Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = vector mediated gene-to-cell transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3322 KiB  
Article
U87 Glioblastoma Cell-Derived Extracellular Vesicle Mediated Dysregulation of Angiogenic Mediators in Endothelial Cells: An In Silico and In Vitro Analysis
by Swagatama Mukherjee and Prakash P. Pillai
Neuroglia 2025, 6(1), 8; https://doi.org/10.3390/neuroglia6010008 - 10 Feb 2025
Viewed by 1779
Abstract
Background: Angiogenesis is a key factor necessary for tissue growth but becomes often dysregulated in cancer, driving tumour progression. Glioblastoma multiforme (GBM) induces abnormal vascular remodelling via Hypoxia-activated VEGF, FGF and PDGF. Despite increased vascularization, hypoxia persists, worsening malignancy. Additionally, emerging evidence highlights [...] Read more.
Background: Angiogenesis is a key factor necessary for tissue growth but becomes often dysregulated in cancer, driving tumour progression. Glioblastoma multiforme (GBM) induces abnormal vascular remodelling via Hypoxia-activated VEGF, FGF and PDGF. Despite increased vascularization, hypoxia persists, worsening malignancy. Additionally, emerging evidence highlights extracellular vesicles (EVs) as key mediators of angiogenesis as conduits transferring bioactive cargo modulating cellular signaling. By promoting neovascularization, EVs can facilitate tumour growth, hinder drug delivery, and contribute to therapeutic resistance, making them potential therapeutic targets. Objective: This study explores the role of GBM-derived EVs in promoting aberrant angiogenesis by modulating VEGF and MMP signalling and correlating them with EV biogenesis to better understand tumour vascularisation and therapeutic paucities. Methods: This study investigates the role of GBM-derived EVs in angiogenesis dysregulation, via in silico and in vitro approaches, making use of available databases to study the enrichment profiles of key angiogenic drivers enriched in GBM and EVs followed by validation studies using 2D cell culture of HUVEC and U87MG cells on treatment with EV inhibitor. Results: We observed that GBM-derived EVs can be key collaborators of promoting angiogenesis by upregulating key pro-angiogenic genes (VEGFA, NRP1, MMP9) and EV biogenesis markers (CD9, CD81, TSG101), facilitating endothelial cell migration and vascular remodelling. Functional assays further confirmed that EVs act as vectors for pro-angiogenic signals, while their inhibition with GW4869 significantly reduced angiogenic activity, highlighting their role in tumour vascularization. Conclusions: Targeting EV-mediated angiogenesis presents a promising therapeutic strategy for GBM, warranting further validation in preclinical and clinical models. Full article
Show Figures

Figure 1

24 pages, 2006 KiB  
Review
Current Non-Viral-Based Strategies to Manufacture CAR-T Cells
by Leon Gehrke, Vasco Dos Reis Gonçalves, Dominik Andrae, Tamas Rasko, Patrick Ho, Hermann Einsele, Michael Hudecek and Sabrina R. Friedel
Int. J. Mol. Sci. 2024, 25(24), 13685; https://doi.org/10.3390/ijms252413685 - 21 Dec 2024
Cited by 3 | Viewed by 3267
Abstract
The successful application of CAR-T cells in the treatment of hematologic malignancies has fundamentally changed cancer therapy. With increasing numbers of registered CAR-T cell clinical trials, efforts are being made to streamline and reduce the costs of CAR-T cell manufacturing while improving their [...] Read more.
The successful application of CAR-T cells in the treatment of hematologic malignancies has fundamentally changed cancer therapy. With increasing numbers of registered CAR-T cell clinical trials, efforts are being made to streamline and reduce the costs of CAR-T cell manufacturing while improving their safety. To date, all approved CAR-T cell products have relied on viral-based gene delivery and genomic integration methods. While viral vectors offer high transfection efficiencies, concerns regarding potential malignant transformation coupled with costly and time-consuming vector manufacturing are constant drivers in the search for cheaper, easier-to-use, safer, and more efficient alternatives. In this review, we examine different non-viral gene transfer methods as alternatives for CAR-T cell production, their advantages and disadvantages, and examples of their applications. Transposon-based gene transfer methods lead to stable but non-targeted gene integration, are easy to handle, and achieve high gene transfer rates. Programmable endonucleases allow targeted integration, reducing the potential risk of integration-mediated malignant transformation of CAR-T cells. Non-integrating CAR-encoding vectors avoid this risk completely and achieve only transient CAR expression. With these promising alternative techniques for gene transfer, all avenues are open to fully exploiting the potential of next-generation CAR-T cell therapy and applying it in a wide range of applications. Full article
(This article belongs to the Special Issue Chimeric Antigen Receptors Against Cancers and Autoimmune Diseases)
Show Figures

