Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = vascular cell adhesion molecule (VCAM)-1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1218 KiB  
Article
Endothelial Protein Changes Indicative of Endometriosis in Unexplained Infertility, an Exploratory Study
by Heba Malik, Sirine Zamouri, Samir Akkawi, Siddh Mehra, Rana Mouaki, Thozhukat Sathyapalan, Manjula Nandakumar, Alexandra E. Butler and Stephen L. Atkin
Int. J. Mol. Sci. 2025, 26(13), 6485; https://doi.org/10.3390/ijms26136485 - 5 Jul 2025
Viewed by 467
Abstract
Previous research has linked both endothelial protein changes and vitamin D with infertility. This study was undertaken to investigate the association of proteins associated with endothelial function and vitamin D status in the luteal phase at day 21 in a group of non-obese [...] Read more.
Previous research has linked both endothelial protein changes and vitamin D with infertility. This study was undertaken to investigate the association of proteins associated with endothelial function and vitamin D status in the luteal phase at day 21 in a group of non-obese women prior to in vitro fertilization (IVF) with either unexplained infertility (UI) or male factor infertility (MFI). Twenty-five non-obese Caucasian women from a UK academic center with MFI (n = 14) and UI (n = 11) were recruited. Blood was withdrawn at day 21 of the menstrual cycle at the time of mock embryo transfer. Vitamin D parameters were measured by tandem mass spectroscopy. Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement was undertaken for 20 protein markers of endothelial dysfunction. Baseline demographics did not differ between groups and parameters of response following IVF did not differ. Vitamins D2 and D3, and 1,25 Vitamin D3 did not differ between groups. In UI, markers of endothelial activation/dysfunction were investigated; vascular cell adhesion molecule 1 (VCAM-1) decreased and this is associated with endothelial stress; vascular endothelial growth factor (VEGF) decreased and this may suggest impaired endometrial angiogenesis; while intercellular adhesion molecule 1 (ICAM-3) increased (p < 0.05) and is associated with increased immunological activity. A marker of vascular integrity, angiopoietin-1, increased while soluble angiopoietin-1 receptor (sTie-2) decreased (p < 0.05), suggesting increased vascular development. Endothelial markers of inflammation, coagulation, and endothelial progenitor cells were unchanged. Vitamin D and its metabolites show no relationship to UI, but endothelial activation/dysfunction and vascular integrity changes in VCAM-1, VEGF, sICAM-3, angiopoietin-1, and sTie-2 may contribute to UI, though the mechanisms through which they work require further evaluation; however, these protein changes have been associated with endometriosis, raising the suggestion that subclinical/undiagnosed endometriosis may have contributed to UI in these subjects. Full article
Show Figures

Figure 1

18 pages, 3168 KiB  
Article
The Relationship Between Cholesterol Level, Cytokine Profile, and Arterial Stiffness in Young Patients with Uncomplicated Type 1 Diabetes
by Jolanta Neubauer-Geryk, Małgorzata Myśliwiec, Katarzyna Zorena and Leszek Bieniaszewski
Int. J. Mol. Sci. 2025, 26(12), 5513; https://doi.org/10.3390/ijms26125513 - 9 Jun 2025
Viewed by 510
Abstract
Arterial stiffness indicates early atherosclerotic changes prevalent in children and adolescents with type 1 diabetes (T1D), even in those with a well–controlled disease and without additional cardiovascular risk factors. This study aimed to determine whether low–density lipoprotein (LDL) cholesterol and cytokine levels can [...] Read more.
Arterial stiffness indicates early atherosclerotic changes prevalent in children and adolescents with type 1 diabetes (T1D), even in those with a well–controlled disease and without additional cardiovascular risk factors. This study aimed to determine whether low–density lipoprotein (LDL) cholesterol and cytokine levels can indicate vascular stiffness in pediatric patients without conventional microangiopathic complications who are not undergoing lipid–lowering therapy. The total study group consisted of 59 pediatric patients divided into two subgroups based on their LDL cholesterol levels and matched for age, age at onset, and duration of diabetes. The investigation involved the precise measurement of several biomarkers including tumor necrosis factor (TNF–α), interleukin 35 (IL-35), interleukin 4 (IL-4), interleukin 10 (IL-10), interleukin 12 (IL-12), interleukin 18 (IL-18), vascular endothelial growth factor (VEGF), Soluble Vascular Cell Adhesion Molecule–1 (sVCAM–1), Intercellular Adhesion Molecule–1 (ICAM-1), Soluble Platelet Selectin (sP–Selectin), Advanced Glycation End Products (AGEs), and Receptors for Advanced Glycation End Products (sRAGE). Arterial stiffness was assessed by calculating pulsatility indices in the common carotid artery and the peripheral arteries in the upper and lower limbs. The comparative analysis indicated that, in the subgroup with LDL cholesterol levels below 100 mg/dL, in comparison to the subgroup with LDL above 100 mg/dL, there was a significant increase in pulsatility indices in elastic and large muscle arteries and notably higher levels of IL-35, IL-10, sVCAM–1, and ICAM-1. This study is the first to recommend the pulsatility index of elastic and large muscular arteries as an effective diagnostic tool for evaluating early atherosclerotic lesions in children and adolescents diagnosed with type 1 diabetes. Elevated LDL cholesterol levels may contribute to vascular stiffness through mechanisms related to a weakened inflammatory response, highlighting the complex interaction between lipid levels, inflammation, and vascular health in patients with type 1 diabetes. Full article
(This article belongs to the Special Issue The Molecular Basis of Vascular Pathology)
Show Figures

