Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = very high gravity (VHG)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 516 KiB  
Article
Silica Wort Supplementation as an Alternative for Yeast Stress Relief on Corn Ethanol Production with Cell Recycling
by Matheus Ribeiro Barbosa Oliveira, Rafael Soares Douradinho, Pietro Sica, Layna Amorim Mota, Alana Uchôa Pinto, Tamires Marques Faria and Antonio Sampaio Baptista
Stresses 2024, 4(3), 421-435; https://doi.org/10.3390/stresses4030028 - 8 Jul 2024
Cited by 2 | Viewed by 1296
Abstract
In very high gravity (VHG) fermentation, yeast cells are subjected to a multitude of challenging conditions, including the osmotic pressure exerted by the high sugar content of the wort and the stress factors associated with the high ethanol concentrations present at the end [...] Read more.
In very high gravity (VHG) fermentation, yeast cells are subjected to a multitude of challenging conditions, including the osmotic pressure exerted by the high sugar content of the wort and the stress factors associated with the high ethanol concentrations present at the end of the fermentation cycle. The response of this biological system to abiotic stresses may be enhanced through biochemical and physiological routes. Silica may play a significant role in regulating the cellular homeostasis of yeast. Alternatively, it is expected that this outcome may be achieved through biochemical responses from the effects of vitamins on yeast cells and the physiological yeast route changing by the culture medium aeration. The objective of this study was to investigate the effects of adding 500 mg L−1 of silica on corn ethanol wort medium and the possibility of supplementing the same wort with vitamins alongside aeration (0.2 v v−1 min−1) as an alternative resource to sustain the fermentation yield rather than adding silica in a fed-batch fermentation cycle with yeast recycling. Upon completion of the five fermentation cycles, yeast samples subjected to the treatment with the addition of silica exhibited a 3.1% higher fermentation yield in comparison to the results observed in the vitamins plus aeration medium bath. Even though greater biomass production (19.1 g L−1) was observed through aerobic yeast behavior in vitaminized supplemented corn medium, the provided silica had a more beneficial effect on yeast stress relief for very high gravity fermentation in a corn hydrolyzed wort with cell recycling. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

15 pages, 18257 KiB  
Article
Repeated-Batch Ethanol Fermentation from Sweet Sorghum Stem Juice under a Very High Gravity Condition Using a Stirred Tank Bioreactor Coupled with a Column Bioreactor by Immobilized Saccharomyces cerevisiae
by Benjaporn Sriputorn, Lakkana Laopaiboon and Pattana Laopaiboon
Fermentation 2023, 9(2), 159; https://doi.org/10.3390/fermentation9020159 - 7 Feb 2023
Cited by 11 | Viewed by 3403
Abstract
The ethanol fermentation efficiency of sweet sorghum stem juice (SSJ) under a very high gravity (VHG) condition (250 g/L of sugar) was improved by immobilized Saccharomyces cerevisiae SSJKKU01, using a stirred tank bioreactor (STR) coupled with a column bioreactor (CR). Dried rattan pieces (as [...] Read more.
The ethanol fermentation efficiency of sweet sorghum stem juice (SSJ) under a very high gravity (VHG) condition (250 g/L of sugar) was improved by immobilized Saccharomyces cerevisiae SSJKKU01, using a stirred tank bioreactor (STR) coupled with a column bioreactor (CR). Dried rattan pieces (as carriers for cell immobilization) at 50% of the working volume of the CR were suitable for use in a batch ethanol fermentation. The average ethanol concentration (PE) and ethanol productivity (QP) of repeated-batch fermentation in the CR for eight successive cycles were 109.85 g/L and 1.88 g/L⋅h, respectively. Then an STR coupled with a CR was applied for repeated-batch ethanol fermentation in two systems. System I was an STR (1.8 L working volume), and System II was an STR (1 L) coupled with a CR, referred to as a CR-F (0.8 L). Both systems were connected to a new CR, called CR-I, containing sterile dried rattan pieces at 50% of its working volume. Active yeast cells were inoculated only into the STR, and the medium circulation rate between bioreactors was 5.2 mL/min. The results showed that at least eight successive cycles could be operated with an average PE of 108.51 g/L for System I and 109.44 g/L for System II. The average QP and SC values of both systems were also similar, with values of 1.87 to 1.88 g/L⋅h and 93 to 94%, respectively. The morphology of the carriers with and without immobilized cells before and after the fermentation was investigated. The obtained results demonstrated that a repeated-batch fermentation by immobilized cells on rattan pieces, using an STR coupled with a CR, was successfully used to produce high levels of ethanol from SSJ under a VHG condition. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

