Non-Viral Episomal Vector Mediates Efficient Gene Transfer of the β-Globin Gene into K562 and Human Haematopoietic Progenitor Cells
Highlights
- This is the first episomal vector developed for the gene therapy of β-Thalassemia, as a non-viral, non-integrating vector.
- The expression of β-globin gene, carried as a transgene by the episomal vector in erythroid specific cells, e.g., the K562 cell line and human CD34+ hematopoietic progenitor cells, is comparable to the level of expression of the adult β-globin gene in vivo.
- The episomal vectors for monogenic disorders function within the gene addition strategy and present a more favorable safety profile, as non-integration circumvents the problem of insertional oncogenesis; it also leads to a better production procedure and lower costs.
- The expression of the β-globin gene from within the episomal vector, particularly in human CD34+ hematopoietic progenitor cells, approaches the physiological level; this is a very interesting and important finding, as it allows us to proceed to the next step, namely the design of a therapeutic, episomal vector for the disease.
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Design and Construction of the Episomal Vector pEPβ-Globin
- (A).
- The backbone of the prototype, episomal vector pEP1-eGFP [10], is exempt from genes encoding viral proteins. The human physiological β-globin gene is represented in the form of ‘LCR-HBB mini-gene.’ This mini-gene contains (i) the β-globin gene and no other globin gene from the β-globin-like gene locus and (ii) the ‘LCR microlocus’ carrying the LCR DNaseI hypersensitive sites HS1, HS2, HS3, and HS4 [29,31].
- (B).
- The transcription cassette ‘SFFV-eGFP-S/MAR-Poly A site’ is driven by the Spleen Focus Forming Virus (SFFV) promoter. This cassette comprises the reporter gene for enhanced Green Fluorescent Protein (eGFP), the human chromosomal element (S/MAR), which normally resides at the 5′ end of the human β-interferon gene, and the SV40 Poly-A site. This way, transcription runs through the S/MAR element, which blocks vector integration into the host cell DNA and ensures long-term nuclear retention of the plasmid [10].
- (C).
- A second human chromosomal element, the replication initiation region (IR element), is derived from the 5′ end of the human β-globin gene, from 5,226,995 to 5,228,615 (HBB ENSG00000244734), or from +75 to the −1545 in relation to the transcription initiation of the β-globin gene. The IR element was used in this study for enhanced plasmid replication and establishment [20,27,28].
3.2. Transfection Efficiency and Stable Transformation of K562 Cells
3.3. Estimation of Vector pEPβ-Globin Copy Number Per Cell in K562 Transformed Culture
3.4. Determination of Vector pEPβ-Globin Status into the Nucleus of the Recipient K562 Cells
3.5. Expression of the pEPβ-Globin Transgene in K562 Cells
3.6. Transfection of Human CD34+ Cells with Vector pEPβ-Globin
3.7. Colony-Forming Cell Assay (CFC) of Transfected CD34+ Cells
3.8. Expression Levels of the pEPβ-Globin Transgene in CFC Assay Colony Cells
3.9. The Physiological Expression of β-Globin Transgene in CFC Assay Colony Cells
4. Discussion
- Firstly, the results from the CFC assay reveal that the percentage of fluorescent colonies generated by the CD34+/eGFP+ cells carrying two different vectors, namely pEP-IR and pEPβ-globin, are very closely the same. The percentages are 92.68% for pEP-IR and 92.21% for pEPβ-globin, as stated in the Section 3 and can be seen in Table 2. This strongly indicates that the presence of the ‘micro-LCR,’ a chromatin-modifying element (CME), does not offer any particular advantage of performance in CFC assay to vector pEPβ-globin vis-à-vis the vector pEP-IR, which lacks this sequence. A similar situation, regarding the presence or absence of a CME in an episomal vector, has been reported in recent years in the elegant work from the Harbottle laboratory [21], where a nanoSMAR vector that does not include any CME outperforms other episomal vectors with or without a CME. A number of scientific questions spring from these data. For example, is the S/MAR function replacing the LCR function in vector pEPβ-globin? Are the episomal vectors studied here completely free from a chromatin-modifying function in the presence of IR? The answers to such questions are expected to elucidate the role of the IR element in episomal vectors.