Figure 1

18 pages, 5696 KiB  
Article
Effects of Cnidium officinale, Pueraria lobata Ohwi, and Leonurus japonicus Extract on Vascular Endothelial Dysfunctions in Ovariectomized Rats and Molecular Mechanisms
by Joohee Oh, Minseo Kim, Jinsoo Kim, Jiwon Jang, Dongjin Noh and Hyun-Sook Kim
Int. J. Mol. Sci. 2025, 26(10), 4708; https://doi.org/10.3390/ijms26104708 - 14 May 2025
Viewed by 882
Abstract
Menopause is the natural period of aging in women induced by ovary deterioration, resulting in estrogen deficiency. We evaluated the antioxidative and anti-inflammatory properties of Cnidium officinale, Pueraria lobata Ohwi, and Leonurus japonicus (CPL) extracts on vascular endothelial dysfunction. After treatment, CPL [...] Read more.
Menopause is the natural period of aging in women induced by ovary deterioration, resulting in estrogen deficiency. We evaluated the antioxidative and anti-inflammatory properties of Cnidium officinale, Pueraria lobata Ohwi, and Leonurus japonicus (CPL) extracts on vascular endothelial dysfunction. After treatment, CPL extracts decreased serum lipid profiles, serum vasoactive substances, tail temperatures, and cardiovascular risk indices. In ovariectomized rats, vasodilation significantly increased, with an increase in endothelial nitric oxide synthase (eNOS) in the CPL200 and CPL500 groups compared with the OVX group (p < 0.05). The extracts also significantly reduced vascular cell adhesion protein 1 (VCAM-1) in the CPL50, CPL100, and CPL200 groups compared with the OVX group (p < 0.05, p < 0.01, and p < 0.001, respectively). Intercellular adhesion molecule 1 (ICAM-1) was also reduced in the CPL100 and CPL200 groups compared with the OVX group (p < 0.001 and p < 0.0001, respectively); this was achieved through the downregulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and inducible nitric oxide (iNOS), which resulted in the synthesis of nuclear factor erythroid 2-related factor 2 (NRF2) and eNOS in HUVECs. Our results show that CPL extracts could provide cardioprotective effects against vascular endothelium dysfunction by decreasing inflammation and upregulating vasodilation, ascertained by evaluating the antioxidant systems of ovariectomized rats. Further studies are needed to explore the long-term cardioprotective effects. Full article
(This article belongs to the Special Issue Bioactive Compounds of Natural Origin: 2nd Edition)
Show Figures

