Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = vibrational zero energy position

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2865 KiB  
Article
Engineering Mononuclear Ln(III) Complexes with a Pseudo-Macrocyclic Hexadentate N4O2 Schiff Base Ligand Exhibiting Slow Magnetic Relaxation
by Ismael Francisco Diaz-Ortega, Yating Ye, Jesus Jover, Eliseo Ruiz, Enrique Colacio and Juan Manuel Herrera
Magnetochemistry 2024, 10(12), 104; https://doi.org/10.3390/magnetochemistry10120104 - 12 Dec 2024
Cited by 1 | Viewed by 1439
Abstract
We report here the synthesis of a series of nine coordinated mononuclear LnIII complexes [LnL1Cl2(DMF)]Cl·2.5DMF and [LnL1(L2)2]Cl·4CH3OH (LnIII = GdIII, DyIII, ErIII and Yb [...] Read more.
We report here the synthesis of a series of nine coordinated mononuclear LnIII complexes [LnL1Cl2(DMF)]Cl·2.5DMF and [LnL1(L2)2]Cl·4CH3OH (LnIII = GdIII, DyIII, ErIII and YbIII, HL2 = 9-anthracenecarboxylic acid), where L1 is a hexadentate N4O2 Schiff base ligand prepared from the condensation of 1,10-phenanthroline-2,9-dicarbaldehyde and semicarbazone. The X-ray crystal structures of these complexes show the LnIII ions to possess LnN4O2Cl2 and LnN4O4 coordination spheres, which can be considered to be derived from a hexagonal bipyramidal geometry, with the ligand in the equatorial plane and the anions (chloride or 9-antracenecarboxylate) in axial positions, which undergo distortion after coordination of either a molecule of DMF or a bidentate coordination of the 9-anthracenecarboxxylate ligand. All these compounds exhibit field-induced slow magnetization relaxation (SMR). The absence of SMR at zero field due to QTM, as well as the processes involved in the magnetic relaxation under a field of 0.1 T, have been justified on the basis of theoretical calculations and the distortion of the respective coordination spheres. The severe discrepancy between the calculated and experimental thermal energy barriers for the DyIII complexes seems to indicate that the relaxation occurs with the contribution of spin–vibrational coupling, which is favored by the flexibility of the ligand. Full article
Show Figures

Figure 1

21 pages, 9916 KiB  
Article
Milliwatt μ-TEG-Powered Vibration Monitoring System for Industrial Predictive Maintenance Applications
by Raúl Aragonés, Roger Malet, Joan Oliver, Alex Prim, Denis Mascarell, Marc Salleras, Luis Fonseca, Alex Rodríguez-Iglesias, Albert Tarancón, Alex Morata, Federico Baiutti and Carles Ferrer
Information 2024, 15(9), 545; https://doi.org/10.3390/info15090545 - 6 Sep 2024
Cited by 3 | Viewed by 4357
Abstract
This paper presents a novel waste-heat-powered, wireless, and battery-less Industrial Internet of Things (IIoT) device designed for predictive maintenance in Industry 4.0 environments. With a focus on real-time quality data, this device addresses the limitations of current battery-operated IIoT devices, such as energy [...] Read more.
This paper presents a novel waste-heat-powered, wireless, and battery-less Industrial Internet of Things (IIoT) device designed for predictive maintenance in Industry 4.0 environments. With a focus on real-time quality data, this device addresses the limitations of current battery-operated IIoT devices, such as energy consumption, transmission range, data rate, and constant quality of service. It is specifically developed for heat-intensive industries (e.g., iron and steel, cement, petrochemical, etc.), where self-heating nodes, low-power processing platforms, and industrial sensors align with the stringent requirements of industrial monitoring. The presented IIoT device uses thermoelectric generators based on the Seebeck effect to harness waste heat from any hot surface, such as pipes or chimneys, ensuring continuous power without the need for batteries. The energy that is recovered can be used to power devices using mid-range wireless protocols like Bluetooth 5.0, minimizing the need for extensive in-house wireless infrastructure and incorporating light-edge computing. Consequently, up to 98% of cloud computation efforts and associated greenhouse gas emissions are reduced as data is processed within the IoT device. From the environmental perspective, the deployment of such self-powered IIoT devices contributes to reducing the carbon footprint in energy-demanding industries, aiding their digitalization transition towards the industry 5.0 paradigm. This paper presents the results of the most challenging energy harvesting technologies based on an all-silicon micro thermoelectric generator with planar architecture. The effectiveness and self-powering ability of the selected model, coupled with an ultra-low-power processing platform and Bluetooth 5 connectivity, are validated in an equivalent industrial environment to monitor vibrations in an electric machine. This approach aligns with the EU’s strategic objective of achieving net zero manufacturing capacity for renewable energy technologies, enhancing its position as a global leader in renewable energy technology (RET). Full article
(This article belongs to the Special Issue IoT-Based Systems for Resilient Smart Cities)
Show Figures