- Secondly, this is the first episomal transfer of the β-globin gene into CD34+ cells, and it is shown that in CFC assay colony cells, the β-globin gene expression, at the mRNA level, is three times higher than that from non-transfected CD34+ cells (Figure 7). This finding verifies previous similar data, obtained for the first time, on the physiological expression of the β-globin gene in a S/MAR-based episomal vector [29].
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forget, B.G. Progress in understanding the hemoglobin switch. N. Engl. J. Med. 2011, 365, 852–854. [Google Scholar] [CrossRef] [PubMed]
- Thein, S.L. Molecular basis of β thalassemia and potential therapeutic targets. Blood Cells Mol. Dis. 2018, 70, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Fucharoen, S.; Weatherall, D.J. Progress Toward the Control and Management of the Thalassemias. Hematol. Oncol. Clin. N. Am. 2016, 30, 359–371. [Google Scholar] [CrossRef]
- Cesana, D.; Ranzani, M.; Volpin, M.; Bartholomae, C.; Duros, C.; Artus, A.; Merella, S.; Benedicenti, F.; Sergi, L.S.; Sanvito, F.; et al. Uncovering and dissecting the genotoxicity of self-inactivating lentiviral vectors In Vivo. Mol. Ther. 2014, 22, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Piras, F.; Riba, M.; Petrillo, C.; Lazarevic, D.; Cuccovillo, I.; Bartolaccini, S.; Stupka, E.; Gentner, B.; Cittaro, D.; Naldini, L.; et al. Lentiviral vectors escape innate sensing but trigger p53 in human hematopoietic stem and progenitor cells. EMBO Mol. Med. 2017, 9, 1198–1211. [Google Scholar] [CrossRef]
- Cosenza, L.C.; Gasparello, J.; Romanini, N.; Zurlo, M.; Zuccato, C.; Gambari, R.; Finotti, A. Efficient CRISPR-Cas9-based genome editing of β-globin gene on erythroid cells from homozygous β039-thalassemia patients. Mol. Ther. Methods Clin. Dev. 2021, 21, 507–523. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.A.; Walters, M.C.; Kwiatkowski, J.; Rasko, J.E.; Ribeil, J.-A.; Hongeng, S.; Magrin, E.; Schiller, G.J.; Payen, E.; Semeraro, M.; et al. Gene Therapy in Patients with Transfusion-Dependent β-Thalassemia. N. Engl. J. Med. 2018, 378, 1479–1493. [Google Scholar] [CrossRef]
- Mulia, G.E.; Picanço-Castro, V.; Stavrou, E.F.; Athanassiadou, A.; Figueiredo, M.L. Advances in the Development and the Applications of Nonviral, Episomal Vectors for Gene Therapy. Hum. Gene Ther. 2021, 32, 1076–1095. [Google Scholar] [CrossRef]
- Chow, C.-M.; Athanassiadou, A.; Raguz, S.; Psiouri, L.; Harland, L.; Malik, M.; Aitken, M.; Grosveld, F.; Antoniou, M. LCR-mediated, long-term tissue-specific gene expression within replicating episomal plasmid and cosmid vectors. Gene Ther. 2002, 9, 327–336. [Google Scholar] [CrossRef]
- Piechaczek, C.; Fetzer, C.; Baiker, A.; Bode, J.; Lipps, H.J. A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res. 1999, 27, 426–428. [Google Scholar] [CrossRef]
- Stehle, I.M.; Postberg, J.; Rupprecht, S.; Cremer, T.; Jackson, D.A.; Lipps, H.J. Establishment and mitotic stability of an extra-chromosomal mammalian replicon. BMC Cell Biol. 2007, 8, 33. [Google Scholar] [CrossRef]
