Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = variable surface lipoproteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2799 KB  
Article
Low-Density Lipoprotein Subfraction Phenotype Is Associated with Epicardial Adipose Tissue Volume in Type 2 Diabetes
by José Rives, Pedro Gil-Millan, David Viladés, Álvaro García-Osuna, Idoia Genua, Inka Miñambres, Margarida Grau-Agramunt, Ignasi Gich, Nuria Puig, Sonia Benitez, Josep Julve, Antonio Pérez and José Luis Sánchez-Quesada
J. Clin. Med. 2025, 14(3), 862; https://doi.org/10.3390/jcm14030862 - 28 Jan 2025
Cited by 3 | Viewed by 1576
Abstract
Background: Increased epicardial adipose tissue (EAT) volume is a common feature in type 2 diabetes (T2DM) which is directly associated with heart failure and advanced atherosclerosis. We aimed to evaluate lipoprotein-related biomarkers of EAT volume in T2DM patients before and after glycemic [...] Read more.
Background: Increased epicardial adipose tissue (EAT) volume is a common feature in type 2 diabetes (T2DM) which is directly associated with heart failure and advanced atherosclerosis. We aimed to evaluate lipoprotein-related biomarkers of EAT volume in T2DM patients before and after glycemic control. Methods: This study included 36 T2DM patients before and after optimization of glycemic control and on 14 healthy controls (HCs). EAT volume was measured using computed tomography imaging indexed to the body surface area (iEAT). Biochemical and lipid profiles were determined using commercial methods. Lipoproteins were isolated by ultracentrifugation, and variables of lipoprotein function were assessed. Multivariable regression analysis was used to find variables independently associated with iEAT. Results: iEAT was higher in T2DM than in controls and decreased with glycemic optimization. HDLs from T2DM had less apoA-I and cholesterol and more apoC-III and triglycerides. LDLs from T2DM had more triglycerides and apoB and smaller sizes than those from HCs. Significant correlations were found between iEAT and age, BMI, HbA1c, GGT, VLDLc, triglycerides, LDL size, apoA-I in HDL, and apoC-III in HDL. In the multivariable regression analysis, age, LDL size, and GGT associations remained statistically significant, and predicted 50% of the variability in EAT volume. ROC analysis using these variables showed an AUC of 0.835. Conclusions: Qualitative characteristics of lipoproteins were altered in T2DM. Multivariable analysis showed that LDL size and GGT plasma levels were independently associated with iEAT volume, suggesting that these variables might be useful biomarkers for stratifying T2DM patients with increased EAT volume. Full article
Show Figures

Figure 1

15 pages, 8632 KB  
Article
Conserved Domains in Variable Surface Lipoproteins A-G of Mycoplasma hyorhinis May Serve as Probable Multi-Epitope Candidate Vaccine: Computational Reverse Vaccinology Approach
by Muhammad Zubair, Jia Wang, Yanfei Yu, Muhammad Asif Rasheed, Muhammad Faisal, Ali Sobhy Dawood, Muhammad Ashraf, Guoqing Shao, Zhixin Feng and Qiyan Xiong
Vet. Sci. 2023, 10(9), 557; https://doi.org/10.3390/vetsci10090557 - 5 Sep 2023
Cited by 2 | Viewed by 2590
Abstract
Mycoplasma hyorhinis (M. hyorhinis) is responsible for infections in the swine population. Such infections are usually cured by using antimicrobials and lead to develop resistance. Until now, there has been no effective vaccine to eradicate the disease. This study used conserved [...] Read more.
Mycoplasma hyorhinis (M. hyorhinis) is responsible for infections in the swine population. Such infections are usually cured by using antimicrobials and lead to develop resistance. Until now, there has been no effective vaccine to eradicate the disease. This study used conserved domains found in seven members of the variable lipoprotein (VlpA-G) family in order to design a multi-epitope candidate vaccine (MEV) against M. hyorhinis. The immunoinformatics approach was followed to predict epitopes, and a vaccine construct consisting of an adjuvant, two B cell epitopes, two HTL epitopes, and one CTL epitope was designed. The suitability of the vaccine construct was identified by its non-allergen, non-toxic, and antigenic nature. A molecular dynamic simulation was executed to assess the stability of the TLR2 docked structure. An immune simulation showed a high immune response toward the antigen. The protein sequence was reverse-translated, and codons were optimized to gain a high expression level in E. coli. The proposed vaccine construct may be a candidate for a multi-epitope vaccine. Experimental validation is required in future to test the safety and efficacy of the hypothetical candidate vaccine. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