Figure 1

15 pages, 608 KiB  
Article
Assessment of Blood Endothelial Cell Biomarkers in Women and Men with Abnormal Body Mass and Paroxysmal Atrial Fibrillation Based on CHA2DS2-VASC Score: A Retrospective Study
by Wiesław Sikora, Dominika Kanikowska, Jan Budzianowski, Edyta Kawka, Rafał Rutkowski and Katarzyna Korybalska
Int. J. Mol. Sci. 2025, 26(8), 3627; https://doi.org/10.3390/ijms26083627 - 11 Apr 2025
Viewed by 414
Abstract
Endothelial dysfunction (ED) promotes and maintains atrial fibrillation (AF). Using a CHA2DS2-VASc score in women and men with paroxysmal AF, we aimed to determine which patients’ ED would be more pronounced. We recruited 47 females and 48 males (mean BMI 31 kg/m2 [...] Read more.
Endothelial dysfunction (ED) promotes and maintains atrial fibrillation (AF). Using a CHA2DS2-VASc score in women and men with paroxysmal AF, we aimed to determine which patients’ ED would be more pronounced. We recruited 47 females and 48 males (mean BMI 31 kg/m2 and 30 kg/m2, respectively) with paroxysmal AF and abnormal body mass and divided them into those with low (F < 3; M < 2) and high (F ≥ 3; M ≥ 2) CHA2DS2-VASC score. The blood samples were taken before AF ablation. Using Elisa tests, we measured tissue plasminogen activator (t-PA), plasminogen activator inhibitor 1 (PAI-1), vascular cell adhesion molecule 1 (sVCAM-1), intercellular adhesion molecule (sICAM-1), von Willebrand factor (vWF), and thrombomodulin (sTM). ED was more pronounced in females, expressed by higher endothelial cell marker concentrations: sVCAM-1 and sTM in low scores and sICAM-1 in high scores, CHA2DS2-VASc. Females were characterized by postmenopausal status, higher risk of thrombosis, lower GFR, and more frequent treatment with antiarrhythmic drugs. In contrast, males have only higher suppression of tumorigenicity 2 (ST2). In conclusion, women with paroxysmal AF exhibited more pronounced ED compared to men, regardless of their CHA2DS2-VASc scores. The soluble pro-inflammatory adhesion molecules and thrombomodulin emerge as the most sensitive biomarkers of ED elevated in females. Full article
Show Figures

Figure 1

18 pages, 2786 KiB  
Systematic Review
Association of Subclinical Inflammation Markers with Primary Hypertension in Children—A Systematic Review with Meta-Analysis
by Katarzyna Dziedzic-Jankowska, Maciej Kołodziej and Piotr Skrzypczyk
J. Clin. Med. 2025, 14(7), 2319; https://doi.org/10.3390/jcm14072319 - 28 Mar 2025
Viewed by 582
Abstract
Background/Objectives: This systematic review and meta-analysis aimed to determine whether there is an association between low-grade inflammation markers and primary hypertension (PH) in children. Methods: The MEDLINE, EMBASE, and Cochrane databases were searched up to March 2025 for cohort, cross-sectional, and [...] Read more.
Background/Objectives: This systematic review and meta-analysis aimed to determine whether there is an association between low-grade inflammation markers and primary hypertension (PH) in children. Methods: The MEDLINE, EMBASE, and Cochrane databases were searched up to March 2025 for cohort, cross-sectional, and case–control studies; additional references were obtained from reviewed articles. The studies needed to investigate an association between any inflammation markers and PH. Participants of the study were children (<18 years old) with PH and healthy controls. This meta-analysis included 13 studies published between 2005 and 2024, enrolling 1306 patients (745 with PH and 561 healthy controls). The data were analyzed using Review Manager. Pooled mean difference (MD) with a 95% confidence interval (95% CI) was used to assess the differences in inflammation markers. Results: There was a significant difference between hypertensive and control groups in high-sensitivity C-reactive protein (hs-RCP) concentration (mean difference (MD): 0.07 95%CI (0.04, 0.09)), intercellular adhesion molecule 1 (ICAM-1) (MD: 85.28 95%CI: (50.57–119.99)), vascular cell adhesion molecule 1 (VCAM-1) (MD: 259.78 95%CI: (22.65–496.91)), neutrophil count (MD: 0.90 95%CI (0.66–1.14)), monocyte count (MD: 0.08 95CI%: (0.04–0.11)), platelet count (MD: 20.24 95CI%: (4.27–36.21)), neutrophil-to-lymphocyte ratio (MD: 0.48 95%CI: (0.34–0.62)), and lymphocyte-to-monocyte ratio (MD: −0.52 95%CI: (−1.02–−0.02)). There was no difference in terms of interleukin 6 (IL-6), lymphocyte count, mean platelet volume (MPV), or platelet-to-lymphocyte (PLR) ratio. Conclusions: Some easily accessible markers of low-grade inflammation might be used as an additional tool for diagnosis and screening for hypertension in children. These results should be validated in large and well-conducted studies. Full article
(This article belongs to the Special Issue Pathophysiology of Hypertension and Related Diseases)
Show Figures