- Jenke, B.H.C.; Fetzer, C.P.; Stehle, I.M.; Jönsson, F.; Fackelmayer, F.O.; Conradt, H.; Bode, J.; Lipps, H.J. An episomally replicating vector binds to the nuclear matrix protein SAF-A in vivo. EMBO Rep. 2002, 3, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Schaarschmidt, D.; Baltin, J.; Stehle, I.M.; Lipps, H.J.; Knippers, R. An episomal mammalian replicon: Sequence-independent binding of the origin recognition complex. EMBO J. 2004, 23, 191–201. [Google Scholar] [CrossRef]
- Argyros, O.; Wong, S.P.; Niceta, M.; Waddington, S.N.; Howe, S.J.; Coutelle, C.; Miller, A.D.; Harbottle, R.P. Persistent episomal transgene expression in liver following delivery of a scaffold/matrix attachment region containing non-viral vector. Gene Ther. 2008, 15, 1593–1605. [Google Scholar] [CrossRef]
- Nehlsen, K.; Broll, S.; Bode, J. Replicating minicircles: Generation of nonviral episomes for the efficient modification of dividing cells. Gene Ther Mol Biol. 2006, 10, 233–244. [Google Scholar]
- Casas, G.; Perche, F.; Midoux, P.; Pichon, C.; Malinge, J.-M. DNA minicircles as novel STAT3 decoy oligodeoxynucleotides endowed with anticancer activity in triple-negative breast cancer. Mol. Ther. Nucleic Acids 2022, 29, 162–175. [Google Scholar] [CrossRef]
- Pang, X.; Chen, G.; Huang, P.; Zhang, P.; Liu, J.; Hou, X.; He, C.-Y.; Chen, P.; Xie, Y.-W.; Zhao, J.; et al. Anticancer effects of a single intramuscular dose of a minicircle DNA vector expressing anti-CD3/CD20 in a xenograft mouse model. Mol. Ther.–Oncolytics 2022, 24, 788–798. [Google Scholar] [CrossRef]
- Haase, R.; Argyros, O.; Wong, S.-P.; Harbottle, R.P.; Lipps, H.J.; Ogris, M.; Magnusson, T.; Pinto, M.G.V.; Haas, J.; Baiker, A. pEPito: A significantly improved non-viral episomal expression vector for mammalian cells. BMC Biotechnol. 2010, 10, 20. [Google Scholar] [CrossRef]
- Calado, S.M.; Diaz-Corrales, F.; Silva, G.A. pEPito-driven PEDF Expression Ameliorates Diabetic Retinopathy Hallmarks. Hum. Gene Ther. Methods 2016, 27, 79–86. [Google Scholar] [CrossRef]
- Giannakopoulos, A.; Quiviger, M.; Stavrou, E.; Verras, M.; Marie, C.; Scherman, D.; Athanassiadou, A. Efficient episomal gene transfer to human hepatic cells using the pFAR4–S/MAR vector. Mol. Biol. Rep. 2019, 46, 3203–3211. [Google Scholar] [CrossRef]
- Roig-Merino, A.; Urban, M.; Bozza, M.; Peterson, J.D.; Bullen, L.; Büchler-Schäff, M.; Stäble, S.; van der Hoeven, F.; Müller-Decker, K.; McKay, T.R.; et al. An episomal DNA vector platform for the persistent genetic modification of pluripotent stem cells and their differentiated progeny. Stem Cell Rep. 2022, 17, 143–158. [Google Scholar] [CrossRef] [PubMed]
- Bozza, M.; De Roia, A.; Correia, M.P.; Berger, A.; Tuch, A.; Schmidt, A.; Zörnig, I.; Jäger, D.; Schmidt, P.; Harbottle, R.P. A nonviral, nonintegrating DNA nanovector platform for the safe, rapid, and persistent manufacture of recombinant T cells. Sci. Adv. 2021, 7, eabf1333. [Google Scholar] [CrossRef] [PubMed]