Figure 1

20 pages, 3024 KiB  
Article
Exosome-Mediated Transfer of X-Motif-Tagged Anti-MiR-33a-5p Antagomirs to the Medial Cells of Transduced Rabbit Carotid Arteries
by Goren Saenz-Pipaon, Bradley K. Wacker, Lianxiang Bi, Alexis Stamatikos and David A. Dichek
Biology 2024, 13(12), 965; https://doi.org/10.3390/biology13120965 - 24 Nov 2024
Viewed by 1147
Abstract
Atherosclerosis is caused by the accumulation of cholesterol within intimal smooth muscle cells (SMCs) and macrophages. However, the transporter ATP-binding cassette subfamily A, member 1 (ABCA1), can remove cholesterol from these intimal, cells reducing atherosclerosis. Antagomir-mediated inhibition of miR-33a-5p, a microRNA that represses [...] Read more.
Atherosclerosis is caused by the accumulation of cholesterol within intimal smooth muscle cells (SMCs) and macrophages. However, the transporter ATP-binding cassette subfamily A, member 1 (ABCA1), can remove cholesterol from these intimal, cells reducing atherosclerosis. Antagomir-mediated inhibition of miR-33a-5p, a microRNA that represses ABCA1 translation, promotes ABCA1-dependent cholesterol efflux and may impede atherosclerosis development. In our previous work, transducing cultured endothelial cells (ECs) with a helper-dependent adenoviral vector (HDAd) that expresses X-motif-tagged anti-miR-33a-5p enhanced antagomir packaging into EC-derived exosomes, which delivered the antagomir to cultured SMCs and macrophages. In this present study, we tested whether in vivo transduction of rabbit carotid artery endothelium can deliver an X-motif-tagged anti-miR-33a-5p to subendothelial cells. Rabbit carotid endothelial cells were transduced in vivo with an HDAd expressing anti-miR-33a-5p either with or without the X-motif (n = 11 arteries per vector). Contralateral carotids received HDAd that express scrambled oligonucleotides. Three days after transduction, the antagomir—without the X-motif—was detected in the intima but not in the media of transduced carotids (p = 0.062). The X-motif antagomir was detected in 82% of the intimal extracts (9 out of 11 carotids) and 27% of medial samples (3 out of 11 carotids, p = 0.031). However, the X-motif did not significantly enhance antagomir delivery to the media (p = 0.214 vs. non-X-motif antagomir). Expression of the antagomirs—with and without the X-motif—was sub-stoichiometric in ECs and SMCs. No antagomir-related changes in miR-33a-5p or ABCA1 expressions were detected. Despite its potential as a therapeutic strategy, our exosome-targeted gene transfer system requires further improvements to enhance antagomir expression and delivery to the subendothelial cells. Full article
(This article belongs to the Special Issue ABCG1 and HDL in Health and Disease)
Show Figures

Graphical abstract

16 pages, 2544 KiB  
Review
Artificial Insemination as a Possible Convenient Tool to Acquire Genome-Edited Mice via In Vivo Fertilization with Engineered Sperm
by Masahiro Sato, Emi Inada, Issei Saitoh, Kazunori Morohoshi and Shingo Nakamura
BioTech 2024, 13(4), 45; https://doi.org/10.3390/biotech13040045 - 11 Nov 2024
Viewed by 2366
Abstract
Advances in genome editing technology have made it possible to create genome-edited (GE) animals, which are useful for identifying isolated genes and producing models of human diseases within a short period of time. The production of GE animals mainly relies on the gene [...] Read more.
Advances in genome editing technology have made it possible to create genome-edited (GE) animals, which are useful for identifying isolated genes and producing models of human diseases within a short period of time. The production of GE animals mainly relies on the gene manipulation of pre-implantation embryos, such as fertilized eggs and two-cell embryos, which can usually be achieved by the microinjection of nucleic acids, electroporation in the presence of nucleic acids, or infection with viral vectors, such as adeno-associated viruses. In contrast, GE animals can theoretically be generated by fertilizing ovulated oocytes with GE sperm. However, there are only a few reports showing the successful production of GE animals using GE sperm. Artificial insemination (AI) is an assisted reproduction technology based on the introduction of isolated sperm into the female reproductive tract, such as the uterine horn or oviductal lumen, for the in vivo fertilization of ovulated oocytes. This approach is simpler than the in vitro fertilization-based production of offspring, as the latter always requires an egg transfer to recipient females, which is labor-intensive and time-consuming. In this review, we summarize the various methods for AI reported so far, the history of sperm-mediated gene transfer, a technology to produce genetically engineered animals through in vivo fertilization with sperm carrying exogenous DNA, and finally describe the possibility of AI-mediated creation of GE animals using GE sperm. Full article
(This article belongs to the Section Biotechnology Regulation)
Show Figures