Figure 1

16 pages, 6472 KiB  
Article
Apixaban Inhibits Progression of Experimental Diabetic Nephropathy by Blocking Advanced Glycation End Product-Receptor Axis
by Takanori Matsui, Ami Sotokawauchi, Yuri Nishino, Yoshinori Koga and Sho-ichi Yamagishi
Int. J. Mol. Sci. 2025, 26(7), 3007; https://doi.org/10.3390/ijms26073007 - 26 Mar 2025
Viewed by 690
Abstract
Diabetes is associated with an increased risk of thromboembolism. However, the effects of apixaban, a factor Xa inhibitor on diabetic nephropathy, remain unknown. Six-week-old Wistar rats received a single 60 mg/kg intraperitoneal injection of streptozotocin to produce a model of type 1 diabetes. [...] Read more.
Diabetes is associated with an increased risk of thromboembolism. However, the effects of apixaban, a factor Xa inhibitor on diabetic nephropathy, remain unknown. Six-week-old Wistar rats received a single 60 mg/kg intraperitoneal injection of streptozotocin to produce a model of type 1 diabetes. Type 1 diabetic and non-diabetic control rats were treated with or without apixaban orally for 8 weeks, and blood and kidneys were obtained for biochemical, real-time reverse transcription-polymerase chain reaction (RT-PCR) and morphological analyses. Although apixaban treatment did not affect glycemic or lipid parameters, it significantly (p < 0.01) inhibited the increases in advanced glycation end products (AGEs), the receptor for AGEs (RAGE) mRNA and protein levels, 8-hydroxy-2′-deoxyguanosine (8-OHdG), and NADPH oxidase-driven superoxide generation in diabetic rats at 14 weeks old. Compared with non-diabetic rats, gene and protein expression levels of monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), transforming growth factor-β (TGF-β), connective tissue growth factor (CTGF), and fibronectin were increased in 14-week-old diabetic rats, which were associated with enhanced renal expression of kidney injury molecule-1 (KIM-1) and Mac-3, increased extracellular matrix accumulation in the kidneys, and elevated urinary excretion levels of protein and KIM-1, all of which were significantly inhibited by the treatment with apixaban. Urine KIM-1 levels were significantly (p < 0.01) and positively correlated with AGEs (r = 0.690) and 8-OHdG (r = 0.793) in the kidneys and serum 8-OHdG levels (r = 0.823). Our present findings suggest that apixaban could ameliorate renal injury in streptozotocin-induced type 1 diabetic rats partly by blocking the AGE-RAGE-oxidative stress axis in diabetic kidneys. Full article
(This article belongs to the Special Issue Advanced Molecular Insights into Renal Disorders)
Show Figures

Figure 1

12 pages, 260 KiB  
Article
Vitamin D Supplementation Effects on Markers Related with Endothelial Function and Coagulation in Obese Orthopedic Patients: Insights from Acute and Chronic Cases
by Michał Gawryjołek, Michał Wiciński, Marta Michalska Gawryjołek and Jan Zabrzyński
Nutrients 2025, 17(5), 882; https://doi.org/10.3390/nu17050882 - 28 Feb 2025
Viewed by 922
Abstract
Obesity is a risk factor for thrombosis-related diseases and a condition that leads to vitamin D deficiency. Furthermore, orthopedic conditions are also at risk for diseases associated with coagulation and endothelial function. This study aimed to assess whether vitamin D supplementation in patients [...] Read more.
Obesity is a risk factor for thrombosis-related diseases and a condition that leads to vitamin D deficiency. Furthermore, orthopedic conditions are also at risk for diseases associated with coagulation and endothelial function. This study aimed to assess whether vitamin D supplementation in patients with acute (AOCs) and chronic orthopedic conditions (COCs) and coexisting obesity could affect coagulation and endothelial function. Thirty-three obese individuals with AOCs or COCs were included in the study. Patients were supplemented with vitamin D at 4000 IU/day for 3 months. An enzyme-linked immunosorbent assay (ELISA) was used to measure the concentrations of alpha 2-antiplasmin (α2AP), vascular cell adhesion molecule 1 (VCAM-1), plasminogen activator inhibitor-1 (PAI-1), tissue factor pathway inhibitor (TFPI), and vitamin D, which were examined at two time points—before and after supplementation. Regardless of the increase in serum vitamin D levels in both groups after supplementation, there was a statistically significant increase in VCAM-1 and PAI-1 levels in the group with AOCs, whereas only VCAM-1 increased statistically significantly in the second group. For obese patients with COCs, vitamin D does not appear to have a potentially beneficial effect on coagulation and the endothelium. Full article
(This article belongs to the Section Micronutrients and Human Health)
13 pages, 709 KiB  
Article
Endothelial Markers in Type 2 Diabetic Patients with Acute Decompensated Heart Failure: A Pilot Study
by Martin Jozef Péč, Jakub Jurica, Tomáš Bolek, Ingrid Škorňová, Monika Péčová, Marek Cingel, Simona Horná, Lucia Stančiaková, Ján Staško, Štefan Tóth, Juraj Sokol, Peter Galajda, Marián Mokáň and Matej Samoš
Metabolites 2025, 15(2), 91; https://doi.org/10.3390/metabo15020091 - 3 Feb 2025
Cited by 1 | Viewed by 992
Abstract
Background: Impaired endothelial function has been associated with vascular complications in type 2 diabetes (T2D), but its role in T2D-related heart failure (HF) remains indeterminate. The aim of this study was to assess selected markers of endothelial function in T2D patients with acute [...] Read more.
Background: Impaired endothelial function has been associated with vascular complications in type 2 diabetes (T2D), but its role in T2D-related heart failure (HF) remains indeterminate. The aim of this study was to assess selected markers of endothelial function in T2D patients with acute decompensated HF. Methods: A pilot prospective study on patients with acute decompensated HF requiring in-hospital admission was carried out. The vascular endothelial growth factor (VEGF), intercellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) were assessed at admission and after decongestion. Subsequently, differences in these markers between T2D and non-diabetic (ND) patients were studied. Results: In total, 39 patients (21 with T2D and 18 ND patients) were enrolled. Twenty-eight patients presented with preserved ejection fraction (EF), and 11 presented with reduced EF. Looking at the VEGF levels in T2D patients, on admission, a median of 233.0 pg/mL (1.7–598 pg/mL) was found compared to 106.0 pg/mL (1.7–888 pg/mL) in ND individuals; the differences reached statistical significance (p = 0.04). There were no significant differences in VEGF levels after decongestion, and in VCAM-1 (2237 ± 1195 vs. 2699 ± 1093 ng/mL, p = 0.37) and ICAM-1 (596 ± 268 vs. 638 ± 437 ng/mL, p = 0.79) levels between T2D and ND patients upon admission and after decongestion. The value of EF (preserved or reduced) affected the VEGF levels upon admission. Conclusions: This study identified significantly higher VEGF levels upon admission due to acute decompensated HF in T2D patients. Full article
Show Figures