- Hagedorn, C.; Schnödt-Fuchs, M.; Boehme, P.; Abdelrazik, H.; Lipps, H.J.; Büning, H. S/MAR Element Facilitates Episomal Long-Term Persistence of Adeno-Associated Virus Vector Genomes in Proliferating Cells. Hum. Gene Ther. 2017, 28, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Hagedorn, C.; Gogol-Döring, A.; Schreiber, S.; Epplen, J.T.; Lipps, H.J. Genome-wide profiling of S/MAR-based replicon contact sites. Nucleic Acids Res. 2017, 45, 7841–7854. [Google Scholar] [CrossRef]
- Aladjem, M.I. The mammalian β globin origin of DNA replication. Front. Biosci. 2004, 9, 2540–2547. [Google Scholar] [CrossRef]
- Giannakopoulos, A.; Stavrou, E.F.; Zarkadis, I.; Zoumbos, N.; Thrasher, A.J.; Athanassiadou, A. The Functional role of S/MARs in episomal vectors as defined by the stress-induced destabilization profile of the vector sequences. J. Mol. Biol. 2009, 387, 1239–1249. [Google Scholar] [CrossRef]
- Stavrou, E.F.; Lazaris, V.M.; Giannakopoulos, A.; Papapetrou, E.; Spyridonidis, A.; Zoumbos, N.C.; Gkountis, A.; Athanassiadou, A. The β-globin Replicator greatly enhances the potential of S/MAR based episomal vectors for gene transfer into human haematopoietic progenitor cells. Sci. Rep. 2017, 7, srep40673. [Google Scholar] [CrossRef]
- Stavrou, E.F.; Simantirakis, E.; Verras, M.; Barbas, C.; Vassilopoulos, G.; Peterson, K.R.; Athanassiadou, A. Episomal vectors based on S/MAR and the β-globin Replicator, encoding a synthetic transcriptional activator, mediate efficient γ-globin activation in haematopoietic cells. Sci. Rep. 2019, 9, 19765. [Google Scholar] [CrossRef]
- Sgourou, A.; Routledge, S.; Spathas, D.; Athanassiadou, A.; Antoniou, M.N. Physiological levels of HBB transgene expression from S/MAR element-based replicating episomal vectors. J. Biotechnol. 2009, 143, 85–94. [Google Scholar] [CrossRef]
- Applied Biosystems. 2003. Revision A. Web PDF. 2003. Available online: http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_042486.pdf (accessed on 1 July 2011).
- Collis, P.; Antoniou, M.; Grosveld, F. Definition of the minimal requirements within the human β-globin gene and the dominant control region for high level expression. EMBO J. 1990, 9, 233–240. [Google Scholar] [CrossRef]
- Antoniou, M.; Geraghty, F.; Hurst, J.; Grosveld, F. Efficient 3′-end formation of human β-globin mRNA in vivo requires sequences within the last intron but occurs independently of the splicing reaction. Nucleic Acids Res. 1998, 26, 721–729. [Google Scholar] [CrossRef]
- Bhaumik, K. K562 cells: A source for embryonic globin chains. J. Chromatogr. B Biomed. Sci. Appl. 1991, 571, 37–46. [Google Scholar] [CrossRef]
- Reeves, R.; Gorman, C.M.; Howard, B. Minichromosome assembly of non-integrated plasmid DNA transfected into mammalian cells. Nucleic Acids Res. 1985, 13, 3599–3615. [Google Scholar] [CrossRef]
- Broll, S.; Oumard, A.; Hahn, K.; Schambach, A.; Bode, J. Minicircle performance depending on S/MAR–nuclear matrix interactions. J. Mol. Biol. 2010, 395, 950–965. [Google Scholar] [CrossRef]