Figure 1

16 pages, 4504 KiB  
Article
Study on the Mechanism of Lipid Peroxidation Induced by Carbonate Radicals
by Heng Cao, Sheng-Feng Xiong, Li-Long Dong and Zhou-Tong Dai
Molecules 2024, 29(5), 1125; https://doi.org/10.3390/molecules29051125 - 2 Mar 2024
Cited by 9 | Viewed by 2654
Abstract
Based on the reported research, hydroxyl radicals can be rapidly transformed into carbonate radicals in the carbonate–bicarbonate buffering system in vivo. Many of the processes considered to be initiated by hydroxyl radicals may be caused by carbonate radicals, which indicates that lipid peroxidation [...] Read more.
Based on the reported research, hydroxyl radicals can be rapidly transformed into carbonate radicals in the carbonate–bicarbonate buffering system in vivo. Many of the processes considered to be initiated by hydroxyl radicals may be caused by carbonate radicals, which indicates that lipid peroxidation initiated by hydroxyl radicals can also be caused by carbonate radicals. To date, theoretical research on reactions of hydrogen abstraction from and radical addition to polyunsaturated fatty acids (PUFAs) of carbonate radicals has not been carried out systematically. This paper employs (3Z,6Z)-nona-3,6-diene (NDE) as a model for polyunsaturated fatty acids (PUFAs). Density functional theory (DFT) with the CAM-B3LYP method at the 6-311+g(d,p) level was used to calculate the differences in reactivity of carbonate radicals abstracting hydrogen from different positions of NDE and their addition to the double bonds of NDE under lipid solvent conditions with a dielectric constant of 4.0 (CPCM model). Grimme’s empirical dispersion correction was taken into account through the D3 scheme. The energy barrier, reaction rate constants, internal energy, enthalpy and Gibbs free energy changes in these reactions were calculated With zero-point vibrational energy (ZPVE) corrections. The results indicated that carbonate radicals initiate lipid peroxidation primarily through hydrogen abstraction from diallyl carbon atoms. The reaction of hydrogen abstraction from diallyl carbon atoms exhibits the highest reaction rate, with a reaction rate constant approximately 43-fold greater than the second-ranked hydrogen abstraction from allyl carbon atoms. This process has the lowest energy barrier, internal energy, enthalpy, and Gibbs free energy changes, indicating that it is also the most spontaneous process. Full article
(This article belongs to the Special Issue Design and Drug Screening of Targeted Proteins Inhibitor)
Show Figures