Figure 1

21 pages, 7422 KiB  
Article
Isolation and Characterization of Antibodies Against Vascular Cell Adhesion Molecule-1 Reveals Putative Role for Ig-like Domains 2 and 3 in Cell-to-Cell Interaction
by Binura Perera, Yuao Wu, Jessica R. Pickett, Nadya Panagides, Francisca M. Barretto, Christian Fercher, David P. Sester, Martina L. Jones, Hang T. Ta and Lucia F. Zacchi
Int. J. Mol. Sci. 2024, 25(24), 13650; https://doi.org/10.3390/ijms252413650 - 20 Dec 2024
Cited by 1 | Viewed by 1495
Abstract
The vascular cell adhesion molecule-1 (VCAM-1) plays an important role in inflammation, where it facilitates the recruitment of leukocytes to the inflamed area via leukocytes’ VLA-4 and endothelial cells’ VCAM-1 interaction. VCAM-1 expression is also upregulated in certain cancers. VCAM-1 has seven Ig-like [...] Read more.
The vascular cell adhesion molecule-1 (VCAM-1) plays an important role in inflammation, where it facilitates the recruitment of leukocytes to the inflamed area via leukocytes’ VLA-4 and endothelial cells’ VCAM-1 interaction. VCAM-1 expression is also upregulated in certain cancers. VCAM-1 has seven Ig-like domains, with domains 1 and 4 shown to be critical for VLA-4 binding. However, the specific functions of individual VCAM-1 Ig-like domains remain poorly understood. In this study, we identified single-chain variable fragment (scFv) antibodies targeting domains 2, 3, and 5 of VCAM-1, and investigated the ability of these antibodies to block VCAM-1-mediated cell adhesion to macrophages. We show that scFv antibodies against Ig-like domains 2 and 3 interfere with the ability of macrophages to bind endothelial cells, suggesting that these domains also play a role in facilitating this interaction. These results emphasize the need to more carefully study the role of each domain on VCAM-1 function and highlight the potential of targeting these VCAM-1 domains for more tailored therapeutic interventions in inflammatory diseases and cancer. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