Graphical abstract

20 pages, 4613 KiB  
Article
Redundancy in Innate Immune Pathways That Promote CD8+ T-Cell Responses in AAV1 Muscle Gene Transfer
by Ning Li, Sandeep R. P. Kumar, Di Cao, Maite Munoz-Melero, Sreevani Arisa, Bridget A. Brian, Calista M. Greenwood, Kentaro Yamada, Dongsheng Duan and Roland W. Herzog
Viruses 2024, 16(10), 1507; https://doi.org/10.3390/v16101507 - 24 Sep 2024
Cited by 3 | Viewed by 2282
Abstract
While adeno-associated viral (AAV) vectors are successfully used in a variety of in vivo gene therapy applications, they continue to be hampered by the immune system. Here, we sought to identify innate and cytokine signaling pathways that promote CD8+ T-cell responses against [...] Read more.
While adeno-associated viral (AAV) vectors are successfully used in a variety of in vivo gene therapy applications, they continue to be hampered by the immune system. Here, we sought to identify innate and cytokine signaling pathways that promote CD8+ T-cell responses against the transgene product upon AAV1 vector administration to murine skeletal muscle. Eliminating just one of several pathways (including DNA sensing via TLR9, IL-1 receptor signaling, and possibly endosomal sensing of double-stranded RNA) substantially reduced the CD8+ T-cell response at lower vector doses but was surprisingly ineffective at higher doses. Using genetic, antibody-mediated, and vector engineering approaches, we show that blockade of at least two innate pathways is required to achieve an effect at higher vector doses. Concurrent blockade of IL-1R1 > MyD88 and TLR9 > MyD88 > type I IFN > IFNaR pathways was often but not always synergistic and had limited utility in preventing antibody formation against the transgene product. Further, even low-frequency CD8+ T-cell responses could eliminate transgene expression, even in MyD88- or IL-1R1-deficient animals that received a low vector dose. However, we provide evidence that CpG depletion of vector genomes and including TLR9 inhibitory sequences can synergize. When this construct was combined with the use of a muscle-specific promoter, transgene expression in muscle was sustained with minimal local or systemic CD8+ T-cell response. Thus, innate immune avoidance/blockade strategies by themselves, albeit helpful, may not be sufficient to prevent destructive cellular responses in muscle gene transfer because of the redundancy of immune-activating pathways. Full article
(This article belongs to the Special Issue Virology and Immunology of Gene Therapy)
Show Figures

