daihua Zhang
Micromachines 2017, 8(1), 2; https://doi.org/10.3390/mi8010002 - 24 Dec 2016
Cited by 7 | Viewed by 7754
Abstract
This paper reports on the design, fabrication and preliminary test results of a novel microelectromechanical systems (MEMS) device—the acoustic gyroscope. The unique operating mechanism is based on the “acoustic version” of the Sagnac effect in fiber-optic gyros. The device measures the phase difference [...] Read more.
This paper reports on the design, fabrication and preliminary test results of a novel microelectromechanical systems (MEMS) device—the acoustic gyroscope. The unique operating mechanism is based on the “acoustic version” of the Sagnac effect in fiber-optic gyros. The device measures the phase difference between two sound waves traveling in opposite directions, and correlates the signal to the angular velocity of the hosting frame. As sound travels significantly slower than light and develops a larger phase change within the same path length, the acoustic gyro can potentially outperform fiber-optic gyros in sensitivity and form factor. It also promises superior stability compared to vibratory MEMS gyros as the design contains no moving parts and is largely insensitive to mechanical stress or temperature. We have carried out systematic simulations and experiments, and developed a series of processes and design rules to implement the device. Full article
(This article belongs to the Special Issue Piezoelectric MEMS)
Show Figures

Figure 1

22 pages, 5331 KiB  
Article
Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope
by Jungshin Lee, Sung Wook Yun and Jaewook Rhim
Sensors 2016, 16(4), 555; https://doi.org/10.3390/s16040555 - 20 Apr 2016
Cited by 19 | Viewed by 8383
Abstract
A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing [...] Read more.
A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments. Full article
(This article belongs to the Special Issue Resonator Sensors)
Show Figures

Figure 1

22 pages, 2611 KiB  
Article
Error Model and Compensation of Bell-Shaped Vibratory Gyro
by Zhong Su, Ning Liu and Qing Li
Sensors 2015, 15(9), 23684-23705; https://doi.org/10.3390/s150923684 - 17 Sep 2015
Cited by 6 | Viewed by 5707
Abstract
A bell-shaped vibratory angular velocity gyro (BVG), inspired by the Chinese traditional bell, is a type of axisymmetric shell resonator gyroscope. This paper focuses on development of an error model and compensation of the BVG. A dynamic equation is firstly established, based on [...] Read more.
A bell-shaped vibratory angular velocity gyro (BVG), inspired by the Chinese traditional bell, is a type of axisymmetric shell resonator gyroscope. This paper focuses on development of an error model and compensation of the BVG. A dynamic equation is firstly established, based on a study of the BVG working mechanism. This equation is then used to evaluate the relationship between the angular rate output signal and bell-shaped resonator character, analyze the influence of the main error sources and set up an error model for the BVG. The error sources are classified from the error propagation characteristics, and the compensation method is presented based on the error model. Finally, using the error model and compensation method, the BVG is calibrated experimentally including rough compensation, temperature and bias compensation, scale factor compensation and noise filter. The experimentally obtained bias instability is from 20.5°/h to 4.7°/h, the random walk is from 2.8°/h1/2 to 0.7°/h1/2 and the nonlinearity is from 0.2% to 0.03%. Based on the error compensation, it is shown that there is a good linear relationship between the sensing signal and the angular velocity, suggesting that the BVG is a good candidate for the field of low and medium rotational speed measurement. Full article
(This article belongs to the Special Issue Inertial Sensors and Systems)
Show Figures

Figure 1

20 pages, 7057 KiB  
Article
Frequency Split Elimination Method for a Solid-State Vibratory Angular Rate Gyro with an Imperfect Axisymmetric-Shell Resonator
by Zhen Lin, Mengyin Fu, Zhihong Deng, Ning Liu and Hong Liu
Sensors 2015, 15(2), 3204-3223; https://doi.org/10.3390/s150203204 - 2 Feb 2015
Cited by 33 | Viewed by 6031
Abstract
The resonator of a solid-state vibratory gyro is responsible for sensing angular motion. Frequency splitting of an axisymmetric-shell resonator is a common problem caused by manufacturing defects. The defect causes a frequency difference between two working modes which consist of two nodes and [...] Read more.
The resonator of a solid-state vibratory gyro is responsible for sensing angular motion. Frequency splitting of an axisymmetric-shell resonator is a common problem caused by manufacturing defects. The defect causes a frequency difference between two working modes which consist of two nodes and two antinodes. The difference leads to the loss of gyroscopic effect, and thus the resonator cannot sense angular motion. In this paper, the resonator based on an axisymmetric multi-curved surface shell structure is investigated and an approach to eliminate frequency splits is proposed. Since axisymmetric multi-curved surface shell resonators are too complex to be modeled, this paper proposes a simplified model by focusing on a common property of the axisymmetric shell. The resonator with stochastic imperfections is made equivalent to a perfect shell with an imperfect mass point. Rayleigh’s energy method is used in the theoretical analysis. Finite element modeling is used to demonstrate the effectiveness of the elimination approach. In real cases, a resonator’s frequency split is eliminated by the proposed approach. In this paper, errors in the theoretical analysis are discussed and steps to be taken when the deviation between assumptions and the real situation is large are figured out. The resonator has good performance after processing. The elimination approach can be applied to any kind of solid-state vibratory gyro resonators with an axisymmetric shell structure. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