39 pages, 2047 KiB  
Review
Complement System and Adhesion Molecule Skirmishes in Fabry Disease: Insights into Pathogenesis and Disease Mechanisms
by Albert Frank Magnusen and Manoj Kumar Pandey
Int. J. Mol. Sci. 2024, 25(22), 12252; https://doi.org/10.3390/ijms252212252 - 14 Nov 2024
Cited by 2 | Viewed by 2009
Abstract
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha (GLA) gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological [...] Read more.
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha (GLA) gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction. This review elucidates how the complement system, particularly through the activation of C3a and C5a, exacerbates disease pathology. The activation of these pathways leads to the upregulation of adhesion molecules, including vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), platelet and endothelial cell adhesion molecule 1 (PECAM1), and complement receptor 3 (CR3) on leukocytes and endothelial cells. This upregulation promotes the excessive recruitment of leukocytes, which in turn exacerbates disease pathology. Targeting complement components C3a, C5a, or their respective receptors, C3aR (C3a receptor) and C5aR1 (C5a receptor 1), could potentially reduce inflammation, mitigate tissue damage, and improve clinical outcomes for individuals with Fabry disease. Full article
(This article belongs to the Special Issue The Twist and Turn of Lipids in Human Diseases 2.0)
Show Figures

Figure 1

11 pages, 798 KiB  
Article
Novel Biomarkers as Potential Predictors of Decompensated Advanced Chronic Heart Failure—Single Center Study
by Tobias Fröhling, Dilvin Semo, Moritz Mirna, Vera Paar, Zornitsa Shomanova, Lukas J. Motloch, Andreas Rukosujew, Jürgen R. Sindermann, Michael Lichtenauer and Rudin Pistulli
J. Clin. Med. 2024, 13(22), 6866; https://doi.org/10.3390/jcm13226866 - 14 Nov 2024
Viewed by 1409
Abstract
Background/Objectives: Heart failure (HF) remains a major therapeutic and diagnostic challenge nowadays. Albeit, acute decompensated HF is associated with several clinical signs such as dyspnea or edema, it remains a challenge to use easy accessible and suitable tools, such as biomarkers, to distinguish [...] Read more.
Background/Objectives: Heart failure (HF) remains a major therapeutic and diagnostic challenge nowadays. Albeit, acute decompensated HF is associated with several clinical signs such as dyspnea or edema, it remains a challenge to use easy accessible and suitable tools, such as biomarkers, to distinguish between patients at risk for an acute decompensation of their heart failure and compensated, stable HF patients. Existing biomarkers, such as natriuretic peptides or troponin, are not specific and can be elevated due to several other disease conditions, such as myocardial infarction, atrial fibrillation, or valve diseases. Therefore, the aim of this study was to analyze the predictive potential of four novel cardiovascular biomarkers—the soluble urokinase-type plasminogen activator receptor (suPAR), heart-type fatty acid binding protein (H-FABP), vascular cell adhesion molecule 1 (VCAM-1), and growth/differentiation factor 15 (GDF-15) for the detection of cardiac decompensation in patients with HF. Methods: In this study, 146 patients were prospectively enrolled and the serum biomarker concentrations were analyzed using Enzyme Linked Immunosorbent Assay (ELISA). We correlated the biomarker concentrations with clinical and biochemical parameters of all patients and the predictive value for detection of cardiac decompensation was assessed. Results: A significant increase in the levels of suPAR (1.6-fold-change, p < 0.0001), H-FABP (2.2-fold-change, p = 0.0458), VCAM-1 (1.6-fold-change, p < 0.0001), and GDF-15 (1.7-fold-change, p = 0.0009) was detected in all patients with acute decompensated HF in comparison to patients with compensated HF. Univariate logistic regression analysis revealed a significant association of biomarker plasma concentration with the risk for a cardiac decompensation (suPAR: p < 0.0001; VCAM-1: p < 0.0001, H-FABP: p = 0.0458; GDF-15: p = 0.0009). Conclusions: In conclusion, the investigated novel cardiovascular biomarkers suPAR, GDF-15, VCAM-1, and H-FABP could be a valuable tool to facilitate therapeutic decisions in patients with heart failure and suspicion of a cardiac decompensation. Parameters such as renal function should be taken into account. Further studies on novel biomarkers are required to find reliable, sensitive, and specific tools that will enable the early detection of patients with acute decompensation. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

