Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = vertical Gate-all-around (vGAA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5552 KB  
Article
Investigation on Ge0.8Si0.2-Selective Atomic Layer Wet-Etching of Ge for Vertical Gate-All-Around Nanodevice
by Lu Xie, Huilong Zhu, Yongkui Zhang, Xuezheng Ai, Junjie Li, Guilei Wang, Anyan Du, Zhenzhen Kong, Qi Wang, Shunshun Lu, Chen Li, Yangyang Li, Weixing Huang and Henry H. Radamson
Nanomaterials 2021, 11(6), 1408; https://doi.org/10.3390/nano11061408 - 26 May 2021
Cited by 9 | Viewed by 5629
Abstract
For the formation of nano-scale Ge channels in vertical Gate-all-around field-effect transistors (vGAAFETs), the selective isotropic etching of Ge selective to Ge0.8Si0.2 was considered. In this work, a dual-selective atomic layer etching (ALE), including Ge0.8Si0.2-selective etching [...] Read more.
For the formation of nano-scale Ge channels in vertical Gate-all-around field-effect transistors (vGAAFETs), the selective isotropic etching of Ge selective to Ge0.8Si0.2 was considered. In this work, a dual-selective atomic layer etching (ALE), including Ge0.8Si0.2-selective etching of Ge and crystal-orientation selectivity of Ge oxidation, has been developed to control the etch rate and the size of the Ge nanowires. The ALE of Ge in p+-Ge0.8Si0.2/Ge stacks with 70% HNO3 as oxidizer and deionized (DI) water as oxide-removal was investigated in detail. The saturated relative etched amount per cycle (REPC) and selectivity at different HNO3 temperatures between Ge and p+-Ge0.8Si0.2 were obtained. In p+-Ge0.8Si0.2/Ge stacks with (110) sidewalls, the REPC of Ge was 3.1 nm and the saturated etching selectivity was 6.5 at HNO3 temperature of 20 °C. The etch rate and the selectivity were affected by HNO3 temperatures. As the HNO3 temperature decreased to 10 °C, the REPC of Ge was decreased to 2 nm and the selectivity remained at about 7.4. Finally, the application of ALE in the formation of Ge nanowires in vGAAFETs was demonstrated where the preliminary Id–Vds output characteristic curves of Ge vGAAFET were provided. Full article
(This article belongs to the Special Issue Silicon Nanodevices)
Show Figures

Figure 1

14 pages, 4971 KB  
Article
The Effect of Doping on the Digital Etching of Silicon-Selective Silicon–Germanium Using Nitric Acids
by Yangyang Li, Huilong Zhu, Zhenzhen Kong, Yongkui Zhang, Xuezheng Ai, Guilei Wang, Qi Wang, Ziyi Liu, Shunshun Lu, Lu Xie, Weixing Huang, Yongbo Liu, Chen Li, Junjie Li, Hongxiao Lin, Jiale Su, Chuanbin Zeng and Henry H. Radamson
Nanomaterials 2021, 11(5), 1209; https://doi.org/10.3390/nano11051209 - 3 May 2021
Cited by 7 | Viewed by 5654
Abstract
Gate-all-around (GAA) field-effect transistors have been proposed as one of the most important developments for CMOS logic devices at the 3 nm technology node and beyond. Isotropic etching of silicon–germanium (SiGe) for the definition of nano-scale channels in vertical GAA CMOS and tunneling [...] Read more.
Gate-all-around (GAA) field-effect transistors have been proposed as one of the most important developments for CMOS logic devices at the 3 nm technology node and beyond. Isotropic etching of silicon–germanium (SiGe) for the definition of nano-scale channels in vertical GAA CMOS and tunneling FETs has attracted more and more attention. In this work, the effect of doping on the digital etching of Si-selective SiGe with alternative nitric acids (HNO3) and buffered oxide etching (BOE) was investigated in detail. It was found that the HNO3 digital etching of SiGe was selective to n+-Si, p+-Si, and intrinsic Si. Extensive studies were performed. It turned out that the selectivity of SiGe/Si was dependent on the doped types of silicon and the HNO3 concentration. As a result, at 31.5% HNO3 concentration, the relative etched amount per cycle (REPC) and the etching selectivity of Si0.72Ge0.28 for n+-Si was identical to that for p+-Si. This is particularly important for applications of vertical GAA CMOS and tunneling FETs, which have to expose both the n+ and p+ sources/drains at the same time. In addition, the values of the REPC and selectivity were obtained. A controllable etching rate and atomically smooth surface could be achieved, which enhanced carrier mobility. Full article
(This article belongs to the Special Issue Silicon Nanodevices)
Show Figures