17 pages, 334 KB  
Article
A Higher Healthy Eating Index Is Associated with Decreased Markers of Inflammation and Lower Odds for Being Overweight/Obese Based on a Case-Control Study
by Farhad Vahid, Mahsa Jalili, Wena Rahmani, Zahra Nasiri and Torsten Bohn
Nutrients 2022, 14(23), 5127; https://doi.org/10.3390/nu14235127 - 2 Dec 2022
Cited by 15 | Viewed by 4754
Abstract
Obesity is a health risk characterized by chronic inflammation, and food choices are strongly associated with its etiology. Our objective was to investigate the association between dietary patterns and the healthy eating index (HEI) with the odds of overweight/obesity and related inflammatory markers. [...] Read more.
Obesity is a health risk characterized by chronic inflammation, and food choices are strongly associated with its etiology. Our objective was to investigate the association between dietary patterns and the healthy eating index (HEI) with the odds of overweight/obesity and related inflammatory markers. Within a population-based case-control study, we collected data and samples from 793 normal-weight and 812 overweight/obese Iranian people (based on either body mass index (BMI) or body surface area (BSA)). Dietary intake and HEI scores were obtained via a validated 124-item food frequency questionnaire. Anthropometric and socioeconomic parameters, as well as blood inflammatory markers, were measured. Participants with higher HEI scores had higher serum high-density lipoprotein-cholesterol (HDL-C) and significantly lower energy intake. Water consumption in the overweight/obese group was significantly lower than in the control group. In the final models using partial correlation and controlling for multiple confounders, there was a significant inverse correlation between HEI and interleukin-4 (IL-4, R = −0.063), IL-1β (R = −0.054), and high-sensitivity C-reactive protein (hs-CRP, R = −0.069). Based on multivariable logistic regression models adjusted for multiple confounders, there was a significant association between HEI as a continuous variable (OR = 0.993, 95% CI: 0.988–0.999) and categorical variable (OR = 0.801, 95% CI: 0.658–0.977) and odds of overweight/obesity across BMI groups. The dietary patterns in the case and control groups however were similar, and we failed to find a significant association between HEI and odds of overweight/obesity based on BSA. Adherence to healthy eating recommendations may be a prudent recommendation to prevent overweight/obesity and keeping inflammatory indicators low. Full article
(This article belongs to the Special Issue Obesity and Inflammation: The Role of Nutrition and Diet)
15 pages, 2162 KB  
Article
Isolated Variable Domains of an Antibody Can Assemble on Blood Coagulation Factor VIII into a Functional Fv-like Complex
by Svetlana A. Shestopal, Leonid A. Parunov, Philip Olivares, Haarin Chun, Mikhail V. Ovanesov, John R. Pettersson and Andrey G. Sarafanov
Int. J. Mol. Sci. 2022, 23(15), 8134; https://doi.org/10.3390/ijms23158134 - 23 Jul 2022
Cited by 2 | Viewed by 2840
Abstract
Single-chain variable fragments (scFv) are antigen-recognizing variable fragments of antibodies (FV) where both subunits (VL and VH) are connected via an artificial linker. One particular scFv, iKM33, directed against blood coagulation factor VIII (FVIII) was shown to inhibit major FVIII [...] Read more.
Single-chain variable fragments (scFv) are antigen-recognizing variable fragments of antibodies (FV) where both subunits (VL and VH) are connected via an artificial linker. One particular scFv, iKM33, directed against blood coagulation factor VIII (FVIII) was shown to inhibit major FVIII functions and is useful in FVIII research. We aimed to investigate the properties of iKM33 enabled with protease-dependent disintegration. Three variants of iKM33 bearing thrombin cleavage sites within the linker were expressed using a baculovirus system and purified by two-step chromatography. All proteins retained strong binding to FVIII by surface plasmon resonance, and upon thrombin cleavage, dissociated into VL and VH as shown by size-exclusion chromatography. However, in FVIII activity and low-density lipoprotein receptor-related protein 1 binding assays, the thrombin-cleaved iKM33 variants were still inhibitory. In a pull-down assay using an FVIII-affinity sorbent, the isolated VH, a mixture of VL and VH, and intact iKM33 were carried over via FVIII analyzed by electrophoresis. We concluded that the isolated VL and VH assembled into scFv-like heterodimer on FVIII, and the isolated VH alone also bound FVIII. We discuss the potential use of both protease-cleavable scFvs and isolated Fv subunits retaining high affinity to the antigens in various practical applications such as therapeutics, diagnostics, and research. Full article
(This article belongs to the Special Issue Recent Advances in Antibody Therapeutics 2.0)
Show Figures