14 pages, 940 KiB  
Review
Protective Role of High-Density Lipoprotein in Multiple Sclerosis
by Agnieszka Damiza-Detmer, Małgorzata Pawełczyk and Andrzej Głąbiński
Antioxidants 2024, 13(11), 1276; https://doi.org/10.3390/antiox13111276 - 23 Oct 2024
Cited by 2 | Viewed by 2267
Abstract
Multiple sclerosis (MS) is a chronic, progressive demyelinating disease with a most likely autoimmune background and a neurodegenerative component. Besides the demyelinating process caused by autoreactive antibodies, an increased permeability in the blood–brain barrier (BBB) also plays a key role. Recently, there has [...] Read more.
Multiple sclerosis (MS) is a chronic, progressive demyelinating disease with a most likely autoimmune background and a neurodegenerative component. Besides the demyelinating process caused by autoreactive antibodies, an increased permeability in the blood–brain barrier (BBB) also plays a key role. Recently, there has been growing interest in assessing lipid profile alterations in patients with MS. As a result of myelin destruction, there is an increase in the level of cholesterol released from cells, which in turn causes disruptions in lipid metabolism homeostasis both in the central nervous system (CNS) and peripheral tissues. Currently, there is a growing body of evidence suggesting a protective role of HDL in MS through its effect on the BBB by decreasing its permeability. This follows from the impact of HDL on the endothelium and its anti-inflammatory effect, mostly by interacting with adhesion molecules like vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and E-selectin. HDL, through its action via sphingosine-1-phosphate, exerts an inhibitory effect on leukocyte migration, and its antioxidant properties contribute to the improvement of the BBB function. In this review, we want to summarize these studies and focus on HDL as a mediator of the anti-inflammatory response in MS. Full article
(This article belongs to the Special Issue Antioxidant Role of High-Density Lipoprotein)
Show Figures

Figure 1

17 pages, 1589 KiB  
Article
Effect of Spermidine on Endothelial Function in Systemic Lupus Erythematosus Mice
by Hyoseon Kim and Michael P. Massett
Int. J. Mol. Sci. 2024, 25(18), 9920; https://doi.org/10.3390/ijms25189920 - 14 Sep 2024
Cited by 3 | Viewed by 1926
Abstract
Endothelial dysfunction is common in Systemic Lupus Erythematosus (SLE), even in the absence of cardiovascular disease. Evidence suggests that impaired mitophagy contributes to SLE. Mitochondrial dysfunction is also associated with impaired endothelial function. Spermidine, a natural polyamine, stimulates mitophagy by the PINK1–parkin pathway [...] Read more.
Endothelial dysfunction is common in Systemic Lupus Erythematosus (SLE), even in the absence of cardiovascular disease. Evidence suggests that impaired mitophagy contributes to SLE. Mitochondrial dysfunction is also associated with impaired endothelial function. Spermidine, a natural polyamine, stimulates mitophagy by the PINK1–parkin pathway and counters age-associated endothelial dysfunction. However, the effect of spermidine on mitophagy and vascular function in SLE has not been explored. To address this gap, 9-week-old female lupus-prone (MRL/lpr) and healthy control (MRL/MpJ) mice were randomly assigned to spermidine treatment (lpr_Spermidine and MpJ_Spermidine) for 8 weeks or as control (lpr_Control and MpJ_Control). lpr_Control mice exhibited impaired endothelial function (e.g., decreased relaxation to acetylcholine), increased markers of inflammation, and lower protein content of parkin, a mitophagy marker, in the thoracic aorta. Spermidine treatment prevented endothelial dysfunction in MRL-lpr mice. Furthermore, aortas from lpr_Spermidine mice had lower levels of inflammatory markers and higher levels of parkin. Lupus phenotypes were not affected by spermidine. Collectively, these results demonstrate the beneficial effects of spermidine treatment on endothelial function, inflammation, and mitophagy in SLE mice. These results support future studies of the beneficial effects of spermidine on endothelial dysfunction and cardiovascular disease risk in SLE. Full article
Show Figures

Figure 1

12 pages, 1880 KiB  
Article
Association of Endothelial Cell Activation with Acute Kidney Injury during Coronary Angiography and the Influence of Recombinant Human C1 Inhibitor—A Secondary Analysis of a Randomized, Placebo-Controlled, Double-Blind Trial
by Stephan Moser, Laura Araschmid, Anneza Panagiotou, Leo H. Bonati, Tobias Breidthardt, Gregor Fahrni, Christoph Kaiser, Raban Jeger, Marten Trendelenburg and Michael Osthoff
Biomedicines 2024, 12(9), 1956; https://doi.org/10.3390/biomedicines12091956 - 27 Aug 2024
Viewed by 1251
Abstract
Background: Acute kidney injury (AKI) as a result of iodinated contrast media (CM) has been linked to CM-induced renal ischemia and toxic effects on endothelial cells (EC). The recombinant human C1 inhibitor (rhC1INH) has been shown to influence EC activation. Methods: Secondary analysis [...] Read more.
Background: Acute kidney injury (AKI) as a result of iodinated contrast media (CM) has been linked to CM-induced renal ischemia and toxic effects on endothelial cells (EC). The recombinant human C1 inhibitor (rhC1INH) has been shown to influence EC activation. Methods: Secondary analysis of 74/77 (96%) participants of a double-blind, randomized, and placebo-controlled study that assessed the effect of rhC1INH on AKI. E-selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule (VCAM-1), and CC-chemokin-ligand-5 (CCL5) were determined in frozen blood samples over 48 h and analyzed according to the treatment group and renal outcomes. Results: The mean age was 76.7 years, and 37 patients each received rhC1INH and placebo, respectively. In the entire study population, minor differences in median EC activation markers/CCL5 concentrations during the first 48 h compared to baseline were observed (e.g., E-selectin 27.5 ng/mL at baseline vs. 29.7 ng/mL on day 1, CCL5: 17.7 ng/mL at baseline vs. 32.2 ng/mL on day 2). Absolute changes in ICAM-1/E-selectin concentrations correlated with a higher peak change in urinary NGAL concentrations. However, AKI was not associated with significant changes in EC markers/CCL5. Last, no significant differences in serum concentrations of EC activation markers/CCL5 were evident between the placebo and the rhC1INH group. Conclusions: CM administration during coronary angiography only mildly activated ECs within the first 48 h, which does not explain subsequent AKI. The administration of rhC1INH was not associated with a reduction of EC activation or CCL5. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