18 pages, 665 KiB  
Review
Very High Gravity Bioethanol Revisited: Main Challenges and Advances
by Daniel Gomes, Mariana Cruz, Miriam de Resende, Eloízio Ribeiro, José Teixeira and Lucília Domingues
Fermentation 2021, 7(1), 38; https://doi.org/10.3390/fermentation7010038 - 13 Mar 2021
Cited by 34 | Viewed by 6495
Abstract
Over the last decades, the constant growth of the world-wide industry has been leading to more and more concerns with its direct impact on greenhouse gas (GHG) emissions. Resulting from that, rising efforts have been dedicated to a global transition from an oil-based [...] Read more.
Over the last decades, the constant growth of the world-wide industry has been leading to more and more concerns with its direct impact on greenhouse gas (GHG) emissions. Resulting from that, rising efforts have been dedicated to a global transition from an oil-based industry to cleaner biotechnological processes. A specific example refers to the production of bioethanol to substitute the traditional transportation fuels. Bioethanol has been produced for decades now, mainly from energy crops, but more recently, also from lignocellulosic materials. Aiming to improve process economics, the fermentation of very high gravity (VHG) mediums has for long received considerable attention. Nowadays, with the growth of multi-waste valorization frameworks, VHG fermentation could be crucial for bioeconomy development. However, numerous obstacles remain. This work initially presents the main aspects of a VHG process, giving then special emphasis to some of the most important factors that traditionally affect the fermentation organism, such as nutrients depletion, osmotic stress, and ethanol toxicity. Afterwards, some factors that could possibly enable critical improvements in the future on VHG technologies are discussed. Special attention was given to the potential of the development of new fermentation organisms, nutritionally complete culture media, but also on alternative process conditions and configurations. Full article
(This article belongs to the Special Issue Biofuel Fermentation from Renewable Biomass)
Show Figures

Figure 1

15 pages, 6076 KiB  
Article
Novel Effective Yeast Strains and Their Performance in High Gravity and Very High Gravity Ethanol Fermentations from Sweet Sorghum Juice
by Lakkana Laopaiboon, Suntaree Suporn, Preekamol Klanrit, Niphaphat Phukoetphim, Chalida Daengbussadee and Pattana Laopaiboon
Energies 2021, 14(3), 557; https://doi.org/10.3390/en14030557 - 22 Jan 2021
Cited by 5 | Viewed by 2134
Abstract
Yeasts were isolated from four potential sources, sweet sorghum juice, sugar cane juice, grapes and rambutan. The 27 yeast isolates were tested for their ethanol tolerance (15% v/v of ethanol) and ethanol fermentation performance in a synthetic ethanol production medium (200 [...] Read more.
Yeasts were isolated from four potential sources, sweet sorghum juice, sugar cane juice, grapes and rambutan. The 27 yeast isolates were tested for their ethanol tolerance (15% v/v of ethanol) and ethanol fermentation performance in a synthetic ethanol production medium (200 g/L of total sugar). Only five isolates, SCJ04KKU, SCJ07KKU, SCJ09KKU, SCJ14KKU and SSJ01KKU could tolerate 15% ethanol and produce ethanol at levels higher than 55 g/L. The ethanol production efficiency from sweet sorghum juice under high gravity (HG, 200 and 240 g/L of total sugar) and very high gravity (VHG, 280 g/L of total sugar) conditions of the five isolates was tested. Saccharomyces cerevisiae NP01 and S. cerevisiae ATCC4132 were used as reference strains. The results showed that the SSJ01KKU isolate gave the highest ethanol production efficiency under all conditions. Ethanol concentration (PE), yield (YP/S) and productivity (QP) values were 98.89 g/L, 0.50 and 1.18 g/L·h, respectively, with sugar consumption (SC) of 98.96% under the HG condition at 200 g/L of total sugar. Under the HG condition at 240 g/L of total sugar, the PE, YP/S and QP values were 118.12 g/L, 0.51 and 1.41 g/L·h, respectively, with the SC of 95.79%. These values were 82.29 g/L, 0.34 and 0.98 g/L·h, respectively, with the SC of 85.59% under the VHG condition. Addition of urea into the sweet sorghum juice under all conditions significantly shortened the fermentation time, resulting in increased QP values. Based on molecular taxonomic analysis of the five isolates using sequence analysis of the D1/D2 domain and the ITS1 and ITS2 regions, SSJ01KKU is S. cerevisiae, whereas SCJ04KKU, SCJ07KKU, SCJ09KKU and SCJ14KKU are Pichia caribbica. Full article
Show Figures