24 pages, 14098 KiB  
Article
Research on the Signal Process of a Bell-Shaped Vibratory Angular Rate Gyro
by Zhong Su, Ning Liu, Qing Li, Mengyin Fu, Hong Liu and Junfang Fan
Sensors 2014, 14(3), 5254-5277; https://doi.org/10.3390/s140305254 - 13 Mar 2014
Cited by 11 | Viewed by 7538
Abstract
A bell-shaped vibratory angular rate gyro, which is inspired by the Chinese traditional bell, is a kind of axisymmetric shell resonator gyroscope. Its sensitive element is a vibratory-like Chinese traditional bell, using a piezoelectric element on the wall of the vibrator to detect [...] Read more.
A bell-shaped vibratory angular rate gyro, which is inspired by the Chinese traditional bell, is a kind of axisymmetric shell resonator gyroscope. Its sensitive element is a vibratory-like Chinese traditional bell, using a piezoelectric element on the wall of the vibrator to detect the standing wave’s precession to solve the input angular rate. This work mainly studies the circuit system of a bell-shaped vibratory angular rate gyro. It discusses the process of circuit system design, analysis and experiment, in detail, providing the foundation to develop a bell-shaped vibratory angular rate gyro. Since the bell-shaped resonator’s curved structure has the characteristics of large noise in the piezoelectric signal and large harmonics, this paper analyzes its working and signal detection method, then gives the whole plan of the circuit system, including the drive module, the detection module and the control loop. It also studies every part of the whole system, gives a detailed design and analysis process and proves part of the circuit system using digital simulation. At the end of the article, the test result of the circuit system shows that it can remove the disadvantages of the curved structure having large noise in the piezoelectric signal and large harmonics and is more effective at solving the input angular rate. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

28 pages, 5840 KiB  
Article
Characterization of the Bell-Shaped Vibratory Angular Rate Gyro
by Ning Liu, Zhong Su, Qing Li, Mengyin Fu, Hong Liu and Junfang Fan
Sensors 2013, 13(8), 10123-10150; https://doi.org/10.3390/s130810123 - 7 Aug 2013
Cited by 31 | Viewed by 8593
Abstract
The bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a novel shell vibratory gyroscope, which is inspired by the Chinese traditional bell. It sensitizes angular velocity through the standing wave precession effect. The bell-shaped resonator is a core component of the BVG [...] Read more.
The bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a novel shell vibratory gyroscope, which is inspired by the Chinese traditional bell. It sensitizes angular velocity through the standing wave precession effect. The bell-shaped resonator is a core component of the BVG and looks like the millimeter-grade Chinese traditional bell, such as QianLong Bell and Yongle Bell. It is made of Ni43CrTi, which is a constant modulus alloy. The exciting element, control element and detection element are uniformly distributed and attached to the resonator, respectively. This work presents the design, analysis and experimentation on the BVG. It is most important to analyze the vibratory character of the bell-shaped resonator. The strain equation, internal force and the resonator's equilibrium differential equation are derived in the orthogonal curvilinear coordinate system. When the input angular velocity is existent on the sensitive axis, an analysis of the vibratory character is performed using the theory of thin shells. On this basis, the mode shape function and the simplified second order normal vibration mode dynamical equation are obtained. The coriolis coupling relationship about the primary mode and secondary mode is established. The methods of the signal processing and control loop are presented. Analyzing the impact resistance property of the bell-shaped resonator, which is compared with other shell resonators using the Finite Element Method, demonstrates that BVG has the advantage of a better impact resistance property. A reasonable means of installation and a prototypal gyro are designed. The gyroscopic effect of the BVG is characterized through experiments. Experimental results show that the BVG has not only the advantages of low cost, low power, long work life, high sensitivity, and so on, but, also, of a simple structure and a better impact resistance property for low and medium angular velocity measurements. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

18 pages, 1569 KiB  
Article
Research on Bell-Shaped Vibratory Angular Rate Gyro’s Character of Resonator
by Zhong Su, Mengyin Fu, Qing Li, Ning Liu and Hong Liu
Sensors 2013, 13(4), 4724-4741; https://doi.org/10.3390/s130404724 - 10 Apr 2013
Cited by 28 | Viewed by 8155
Abstract
Bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a new type Coriolis vibratory gyro that was inspired by Chinese traditional clocks. The resonator fuses based on a variable thickness axisymmetric multicurved surface shell. Its characteristics can directly influence the performance of BVG. [...] Read more.
Bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a new type Coriolis vibratory gyro that was inspired by Chinese traditional clocks. The resonator fuses based on a variable thickness axisymmetric multicurved surface shell. Its characteristics can directly influence the performance of BVG. The BVG structure not only has capabilities of bearing high overload, high impact and, compared with the tuning fork, vibrating beam, shell and a comb structure, but also a higher frequency to overcome the influence of the disturbance of the exterior environment than the same sized hemispherical resonator gyroscope (HRG) and the traditional cylinder vibratory gyroscope. It can be widely applied in high dynamic low precision angular rate measurement occasions. The main work is as follows: the issue mainly analyzes the structure and basic principle, and investigates the bell-shaped resonator’s mathematical model. The reasonable structural parameters are obtained from finite element analysis and an intelligent platform. Using the current solid vibration gyro theory analyzes the structural characteristics and principles of BVG. The bell-shaped resonator is simplified as a paraboloid of the revolution mechanical model, which has a fixed closed end and a free opened end. It obtains the natural frequency and vibration modes based on the theory of elasticity. The structural parameters are obtained from the orthogonal method by the research on the structural parameters of the resonator analysis. It obtains the modal analysis, stress analysis and impact analysis with the chosen parameters. Finally, using the turntable experiment verifies the gyro effect of the BVG. Full article
(This article belongs to the Special Issue Piezoelectric Sensors and Actuators)
Show Figures

Back to TopTop