Graphical abstract

22 pages, 7955 KiB  
Article
Development and Evaluation of a Shrimp Virus (IHHNV)-Mediated Gene Transfer and Expression System for Shrimps
by Yiwen Tao, Jinwu Wang, Rui Xiao, Qingli Zhang and Huarong Guo
Int. J. Mol. Sci. 2024, 25(16), 8999; https://doi.org/10.3390/ijms25168999 - 19 Aug 2024
Cited by 1 | Viewed by 1587
Abstract
An efficient gene transfer and expression tool is lacking for shrimps and shrimp cells. To solve this, this study has developed a shrimp DNA virus-mediated gene transfer and expression system, consisting of insect Sf9 cells for viral packaging, the shrimp viral vector of [...] Read more.
An efficient gene transfer and expression tool is lacking for shrimps and shrimp cells. To solve this, this study has developed a shrimp DNA virus-mediated gene transfer and expression system, consisting of insect Sf9 cells for viral packaging, the shrimp viral vector of pUC19-IHHNV-PH-GUS and the baculoviral vector of Bacmid or Bacmid-VP28 encoding the shrimp WSSV envelope protein VP28. The pUC19-IHHNV-PH-GUS vector was constructed by assembling the genomic DNA of shrimp infectious hypodermal and hematopoietic necrosis virus (IHHNV), which has shortened inverted terminal repeats, into a pUC19 backbone, and then an expression cassette of baculoviral polyhedron (PH) promoter-driven GUS (β-glucuronidase) reporter gene was inserted immediately downstream of IHHNV for proof-of-concept. It was found that the viral vector of pUC19-IHHNV-PH-GUS could be successfully packaged into IHHNV-like infective virions in the Sf9 cells, and the gene transfer efficiency of this system was evaluated and verified in three systems of Sf9 cells, shrimp hemolymph cells and tissues of infected shrimps, but the GUS expression could only be detected in cases where the viral vector was co-transfected or co-infected with a baculovirus of Bacmid or Bacmid-VP28 due to the Bacmid-dependence of the PH promoter. Moreover, the packaging and infection efficiencies could be significantly improved when Bacmid-VP28 was used instead of Bacmid. Full article
(This article belongs to the Special Issue Virus Engineering and Applications: 2nd Edition)
Show Figures

Graphical abstract

19 pages, 1042 KiB  
Review
Delivery of Adeno-Associated Virus Vectors to the Central Nervous System for Correction of Single Gene Disorders
by Rrita Daci and Terence R. Flotte
Int. J. Mol. Sci. 2024, 25(2), 1050; https://doi.org/10.3390/ijms25021050 - 15 Jan 2024
Cited by 18 | Viewed by 9340
Abstract
Genetic disorders of the central nervous system (CNS) comprise a significant portion of disability in both children and adults. Several preclinical animal models have shown effective adeno-associated virus (AAV) mediated gene transfer for either treatment or prevention of autosomal recessive genetic disorders. Owing [...] Read more.
Genetic disorders of the central nervous system (CNS) comprise a significant portion of disability in both children and adults. Several preclinical animal models have shown effective adeno-associated virus (AAV) mediated gene transfer for either treatment or prevention of autosomal recessive genetic disorders. Owing to the intricacy of the human CNS and the blood–brain barrier, it is difficult to deliver genes, particularly since the expression of any given gene may be required in a particular CNS structure or cell type at a specific time during development. In this review, we analyzed delivery methods for AAV-mediated gene therapy in past and current clinical trials. The delivery routes analyzed were direct intraparenchymal (IP), intracerebroventricular (ICV), intra-cisterna magna (CM), lumbar intrathecal (IT), and intravenous (IV). The results demonstrated that the dose used in these routes varies dramatically. The average total doses used were calculated and were 1.03 × 1013 for IP, 5.00 × 1013 for ICV, 1.26 × 1014 for CM, and 3.14 × 1014 for IT delivery. The dose for IV delivery varies by patient weight and is 1.13 × 1015 IV for a 10 kg infant. Ultimately, the choice of intervention must weigh the risk of an invasive surgical procedure to the toxicity and immune response associated with a high dose vector. Full article
(This article belongs to the Special Issue Development of AAV-Based Gene Therapies: Unmet Needs and Solutions)
Show Figures

Figure 1

18 pages, 3346 KiB  
Article
Non-Viral Episomal Vector Mediates Efficient Gene Transfer of the β-Globin Gene into K562 and Human Haematopoietic Progenitor Cells
by Vassileios M. Lazaris, Emmanouil Simantirakis, Eleana F. Stavrou, Meletios Verras, Argyro Sgourou, Maria K. Keramida, George Vassilopoulos and Aglaia Athanassiadou
Genes 2023, 14(9), 1774; https://doi.org/10.3390/genes14091774 - 8 Sep 2023
Cited by 3 | Viewed by 2539
Abstract
β-Thalassemia is a subgroup of inherited blood disorders associated with mild to severe anemia with few and limited conventional therapy options. Lately, lentiviral vector-based gene therapy has been successfully applied for disease treatment. However, the current development of non-viral episomal vectors (EV), non-integrating [...] Read more.
β-Thalassemia is a subgroup of inherited blood disorders associated with mild to severe anemia with few and limited conventional therapy options. Lately, lentiviral vector-based gene therapy has been successfully applied for disease treatment. However, the current development of non-viral episomal vectors (EV), non-integrating and non-coding for viral proteins, may be helpful in generating valid alternatives to viral vectors. We constructed a non-viral, episomal vector pEPβ-globin for the physiological β-globin gene based on two human chromosomal elements: the scaffold or matrix attachment region (S/MAR), allowing for long nuclear retention and non-integration and the β-globin replication initiation region (IR), allowing for enhancement of replication and establishment. After nucleofections into K562 cells with a transfection efficiency of 24.62 ± 7.7%, the vector induces stable transfection and is detected in long-term cultures as a non-integrating, circular episome expressing the β-globin gene efficiently. Transfections into CD34+ cells demonstrate an average efficiency of 15.57 ± 11.64%. In the colony-forming cell assay, fluorescent colonies are 92.21%, which is comparable to those transfected with vector pEP-IR at 92.68%. Additionally, fluorescent colonies produce β-globin mRNA at a physiologically 3-fold higher level than the corresponding non-transfected cells. Vector pEPβ-globin provides the basis for the development of therapeutic EV for gene therapy of β-thalassemias. Full article
(This article belongs to the Special Issue Advances in Non-viral Gene Transfer for Gene Therapy Applications)
Show Figures