Figure 1

13 pages, 2069 KiB  
Article
Improvement of Bioethanol Production from Sweet Sorghum Juice under Very High Gravity Fermentation: Effect of Nitrogen, Osmoprotectant, and Aeration
by Niphaphat Phukoetphim, Pachaya Chan-u-tit, Pattana Laopaiboon and Lakkana Laopaiboon
Energies 2019, 12(19), 3620; https://doi.org/10.3390/en12193620 - 23 Sep 2019
Cited by 12 | Viewed by 2729
Abstract
To improve ethanol production fermentation efficiency from sweet sorghum juice under a very high gravity (VHG, 280 g/L of total sugar) condition by Saccharomyces cerevisiae NP01, dried spent yeast (DSY), yeast extract, and glycine concentrations were optimized using an L9 (34 [...] Read more.
To improve ethanol production fermentation efficiency from sweet sorghum juice under a very high gravity (VHG, 280 g/L of total sugar) condition by Saccharomyces cerevisiae NP01, dried spent yeast (DSY), yeast extract, and glycine concentrations were optimized using an L9 (34) orthogonal array design. The results showed that the order of influence on the ethanol concentration (PE) was yeast extract > glycine > DSY. The optimal nutrient concentrations for ethanol production were determined as follows: yeast extract, 3; DSY, 4; and glycine, 5 g/L. When a verification experiment under the projected optimal conditions was done, the P, ethanol yield (Yp/s), and ethanol productivity (Qp) values were 120.1 g/L, 0.47, and 2.50 g/L·h, respectively. These values were similar to those of the positive control experiment with yeast extract supplementation at 9 g/L. The yeast viability under the optimal condition was higher than that of the control experiment. To improve sugar utilization and ethanol production, aeration at 2.5 vvm for 4 h was applied under the optimal nutrient supplementation. The P, Yp/s, and Qp values were significantly increased to 134.3 g/L, 0.50, and 2.80 g/L·h, respectively. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