Figure 1

16 pages, 6213 KiB  
Article
Hydrodynamic Effect of Highly Skewed Horizontal-Axis Tidal Turbine (HATT) Rotors
by Yiyi Xu, Juin Ming Foong and Pengfei Liu
Energies 2023, 16(8), 3569; https://doi.org/10.3390/en16083569 - 20 Apr 2023
Cited by 1 | Viewed by 1873
Abstract
While hydro turbines generate over 40% of the world’s total renewable energy, these traditional turbines present a great environmental concern due to the potential of their sharp blades to damage aquatic lives and ecology, along with their harmful noise and vibration during operation. [...] Read more.
While hydro turbines generate over 40% of the world’s total renewable energy, these traditional turbines present a great environmental concern due to the potential of their sharp blades to damage aquatic lives and ecology, along with their harmful noise and vibration during operation. One effective solution to these environmental issues is to substantially increase the skew of these blades, which would result in a much safer blade operation for aquatic animals (such as fish, etc.) and a substantial reduction in noise and vibration. Adding skew to turbine rotors is known to reduce cavitation and noise, and hence, to mitigate the environmental impact on underwater fauna and flora. However, adding skew will compromise the power performance of the turbines. This study aimed to identify the effect of rotor skew on the hydrodynamic power performance of a series of horizontal-axis turbine rotors that were manufactured using 3D printing technology and tested in a towing tank. The diameter of the turbine rotor model was 0.3 m and the skewed angle contained positive and negative angles of 45, 60 and 90 degrees along with a non-skewed rotor. This study was conducted to analyze the hydrodynamics of a turbine rotor with different skew angles and a 0-degree skewed rotor. Various tip speed ratios, ranging from 2.3 to 4.3, were set in accordance with the RPM and the carriage speed. Gain and filter were applied to boost the signal, and post-calibration was conducted. The results show that (1) the non-skewed rotor had the highest power coefficient; (2) the rotor with a skew angle of 45 degrees had the lowest power loss, at 6.97%, compared with the zero-skew rotor blades; (3) while the larger the skew, the more loss in power production efficiency, the rotor with a negative 90-degree skewed angle had the largest power loss, 31.42%. It was then concluded that, based on the results and analysis, (1) to achieve the greatest reduction in noise and vibration, the rotor with a skew angle of 90 degrees would be the best choice, and (2) to mitigate noise/vibration and efficiency due to skew, the rotor with a skewed angle of 45 degrees would be the best design choice. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

20 pages, 2310 KiB  
Article
The True Nature of the Energy Calibration for Nuclear Resonant Vibrational Spectroscopy: A Time-Based Conversion
by Hongxin Wang, Yoshitaka Yoda and Jessie Wang
Physchem 2022, 2(4), 369-388; https://doi.org/10.3390/physchem2040027 - 28 Nov 2022
Viewed by 2005
Abstract
Nuclear resonant vibrational spectroscopy (NRVS) is an excellent synchrotron-based vibrational spectroscopy. Its isotope specificity and other advantages are particularly good to study, for example, iron center(s) inside complicated molecules such as enzymes. In order to investigate some small energy shifts, the energy scale [...] Read more.
Nuclear resonant vibrational spectroscopy (NRVS) is an excellent synchrotron-based vibrational spectroscopy. Its isotope specificity and other advantages are particularly good to study, for example, iron center(s) inside complicated molecules such as enzymes. In order to investigate some small energy shifts, the energy scale variation from scan to scan must be corrected via an in-situ measurement or with other internal reference peak(s) inside the spectra to be calibrated. On the other hand, the energy re-distribution within each scan also needs attention for a sectional scan which has a different scanning time per point in different sections and is often used to measure weak NRVS signals. In this publication, we: (1) evaluated the point-to-point energy re-distribution within each NRVS scan or within an averaged scan with a time-scaled (not energy-scaled) function; (2) discussed the errorbar contributed from the improper “distribution” of ΔEi or the averaged ΔE within one scan (Eerr1) vs. that due to the different ΔEi from different scans (Eerr2). It is well illustrated that the former (Eerr1) is as important as, or sometimes even more important than, the latter (Eerr2); and (3) provided a procedure to re-calibrate the published NRVS-derived PVDOS spectra in case of need. This article establishes the concept that, at least for sectional NRVS scans, the energy positions should be corrected according to the time scanned rather than be scaled with a universal constant, as in a conventional calibration procedure. Full article
Show Figures