Figure 1

21 pages, 3127 KiB  
Review
Current and Future Landscape in Genetic Therapies for Leber Hereditary Optic Neuropathy
by Hoda Shamsnajafabadi, Robert E. MacLaren and Jasmina Cehajic-Kapetanovic
Cells 2023, 12(15), 2013; https://doi.org/10.3390/cells12152013 - 7 Aug 2023
Cited by 13 | Viewed by 4707
Abstract
Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial genetic disease that causes blindness in young adults. Over 50 inherited mitochondrial DNA (mtDNA) variations are associated with LHON; however, more than 95% of cases are caused by one of three missense [...] Read more.
Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial genetic disease that causes blindness in young adults. Over 50 inherited mitochondrial DNA (mtDNA) variations are associated with LHON; however, more than 95% of cases are caused by one of three missense variations (m.11778 G > A, m.3460 G > A, and m.14484 T > C) encoding for subunits ND4, ND1, and ND6 of the respiration complex I, respectively. These variants remain silent until further and currently poorly understood genetic and environmental factors precipitate the visual loss. The clinical course that ensues is variable, and a convincing treatment for LHON has yet to emerge. In 2015, an antioxidant idebenone (Raxone) received European marketing authorisation to treat visual impairment in patients with LHON, and since then it was introduced into clinical practice in several European countries. Alternative therapeutic strategies, including gene therapy and gene editing, antioxidant and neurotrophic agents, mitochondrial biogenesis, mitochondrial replacement, and stem cell therapies are being investigated in how effective they might be in altering the course of the disease. Allotopic gene therapies are in the most advanced stage of development (phase III clinical trials) whilst most other agents are in phase I or II trials or at pre-clinical stages. This manuscript discusses the phenotype and genotype of the LHON disease with complexities and peculiarities such as incomplete penetrance and gender bias, which have challenged the therapies in development emphasising the most recent use of gene therapy. Furthermore, we review the latest results of the three clinical trials based on adeno-associated viral (AAV) vector-mediated delivery of NADH dehydrogenase subunit 4 (ND4) with mitochondrial targeting sequence, highlighting the differences in the vector design and the rationale behind their use in the allotopic transfer. Full article
(This article belongs to the Special Issue Retinal Cell Biology in Health and Disease)
Show Figures