14 pages, 267 KiB  
Article
Dried Spent Yeast and Its Hydrolysate as Nitrogen Supplements for Single Batch and Repeated-Batch Ethanol Fermentation from Sweet Sorghum Juice
by Sureerat Suwanapong, Naulchan Khongsay, Lakkana Laopaiboon, Prasit Jaisil and Pattana Laopaiboon
Energies 2013, 6(3), 1618-1631; https://doi.org/10.3390/en6031618 - 11 Mar 2013
Cited by 18 | Viewed by 6387
Abstract
Dried spent yeast (DSY) and its hydrolysate (DSYH) were used as low-cost nitrogen supplements to improve ethanol production from sweet sorghum juice by Saccharomyces cerevisiae NP01 under very high gravity (VHG) fermentation (280 g·L−1 of total sugar) conditions. The supplemented DSY and [...] Read more.
Dried spent yeast (DSY) and its hydrolysate (DSYH) were used as low-cost nitrogen supplements to improve ethanol production from sweet sorghum juice by Saccharomyces cerevisiae NP01 under very high gravity (VHG) fermentation (280 g·L−1 of total sugar) conditions. The supplemented DSY and DSYH concentrations were 11, 16 and 21 g·L−1, corresponding to a yeast extract nitrogen content of 6, 9 and 12 g·L−1, respectively. The initial yeast cell concentration for ethanol fermentation was approximately 5 × 107 cells·mL−1. The fermentation was carried out in single batch mode at 30 °C in 1-L air-locked bottles with an agitation rate of 100 rpm. Ethanol production from the juice with and without yeast extract (9 g·L−1) was also performed as control treatments. The results showed that DSY at 21 g·L−1gave the highest ethanol concentration (PE, 107 g·L−1) and yield (Yp/s, 0.47 g·g−1). The use of DSYH at the same DSY concentration improved ethanol productivity (Qp), but not PE and Yp/s. The ethanol production efficiencies of the juice under DSY and DSYH supplementations were markedly higher than those without nutrient supplementation. However, the PE and Qp values of the juice containing 21 g·L−1 of DSY was approximately 7 g·L−1 and 0.62 g·L−1·h−1 lower than those under the presence of yeast extract (9 g·L−1), respectively. At the end of the single batch fermentation under the optimum DSY concentration, the sugar consumption was approximately 80%. Therefore in the repeated-batch fermentation, the initial total sugar was reduced to 240 g·L−1. The results showed that the system could be carried out at least 20 successive batches with the average PE, Yp/s and Qp of 95 g·L−1, 0.46 g·g−1 and 1.45 g·L−1·h−1, respectively. Full article
Show Figures

Figure 1

16 pages, 256 KiB  
Article
High Level Ethanol Production by Nitrogen and Osmoprotectant Supplementation under Very High Gravity Fermentation Conditions
by Pachaya Chan-u-tit, Lakkana Laopaiboon, Prasit Jaisil and Pattana Laopaiboon
Energies 2013, 6(2), 884-899; https://doi.org/10.3390/en6020884 - 8 Feb 2013
Cited by 35 | Viewed by 6735
Abstract
Optimization of nutrient supplements i.e., yeast extract (1, 3 and 5 g·L−1), dried spent yeast (DSY: 4, 12 and 20 g·L−1) and osmoprotectant (glycine: 1, 3 and 5 g·L−1) to improve the efficiency of ethanol production [...] Read more.
Optimization of nutrient supplements i.e., yeast extract (1, 3 and 5 g·L−1), dried spent yeast (DSY: 4, 12 and 20 g·L−1) and osmoprotectant (glycine: 1, 3 and 5 g·L−1) to improve the efficiency of ethanol production from a synthetic medium under very high gravity (VHG) fermentation by Saccharomyces cerevisiae NP 01 was performed using a statistical method, an L9 (34) orthogonal array design. The synthetic medium contained 280 g·L−1 of sucrose as a sole carbon source. When the fermentation was carried out at 30 °C, the ethanol concentration (P), yield (Yp/s) and productivity (Qp) without supplementation were 95.3 g·L−1, 0.49 g·g−1 and 1.70 g·L−1·h−1, respectively. According to the orthogonal results, the order of influence on the P and Qp values were yeast extract > glycine > DSY, and the optimum nutrient concentrations were yeast extract, 3; DSY, 4 and glycine, 5 g·L−1, respectively. The verification experiment using these parameters found that the P, Yp/s and Qp values were 119.9 g·L−1, 0.49 g g−1 and 2.14 g·L−1·h−1, respectively. These values were not different from those of the synthetic medium supplemented with 9 g·L−1 of yeast extract, indicating that DSY could be used to replace some amount of yeast extract. When sweet sorghum juice cv. KKU40 containing 280 g·L−1 of total sugar supplemented with the three nutrients at the optimum concentrations was used as the ethanol production medium, the P value (120.0 g·L−1) was not changed, but the Qp value was increased to 2.50 g·L−1·h−1. Full article
Show Figures