Figure 1

18 pages, 5242 KiB  
Article
Energy Harvesting in a System with a Two-Stage Flexible Cantilever Beam
by Jerzy Margielewicz, Damian Gąska, Grzegorz Litak, Piotr Wolszczak and Shengxi Zhou
Sensors 2022, 22(19), 7399; https://doi.org/10.3390/s22197399 - 28 Sep 2022
Cited by 14 | Viewed by 3093
Abstract
The subject of the research contained in this paper is a new design solution for an energy harvesting system resulting from the combination of a quasi-zero-stiffness energy harvester and a two-stage flexible cantilever beam. Numerical tests were divided into two main parts-analysis of [...] Read more.
The subject of the research contained in this paper is a new design solution for an energy harvesting system resulting from the combination of a quasi-zero-stiffness energy harvester and a two-stage flexible cantilever beam. Numerical tests were divided into two main parts-analysis of the dynamics of the system due to periodic, quasiperiodic, and chaotic solutions and the efficiency of energy generation. The results of numerical simulations were limited to zero initial conditions as they are the natural position of the static equilibrium. The article compares the energy efficiency for the selected range of the dimensionless excitation frequency. For this purpose, three cases of piezoelectric mounting were analyzed-only on the first stage of the beam, on the second and both stages. The analysis has been carried out with the use of diagrams showing difference of the effective values of the voltage induced on the piezoelectric electrodes. The results indicate that for effective energy harvesting, it is advisable to attach piezoelectric energy transducers to each step of the beam despite possible asynchronous vibrations. Full article
(This article belongs to the Special Issue Passive Wireless and Self-Powered Wireless Sensors and Systems)
Show Figures

Figure 1

22 pages, 8491 KiB  
Article
Adaptive versus Conventional Positive Position Feedback Controller to Suppress a Nonlinear System Vibrations
by N. A. Saeed, Emad Mahrous Awwad, Talaat Abdelhamid, Mohammed A. El-Meligy and Mohamed Sharaf
Symmetry 2021, 13(2), 255; https://doi.org/10.3390/sym13020255 - 3 Feb 2021
Cited by 12 | Viewed by 2799
Abstract
The nonlinear vibration control of a nonlinear dynamical system modeled as the well-known Duffing oscillators is investigated within this article. The conventional Positive Position Feedback (PPF) controller is proposed to mitigate the considered system nonlinear vibrations. The whole system mathematical model is analyzed [...] Read more.
The nonlinear vibration control of a nonlinear dynamical system modeled as the well-known Duffing oscillators is investigated within this article. The conventional Positive Position Feedback (PPF) controller is proposed to mitigate the considered system nonlinear vibrations. The whole system mathematical model is analyzed by applying the multiple time scales perturbation method. The slow-flow modulation equations that govern the oscillation amplitudes of both the main system and controller are derived. The stability analysis is investigated based on Lyapunov’s first method. The effects of the different control parameters on both the main system and controller are explored. The obtained analytical and numerical results illustrated that the PPF controller can eliminate the main system nonlinear vibrations once the controller natural frequency is tuned to be the same value as the external excitation frequency, otherwise, the controller adds excessive vibrational energy to the main system rather than suppressing it. In addition, the PPF controller can destabilize the main system motion when excited by strong excitation force. Therefore, a modified version of the PPF controller named the Adaptive Positive Position Feedback (APPF) controller is proposed to overcome the main drawbacks of the conventional PPF controller. The idea is to track the external excitation frequency using an adaptive frequency measurement technique to update continuously the PPF controller natural frequency to become the same value of the excitation frequency. Based on this strategy, the system mathematical model is analyzed again by making the controller’s natural frequency equal to the external excitation frequency. The obtained analytical and numerical simulations showed that the adaptive positive position feedback controller can suppress the main system nonlinear vibration close to zero regardless of the excitation force amplitude and excitation frequency. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