Figure 1

18 pages, 2149 KiB  
Article
Deep Characterization and Comparison of Different Retrovirus-like Particles Preloaded with CRISPR/Cas9 RNPs
by Max Wichmann, Cecile L. Maire, Niklas Nuppenau, Moataz Habiballa, Almut Uhde, Katharina Kolbe, Tanja Schröder, Katrin Lamszus, Boris Fehse and Dawid Głów
Int. J. Mol. Sci. 2023, 24(14), 11399; https://doi.org/10.3390/ijms241411399 - 13 Jul 2023
Cited by 8 | Viewed by 3937
Abstract
The CRISPR/Cas system has a broad range of possible medical applications, but its clinical translation has been hampered, particularly by the lack of safe and efficient vector systems mediating the short-term expression of its components. Recently, different virus-like particles (VLPs) have been introduced [...] Read more.
The CRISPR/Cas system has a broad range of possible medical applications, but its clinical translation has been hampered, particularly by the lack of safe and efficient vector systems mediating the short-term expression of its components. Recently, different virus-like particles (VLPs) have been introduced as promising vectors for the delivery of CRISPR/Cas genome editing components. Here, we characterized and directly compared three different types of retrovirus-based (R) VLPs, two derived from the γ-retrovirus murine leukemia virus (gRVLPs and “enhanced” egRVLPs) and one from the lentivirus human immunodeficiency virus, HIV (LVLPs). First, we unified and optimized the production of the different RVLPs. To ensure maximal comparability of the produced RVLPs, we adapted several assays, including nanoparticle tracking analysis (NTA), multi-parametric imaging flow cytometry (IFC), and Cas9-ELISA, to analyze their morphology, surface composition, size, and concentration. Next, we comparatively tested the three RVLPs targeting different genes in 293T model cells. Using identical gRNAs, we found egRVLPs to mediate the most efficient editing. Functional analyses indicated better cargo (i.e., Cas9) transfer and/or release as the underlying reason for their superior performance. Finally, we compared on- and off-target activities of the three RVLPs in human-induced pluripotent stem cells (hiPSC) exploiting the clinically relevant C-C motif chemokine receptor 5 (CCR5) as the target. Again, egRVLPs facilitated the highest, almost 100% knockout rates, importantly with minimal off-target activity. In conclusion, in direct comparison, egRVLPs were the most efficient RVLPs. Moreover, we established methods for in-depth characterization of VLPs, facilitating their validation and thus more predictable and safe application. Full article
Show Figures

Figure 1

17 pages, 2959 KiB  
Article
Poly(β-amino ester)s-Based Delivery Systems for Targeted Transdermal Vaccination
by Núria Puigmal, Víctor Ramos, Natalie Artzi and Salvador Borrós
Pharmaceutics 2023, 15(4), 1262; https://doi.org/10.3390/pharmaceutics15041262 - 17 Apr 2023
Cited by 10 | Viewed by 3682
Abstract
Nucleic acid vaccines have become a transformative technology to fight emerging infectious diseases and cancer. Delivery of such via the transdermal route could boost their efficacy given the complex immune cell reservoir present in the skin that is capable of engendering robust immune [...] Read more.
Nucleic acid vaccines have become a transformative technology to fight emerging infectious diseases and cancer. Delivery of such via the transdermal route could boost their efficacy given the complex immune cell reservoir present in the skin that is capable of engendering robust immune responses. We have generated a novel library of vectors derived from poly(β-amino ester)s (PBAEs) including oligopeptide-termini and a natural ligand, mannose, for targeted transfection of antigen presenting cells (APCs) such as Langerhans cells and macrophages in the dermal milieu. Our results reaffirmed terminal decoration of PBAEs with oligopeptide chains as a powerful tool to induce cell-specific transfection, identifying an outstanding candidate with a ten-fold increased transfection efficiency over commercial controls in vitro. The inclusion of mannose in the PBAE backbone rendered an additive effect and increased transfection levels, achieving superior gene expression in human monocyte-derived dendritic cells and other accessory antigen presenting cells. Moreover, top performing candidates were capable of mediating surface gene transfer when deposited as polyelectrolyte films onto transdermal devices such as microneedles, offering alternatives to conventional hypodermic administration. We predict that the use of highly efficient delivery vectors derived from PBAEs could advance clinical translation of nucleic acid vaccination over protein- and peptide-based strategies. Full article
(This article belongs to the Special Issue Nanoparticles for Targeting and Treating Macrophages)
Show Figures