- Bottardi, S.; Aumont, A.; Grosveld, F.; Milot, E. Developmental stage–specific epigenetic control of human β-globin gene expression is potentiated in hematopoietic progenitor cells prior to their transcriptional activation. Blood 2003, 102, 3989–3997. [Google Scholar] [CrossRef] [PubMed]
- Old, J. Hemoglobinopathies and Thalassemias. In Emery and Rimoin’s Principles and Practice of Medical Genetics; Elsevier: Amsterdam, The Netherlands, 2013; Volume 71, pp. 1–44. [Google Scholar] [CrossRef]
- Carter, D.; Chakalova, L.; Osborne, C.S.; Dai, Y.-F.; Fraser, P. Long-range chromatin regulatory interactions in vivo. Nat. Genet. 2002, 32, 623–626. [Google Scholar] [CrossRef] [PubMed]
- Grosveld, F.; van Assendelft, G.B.; Greaves, D.R.; Kollias, G. Position-independent, high-level expression of the human β-globin gene in transgenic mice. Cell 1987, 51, 975–985. [Google Scholar] [CrossRef]
Non-Transfected Cells | Week 8th | Week 14th | |
---|---|---|---|
HBG:HBA | 4.76 ± 4.47 | 2.04 ± 3.56 | 9.03 ± 7.76 |
HBB:HBG | - | 0.13 ± 0.23 | 0.03 ± 0.03 |
HBB:HBA | - | 0.27 ± 0.23 | 0.29 ± 0.25 |
CFC Assay 3 Sets of Nucleofections | CFUE/BFUE | CFU-GM Colonies | CFU-GEMM | Total Colonies | GFP+ | GFP+% |
---|---|---|---|---|---|---|
a. non-transfected | 250 | 10 | 30 | 290 | 0 | 0 |
b. pEP-IR | 140 | 4 | 8 | 152 | 130 | 85.52 |
c. pEPβ-globin | 40 | 4 | 8 | 52 | 48 | 92.30 |
a. non-transfected | 388 | 52 | 20 | 460 | 0 | 0 |
b. pEP-IR | 266 | 10 | 12 | 288 | 270 | 93.75 |
c. pEPβ-globin | 232 | 36 | 20 | 288 | 258 | 89.58 |
a. non-transfected | 113 | 32 | 12 | 157 | 0 | 0 |
b. pEP-IR | 150 | 10 | 5 | 165 | 163 | 98.78 |
c. pEPβ-globin | 180 | 25 | 16 | 221 | 210 | 95.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazaris, V.M.; Simantirakis, E.; Stavrou, E.F.; Verras, M.; Sgourou, A.; Keramida, M.K.; Vassilopoulos, G.; Athanassiadou, A. Non-Viral Episomal Vector Mediates Efficient Gene Transfer of the β-Globin Gene into K562 and Human Haematopoietic Progenitor Cells. Genes 2023, 14, 1774. https://doi.org/10.3390/genes14091774
Lazaris VM, Simantirakis E, Stavrou EF, Verras M, Sgourou A, Keramida MK, Vassilopoulos G, Athanassiadou A. Non-Viral Episomal Vector Mediates Efficient Gene Transfer of the β-Globin Gene into K562 and Human Haematopoietic Progenitor Cells. Genes. 2023; 14(9):1774. https://doi.org/10.3390/genes14091774
Chicago/Turabian StyleLazaris, Vassileios M., Emmanouil Simantirakis, Eleana F. Stavrou, Meletios Verras, Argyro Sgourou, Maria K. Keramida, George Vassilopoulos, and Aglaia Athanassiadou. 2023. "Non-Viral Episomal Vector Mediates Efficient Gene Transfer of the β-Globin Gene into K562 and Human Haematopoietic Progenitor Cells" Genes 14, no. 9: 1774. https://doi.org/10.3390/genes14091774
APA StyleLazaris, V. M., Simantirakis, E., Stavrou, E. F., Verras, M., Sgourou, A., Keramida, M. K., Vassilopoulos, G., & Athanassiadou, A. (2023). Non-Viral Episomal Vector Mediates Efficient Gene Transfer of the β-Globin Gene into K562 and Human Haematopoietic Progenitor Cells. Genes, 14(9), 1774. https://doi.org/10.3390/genes14091774