Figure 1

15 pages, 7753 KB  
Article
Optimization of Structure and Electrical Characteristics for Four-Layer Vertically-Stacked Horizontal Gate-All-Around Si Nanosheets Devices
by Qingzhu Zhang, Jie Gu, Renren Xu, Lei Cao, Junjie Li, Zhenhua Wu, Guilei Wang, Jiaxin Yao, Zhaohao Zhang, Jinjuan Xiang, Xiaobin He, Zhenzhen Kong, Hong Yang, Jiajia Tian, Gaobo Xu, Shujuan Mao, Henry H. Radamson, Huaxiang Yin and Jun Luo
Nanomaterials 2021, 11(3), 646; https://doi.org/10.3390/nano11030646 - 5 Mar 2021
Cited by 63 | Viewed by 12883
Abstract
In this paper, the optimizations of vertically-stacked horizontal gate-all-around (GAA) Si nanosheet (NS) transistors on bulk Si substrate are systemically investigated. The release process of NS channels was firstly optimized to achieve uniform device structures. An over 100:1 selective wet-etch ratio of GeSi [...] Read more.
In this paper, the optimizations of vertically-stacked horizontal gate-all-around (GAA) Si nanosheet (NS) transistors on bulk Si substrate are systemically investigated. The release process of NS channels was firstly optimized to achieve uniform device structures. An over 100:1 selective wet-etch ratio of GeSi to Si layer was achieved for GeSi/Si stacks samples with different GeSi thickness (5 nm, 10 nm, and 20 nm) or annealing temperatures (≤900 °C). Furthermore, the influence of ground-plane (GP) doping in Si sub-fin region to improve electrical characteristics of devices was carefully investigated by experiment and simulations. The subthreshold characteristics of n-type devices were greatly improved with the increase of GP doping doses. However, the p-type devices initially were improved and then deteriorated with the increase of GP doping doses, and they demonstrated the best electrical characteristics with the GP doping concentrations of about 1 × 1018 cm−3, which was also confirmed by technical computer aided design (TCAD) simulation results. Finally, 4 stacked GAA Si NS channels with 6 nm in thickness and 30 nm in width were firstly fabricated on bulk substrate, and the performance of the stacked GAA Si NS devices achieved a larger ION/IOFF ratio (3.15 × 105) and smaller values of Subthreshold swings (SSs) (71.2 (N)/78.7 (P) mV/dec) and drain-induced barrier lowering (DIBLs) (9 (N)/22 (P) mV/V) by the optimization of suppression of parasitic channels and device’s structure. Full article
Show Figures

Figure 1

12 pages, 7653 KB  
Article
Strained Si0.2Ge0.8/Ge multilayer Stacks Epitaxially Grown on a Low-/High-Temperature Ge Buffer Layer and Selective Wet-Etching of Germanium
by Lu Xie, Huilong Zhu, Yongkui Zhang, Xuezheng Ai, Guilei Wang, Junjie Li, Anyan Du, Zhenzhen Kong, Xiaogen Yin, Chen Li, Liheng Zhao, Yangyang Li, Kunpeng Jia, Ben Li and Henry H. Radamson
Nanomaterials 2020, 10(9), 1715; https://doi.org/10.3390/nano10091715 - 29 Aug 2020
Cited by 8 | Viewed by 4863
Abstract
With the development of new designs and materials for nano-scale transistors, vertical Gate-All-Around Field Effect Transistors (vGAAFETs) with germanium as channel materials have emerged as excellent choices. The driving forces for this choice are the full control of the short channel effect and [...] Read more.
With the development of new designs and materials for nano-scale transistors, vertical Gate-All-Around Field Effect Transistors (vGAAFETs) with germanium as channel materials have emerged as excellent choices. The driving forces for this choice are the full control of the short channel effect and the high carrier mobility in the channel region. In this work, a novel process to form the structure for a VGAA transistor with a Ge channel is presented. The structure consists of multilayers of Si0.2Ge0.8/Ge grown on a Ge buffer layer grown by the reduced pressure chemical vapor deposition technique. The Ge buffer layer growth consists of low-temperature growth at 400 °C and high-temperature growth at 650 °C. The impact of the epitaxial quality of the Ge buffer on the defect density in the Si0.2Ge0.8/Ge stack has been studied. In this part, different thicknesses (0.6, 1.2 and 2.0 µm) of the Ge buffer on the quality of the Si0.2Ge0.8/Ge stack structure have been investigated. The thicker Ge buffer layer can improve surface roughness. A high-quality and atomically smooth surface with RMS 0.73 nm of the Si0.2Ge0.8/Ge stack structure can be successfully realized on the 1.2 µm Ge buffer layer. After the epitaxy step, the multilayer is vertically dry-etched to form a fin where the Ge channel is selectively released to SiGe by using wet-etching in HNO3 and H2O2 solution at room temperature. It has been found that the solution concentration has a great effect on the etch rate. The relative etching depth of Ge is linearly dependent on the etching time in H2O2 solution. The results of this study emphasize the selective etching of germanium and provide the experimental basis for the release of germanium channels in the future. Full article
(This article belongs to the Special Issue Nanomaterials Based on IV-Group Semiconductors)
Show Figures

Figure 1

11 pages, 1604 KB  
Article
Analytical Current-Voltage Model for Gate-All-Around Transistor with Poly-Crystalline Silicon Channel
by Yoongeun Seon, Jongmin Kim, Soowon Kim and Jongwook Jeon
Electronics 2019, 8(9), 988; https://doi.org/10.3390/electronics8090988 - 4 Sep 2019
Cited by 4 | Viewed by 4525
Abstract
Poly-crystalline silicon channel transistors have been used as a display TFT for a long time and have recently been used in a 3D vertical NAND Flash which is a transistor with 2D plane NAND upright. In addition, multi-gate transistors such as FinFETs and [...] Read more.
Poly-crystalline silicon channel transistors have been used as a display TFT for a long time and have recently been used in a 3D vertical NAND Flash which is a transistor with 2D plane NAND upright. In addition, multi-gate transistors such as FinFETs and a gate-all-around (GAA) structure has been used to suppress the short-channel effects for logic/analog and memory applications. Compact models for poly-crystalline silicon (poly-silicon) channel planar TFTs and single crystalline silicon channel GAA MOSFETs have been developed separately, however, there are few models consider these two physics at the same time. In this work, we derived new analytical current-voltage model for GAA transistor with poly-silicon channel by considering the cylindrical coordinates and the grain boundary effect. Based on the derived formula, the compact I-V model for various operating regions and threshold voltage was proposed for the first time. The proposed model was compared with the measured data and good agreements were observed. Full article
(This article belongs to the Special Issue New CMOS Devices and Their Applications)
Show Figures

Figure 1

Back to TopTop