Graphical abstract

19 pages, 4851 KiB  
Article
Sex Difference Leads to Differential Gene Expression Patterns and Therapeutic Efficacy in Mucopolysaccharidosis IVA Murine Model Receiving AAV8 Gene Therapy
by Matthew Piechnik, Paige C. Amendum, Kazuki Sawamoto, Molly Stapleton, Shaukat Khan, Nidhi Fnu, Victor Álvarez, Angelica Maria Herreño Pachon, Olivier Danos, Joseph T. Bruder, Subha Karumuthil-Melethil and Shunji Tomatsu
Int. J. Mol. Sci. 2022, 23(20), 12693; https://doi.org/10.3390/ijms232012693 - 21 Oct 2022
Cited by 20 | Viewed by 3350
Abstract
Adeno-associated virus (AAV) vector-based therapies can effectively correct some disease pathology in murine models with mucopolysaccharidoses. However, immunogenicity can limit therapeutic effect as immune responses target capsid proteins, transduced cells, and gene therapy products, ultimately resulting in loss of enzyme activity. Inherent differences [...] Read more.
Adeno-associated virus (AAV) vector-based therapies can effectively correct some disease pathology in murine models with mucopolysaccharidoses. However, immunogenicity can limit therapeutic effect as immune responses target capsid proteins, transduced cells, and gene therapy products, ultimately resulting in loss of enzyme activity. Inherent differences in male versus female immune response can significantly impact AAV gene transfer. We aim to investigate sex differences in the immune response to AAV gene therapies in mice with mucopolysaccharidosis IVA (MPS IVA). MPS IVA mice, treated with different AAV vectors expressing human N-acetylgalactosamine 6-sulfate sulfatase (GALNS), demonstrated a more robust antibody response in female mice resulting in subsequent decreased GALNS enzyme activity and less therapeutic efficacy in tissue pathology relative to male mice. Under thyroxine-binding globulin promoter, neutralizing antibody titers in female mice were approximately 4.6-fold higher than in male mice, with GALNS enzyme activity levels approximately 6.8-fold lower. Overall, male mice treated with AAV-based gene therapy showed pathological improvement in the femur and tibial growth plates, ligaments, and articular cartilage as determined by contrasting differences in pathology scores compared to females. Cardiac histology revealed a failure to normalize vacuolation in females, in contrast, to complete correction in male mice. These findings promote the need for further determination of sex-based differences in response to AAV-mediated gene therapy related to developing treatments for MPS IVA. Full article
(This article belongs to the Special Issue Mucopolysaccharidoses: Diagnosis, Treatment, and Management 3.0)
Show Figures

Figure 1

21 pages, 2439 KiB  
Article
Adapter-Mediated Transduction with Lentiviral Vectors: A Novel Tool for Cell-Type-Specific Gene Transfer
by Nicole Cordes, Nora Winter, Carolin Kolbe, Bettina Kotter, Joerg Mittelstaet, Mario Assenmacher, Toni Cathomen, Andrew Kaiser and Thomas Schaser
Viruses 2022, 14(10), 2157; https://doi.org/10.3390/v14102157 - 30 Sep 2022
Cited by 6 | Viewed by 7076
Abstract
Selective gene delivery to a cell type of interest utilizing targeted lentiviral vectors (LVs) is an efficient and safe strategy for cell and gene therapy applications, including chimeric antigen receptor (CAR)-T cell therapy. LVs pseudotyped with measles virus envelope proteins (MV-LVs) have been [...] Read more.
Selective gene delivery to a cell type of interest utilizing targeted lentiviral vectors (LVs) is an efficient and safe strategy for cell and gene therapy applications, including chimeric antigen receptor (CAR)-T cell therapy. LVs pseudotyped with measles virus envelope proteins (MV-LVs) have been retargeted by ablating binding to natural receptors while fusing to a single-chain antibody specific for the antigen of choice. However, the broad application of MV-LVs is hampered by the laborious LV engineering required for every new target. Here, we report the first versatile targeting system for MV-LVs that solely requires mixing with biotinylated adapter molecules to enable selective gene transfer. The analysis of the selectivity in mixed cell populations revealed transduction efficiencies below the detection limit in the absence of an adapter and up to 5000-fold on-to-off-target ratios. Flexibility was confirmed by transducing cell lines and primary cells applying seven different adapter specificities in total. Furthermore, adapter mixtures were applied to generate CAR-T cells with varying CD4/CD8-ratios in a single transduction step. In summary, a selective and flexible targeting system was established that may serve to improve the safety and efficacy of cellular therapies. Compatibility with a wide range of readily available biotinylated molecules provides an ideal technology for a variety of applications. Full article
(This article belongs to the Special Issue Structure and Cell Biology of Viral Infection)
Show Figures