22 pages, 168912 KiB  
Article
Heterogeneous Patterns of Endothelial NF-κB p65 and MAPK c-Jun Activation, Adhesion Molecule Expression, and Leukocyte Recruitment in Lung Microvasculature of Mice with Sepsis
by Zhendong Wang, Erna-Zulaikha Dayang, Peter J. Zwiers, Martha L. Hernandez Garcia, Matthijs Luxen, Matijs van Meurs, Jill Moser, Jan A. A. M. Kamps and Grietje Molema
Biomedicines 2024, 12(8), 1672; https://doi.org/10.3390/biomedicines12081672 - 26 Jul 2024
Viewed by 1715
Abstract
Background: Sepsis is an uncontrolled systemic inflammatory response to an infection that can result in acute failure of the function of the lung called acute respiratory distress syndrome. Leukocyte recruitment is an important hallmark of acute lung failure in patients with sepsis. Endothelial [...] Read more.
Background: Sepsis is an uncontrolled systemic inflammatory response to an infection that can result in acute failure of the function of the lung called acute respiratory distress syndrome. Leukocyte recruitment is an important hallmark of acute lung failure in patients with sepsis. Endothelial cells (EC) participate in this process by facilitating tethering, rolling, adhesion, and transmigration of leukocytes via adhesion molecules on their cell surface. In in vivo studies, endothelial nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 and mitogen-activated protein kinase (MAPK) c-Jun intracellular signal transduction pathways were reported to regulate the expression of adhesion molecules. Methods: Mice underwent cecal ligation and puncture (CLP) to induce polymicrobial sepsis and were sacrificed at different time points up to 72 h after sepsis onset. Immunohistochemistry and reverse transcription–quantitative polymerase chain reaction (RT-qPCR) analyses were used to determine the kinetics of nuclear localization of p65 and c-Jun in EC, expression and location of adhesion molecules E-selectin and vascular cell adhesion molecule 1 (VCAM-1). Furthermore, the extent and location of leukocyte recruitment were assessed based on Ly6G staining of neutrophils, cluster determinant (CD) 3 staining of T lymphocytes, and CD68 staining of macrophages. Results: In all pulmonary microvascular beds, we identified p65 and c-Jun nuclear accumulation in a subset of endothelial cells within the first 24 h after CLP-sepsis initiation. E-selectin protein was expressed in a subset of microvessels at 4 and 7 h after sepsis initiation, while VCAM-1 was expressed in a scattered pattern in alveolar tissue and microvessels, without discernible changes during sepsis development. CLP-induced sepsis predominantly promoted the accumulation of neutrophils and T lymphocytes 4 and 7 h after disease onset. Neutrophil accumulation occurred in all pulmonary microvascular beds, while T lymphocytes were present in alveolar tissue and postcapillary venules. Taken together, nuclear localization of p65 and c-Jun in EC and neutrophil recruitment could be associated with induced E-selectin expression in the pulmonary microvessels in CLP-septic mice at the early stage of the disease. In alveolar capillaries, on the other hand, activation of these molecular pathways and leukocyte accumulation occurred in the absence of E-selectin or VCAM-1. Conclusions: Endothelial activation and leukocyte recruitment in sepsis-induced lung injury are regulated by multiple, heterogeneously controlled mechanisms, which vary depending on the type of microvascular bed involved. Full article
(This article belongs to the Special Issue Microcirculation in Health and Diseases)
Show Figures

Graphical abstract

Back to TopTop