Figure 1

20 pages, 353 KiB  
Article
Optimization of Nitrogen and Metal Ions Supplementation for Very High Gravity Bioethanol Fermentation from Sweet Sorghum Juice Using an Orthogonal Array Design
by Orawan Deesuth, Pattana Laopaiboon, Prasit Jaisil and Lakkana Laopaiboon
Energies 2012, 5(9), 3178-3197; https://doi.org/10.3390/en5093178 - 24 Aug 2012
Cited by 48 | Viewed by 8022
Abstract
Optimization of four parameters, i.e., zinc (Zn2+), magnesium (Mg2+), manganese (Mn2+) and yeast extract for bioethanol production from sweet sorghum juice by Saccharomyces cerevisiae NP 01 under very high gravity (VHG, 270 g·L−1 of total [...] Read more.
Optimization of four parameters, i.e., zinc (Zn2+), magnesium (Mg2+), manganese (Mn2+) and yeast extract for bioethanol production from sweet sorghum juice by Saccharomyces cerevisiae NP 01 under very high gravity (VHG, 270 g·L−1 of total sugar) conditions was performed using an L9 (34) orthogonal array design. The fermentation was carried out at 30 °C in 500-mL air-locked Erlenmeyer flasks at the agitation rate of 100 rpm and the initial yeast cell concentration in the juice was approximately 5 × 107 cells·mL−1. The results showed that the order of influence was yeast extract > Mn2+ > Zn2+ > Mg2+ and the optimum nutrient concentrations for the ethanol fermentation were Zn2+, 0.01; Mg2+, 0.05; Mn2+, 0.04; and yeast extract, 9 g·L−1. The verification experiments under the optimum condition clearly indicated that the metals and nitrogen supplementation improved ethanol production efficiency under the VHG fermentation conditions. The ethanol concentration (P), yield (Yp/s) and productivity (Qp) were 120.58 ± 0.26 g·L−1, 0.49 ± 0.01 and 2.51 ± 0.01 g·L−1·h−1, respectively, while in the control treatment (without nutrient supplement) P, Yp/s and Qp were only 93.45 ± 0.45 g·L−1, 0.49 ± 0.00 and 1.30 ± 0.01 g·L−1·h−1, respectively. Full article
(This article belongs to the Special Issue Biomass and Biofuels 2012)
Show Figures

Graphical abstract

16 pages, 305 KiB  
Article
Optimization of Agitation and Aeration for Very High Gravity Ethanol Fermentation from Sweet Sorghum Juice by Saccharomyces cerevisiae Using an Orthogonal Array Design
by Naulchan Khongsay, Lakkana Laopaiboon, Prasit Jaisil and Pattana Laopaiboon
Energies 2012, 5(3), 561-576; https://doi.org/10.3390/en5030561 - 29 Feb 2012
Cited by 42 | Viewed by 8806
Abstract
Optimization of three parameters: agitation rate (A; 100, 200 and 300 rpm), aeration rate (B; 0.5, 1.5 and 2.5 vvm) and aeration timing (C; 2, 4 and 6 h), for ethanol production from sweet sorghum juice under very high gravity (VHG, 290 g [...] Read more.
Optimization of three parameters: agitation rate (A; 100, 200 and 300 rpm), aeration rate (B; 0.5, 1.5 and 2.5 vvm) and aeration timing (C; 2, 4 and 6 h), for ethanol production from sweet sorghum juice under very high gravity (VHG, 290 g L−1 of total sugar) conditions by Saccharomyces cerevisiae NP 01 was attempted using an L9 (34) orthogonal array design. The fermentation was carried out at 30 °C in a 2-L bioreactor and the initial yeast cell concentration was approximately 2 × 107 cells mL−1. The results showed that the optimum condition for ethanol fermentation should be A2B3C2 corresponding to agitation rate, 200 rpm; aeration rate, 2.5 vvm and aeration timing, 4 h. The verification experiments under the optimum condition clearly indicated that the aeration and agitation strategies improved ethanol production. The ethanol concentration (P), productivity (Qp) and ethanol yield (Yp/s) were 132.82 ± 1.06 g L−1, 2.55 ± 0.00 g L−1h−1 and 0.50 ± 0.00, respectively. Under the same condition without aeration (agitation rate at 200 rpm), P and Qp were only 118.02 ± 1.19 g L−1 and 2.19 ± 0.04 g L−1h−1, respectively while Yp/s was not different from that under the optimum condition. Full article
Show Figures

Figure 1

Back to TopTop