Figure 1

18 pages, 3503 KiB  
Article
Functional Intercellular Transmission of miHTT via Extracellular Vesicles: An In Vitro Proof-of-Mechanism Study
by Roberto D. V. S. Morais, Marina Sogorb-González, Citlali Bar, Nikki C. Timmer, M. Leontien Van der Bent, Morgane Wartel and Astrid Vallès
Cells 2022, 11(17), 2748; https://doi.org/10.3390/cells11172748 - 3 Sep 2022
Cited by 9 | Viewed by 4229
Abstract
Huntington’s disease (HD) is a fatal neurodegenerative disorder caused by GAG expansion in exon 1 of the huntingtin (HTT) gene. AAV5-miHTT is an adeno-associated virus serotype 5-based vector expressing an engineered HTT-targeting microRNA (miHTT). Preclinical studies demonstrate the brain-wide spread of [...] Read more.
Huntington’s disease (HD) is a fatal neurodegenerative disorder caused by GAG expansion in exon 1 of the huntingtin (HTT) gene. AAV5-miHTT is an adeno-associated virus serotype 5-based vector expressing an engineered HTT-targeting microRNA (miHTT). Preclinical studies demonstrate the brain-wide spread of AAV5-miHTT following a single intrastriatal injection, which is partly mediated by neuronal transport. miHTT has been previously associated with extracellular vesicles (EVs), but whether EVs mediate the intercellular transmission of miHTT remains unknown. A contactless culture system was used to evaluate the transport of miHTT, either from a donor cell line overexpressing miHTT or AAV5-miHTT transduced neurons. Transfer of miHTT to recipient (HEK-293T, HeLa, and HD patient-derived neurons) cells was observed, which significantly reduced HTT mRNA levels. miHTT was present in EV-enriched fractions isolated from culture media. Immunocytochemical and in situ hybridization experiments showed that the signal for miHTT and EV markers co-localized, confirming the transport of miHTT within EVs. In summary, we provide evidence that an engineered miRNA—miHTT—is loaded into EVs, transported across extracellular space, and taken up by neighboring cells, and importantly, that miHTT is active in recipient cells downregulating HTT expression. This represents an additional mechanism contributing to the widespread biodistribution of AAV5-miHTT. Full article
(This article belongs to the Special Issue Extracellular Vesicle-Associated Non-Coding RNAs)
Show Figures

Graphical abstract

17 pages, 2958 KiB  
Article
Anti-Fibrotic Effect of SDF-1β Overexpression in Bleomycin-Injured Rat Lung
by Kleanthis Fytianos, Ronja Schliep, Sofia Mykoniati, Petra Khan, Katrin E. Hostettler, Michael Tamm, Amiq Gazdhar, Lars Knudsen and Thomas Geiser
Pharmaceutics 2022, 14(9), 1803; https://doi.org/10.3390/pharmaceutics14091803 - 27 Aug 2022
Cited by 2 | Viewed by 2624
Abstract
Rational: Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease and is associated with high mortality due to a lack of effective treatment. Excessive deposition of the extracellular matrix by activated myofibroblasts in the alveolar space leads to scar formation that hinders [...] Read more.
Rational: Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease and is associated with high mortality due to a lack of effective treatment. Excessive deposition of the extracellular matrix by activated myofibroblasts in the alveolar space leads to scar formation that hinders gas exchange. Therefore, selectively removing activated myofibroblasts with the aim to repair and remodel fibrotic lungs is a promising approach. Stromal-derived growth factor (SDF-1) is known to stimulate cellular signals which attract stem cells to the site of injury for tissue repair and remodeling. Here, we investigate the effect of overexpression of SDF-1β on lung structure using the bleomycin-injured rat lung model. Methods: Intratracheal administration of bleomycin was performed in adult male rats (F344). Seven days later, in vivo electroporation-mediated gene transfer of either SDF-1β or the empty vector was performed. Animals were sacrificed seven days after gene transfer and histology, design-based stereology, flow cytometry, and collagen measurement were performed on the tissue collected. For in vitro experiments, lung fibroblasts obtained from IPF patients were used. Results: Seven days after SDF-1β gene transfer to bleomycin-injured rat lungs, reduced total collagen, reduced collagen fibrils, improved histology and induced apoptosis of myofibroblasts were observed. Furthermore, it was revealed that TNF-α mediates SDF-1β-induced apoptosis of myofibroblasts; moreover, SDF-1β overexpression increased alveolar epithelial cell numbers and proliferation in vivo and also induced their migration in vitro. Conclusions: Our study demonstrates a new antifibrotic mechanism of SDF-1β overexpression and suggests SDF-1β as a potential new approach for the treatment of lung fibrosis. Full article
(This article belongs to the Special Issue Non-viral Gene Delivery Systems, 2nd Edition)
Show Figures

Figure 1

Back to TopTop