12 pages, 5843 KiB  
Article
First-Principles Study of the Electronic, Vibrational Properties and Anharmonic Effects of Some Si-Based Type-II Binary Clathrates
by Dong Xue and Charley W. Myles
Materials 2019, 12(3), 536; https://doi.org/10.3390/ma12030536 - 11 Feb 2019
Cited by 2 | Viewed by 2970
Abstract
Electronic, vibrational, and anharmonic studies on some binary clathrate AxSi136 (A = Na, K, Rb, Cs; 0 < x ≤ 24) are theoretically presented. The Fermi energy lies in the range of 1.1 eV to 1.4 eV for Nax [...] Read more.
Electronic, vibrational, and anharmonic studies on some binary clathrate AxSi136 (A = Na, K, Rb, Cs; 0 < x ≤ 24) are theoretically presented. The Fermi energy lies in the range of 1.1 eV to 1.4 eV for NaxSi136 and increases as stoichiometry (x) is tuned from 8 to 12 to 16. The determined isotropic “Mexican-hat” shape of the guest-host potential describing Na motion in the Si28 cage indicates the “off-center” position when the temperature is elevated beyond zero. Accordingly, the calculated Na “off-center” displacements correlate well with the X-Ray Diffraction (XRD) data (0.4 Å–0.5 Å) for a similar composition range (0 < x < 24). The lack of first-principles analysis on quartic anharmonicity motivates us to initiate a self-consistent model to examine the temperature-dependent rattling frequency Ω(T) of the guest (Na, Rb). The predicted values of Ω(T) for Na24Si136 at 300 K are significantly higher (approximately six times larger) than the value at absolute zero, which contrasts with the case of Rb8Si136. Moreover, underestimation of the isotropic atomic displacement parameter Uiso is caused by the temperature-dependent quartic anharmonicity of Na, and this discrepancy might be offset by the square of the “off-center” displacement. Full article
Show Figures

Figure 1

6 pages, 469 KiB  
Proceeding Paper
A Computational Study on the Damping-Amplitude Dependence and Estimation of the Limit Cycle Oscillations for Normal Triangular Arrays with One Tube Undergoing Fluidelastic Instability
by Beatriz de Pedro, Guillermo Laine, Luis Tufiño and Jorge Parrondo
Proceedings 2018, 2(23), 1498; https://doi.org/10.3390/proceedings2231498 - 7 Nov 2018
Viewed by 1684
Abstract
While the estimation of the critical velocity for fluidelastic instability of tube arrays has received considerable attention for decades, the studies intended to analyze the post-stable behavior have been scarce. However, the behavior of the system under instability, is also interesting in order [...] Read more.
While the estimation of the critical velocity for fluidelastic instability of tube arrays has received considerable attention for decades, the studies intended to analyze the post-stable behavior have been scarce. However, the behavior of the system under instability, is also interesting in order to characterize the amount of energy transferred from fluid to structure. A computational study has been carried out for the case of one tube vibrating in a normal triangular array by means of a CFD model previously developed with Fluent by the authors. This model incorporates the motion of the vibrating tube by means of user defined functions for both forced and free oscillations, so that the tube position can be updated and the mesh rebuilt at every time step. First, predictions of limit-cycle oscillations (zero net damping) were obtained for pitch ratios P/d = 1.25 and 1.375, so that the experimental response curves (amplitude against flow velocity) measured in other experimental studies could be used for contrast purposes. After validation, the CFD model was used to investigate how the net damping of the fluid-structure system depends on the vibration amplitude for a given flow velocity, which shows the non-linear nature of the tube response. Finally, special simulation series were conducted to explore the effects of pitch ratio, Reynolds number and structural damping on the net damping of the system for constant vibration amplitude. Full article
Show Figures

Figure 1

Back to TopTop