Figure 1

25 pages, 2463 KB  
Review
Fifty Years of the Fluid–Mosaic Model of Biomembrane Structure and Organization and Its Importance in Biomedicine with Particular Emphasis on Membrane Lipid Replacement
by Garth L. Nicolson and Gonzalo Ferreira de Mattos
Biomedicines 2022, 10(7), 1711; https://doi.org/10.3390/biomedicines10071711 - 15 Jul 2022
Cited by 27 | Viewed by 9601
Abstract
The Fluid–Mosaic Model has been the accepted general or basic model for biomembrane structure and organization for the last 50 years. In order to establish a basic model for biomembranes, some general principles had to be established, such as thermodynamic assumptions, various molecular [...] Read more.
The Fluid–Mosaic Model has been the accepted general or basic model for biomembrane structure and organization for the last 50 years. In order to establish a basic model for biomembranes, some general principles had to be established, such as thermodynamic assumptions, various molecular interactions, component dynamics, macromolecular organization and other features. Previous researchers placed most membrane proteins on the exterior and interior surfaces of lipid bilayers to form trimolecular structures or as lipoprotein units arranged as modular sheets. Such membrane models were structurally and thermodynamically unsound and did not allow independent lipid and protein lateral movements. The Fluid–Mosaic Membrane Model was the only model that accounted for these and other characteristics, such as membrane asymmetry, variable lateral movements of membrane components, cis- and transmembrane linkages and dynamic associations of membrane components into multimolecular complexes. The original version of the Fluid–Mosaic Membrane Model was never proposed as the ultimate molecular description of all biomembranes, but it did provide a basic framework for nanometer-scale biomembrane organization and dynamics. Because this model was based on available 1960s-era data, it could not explain all of the properties of various biomembranes discovered in subsequent years. However, the fundamental organizational and dynamic aspects of this model remain relevant to this day. After the first generation of this model was published, additional data on various structures associated with membranes were included, resulting in the addition of membrane-associated cytoskeletal, extracellular matrix and other structures, specialized lipid–lipid and lipid–protein domains, and other configurations that can affect membrane dynamics. The presence of such specialized membrane domains has significantly reduced the extent of the fluid lipid membrane matrix as first proposed, and biomembranes are now considered to be less fluid and more mosaic with some fluid areas, rather than a fluid matrix with predominantly mobile components. However, the fluid–lipid matrix regions remain very important in biomembranes, especially those involved in the binding and release of membrane lipid vesicles and the uptake of various nutrients. Membrane phospholipids can associate spontaneously to form lipid structures and vesicles that can fuse with various cellular membranes to transport lipids and other nutrients into cells and organelles and expel damaged lipids and toxic hydrophobic molecules from cells and tissues. This process and the clinical use of membrane phospholipid supplements has important implications for chronic illnesses and the support of healthy mitochondria, plasma membranes and other cellular membrane structures. Full article
Show Figures

Figure 1

25 pages, 37006 KB  
Article
Genomic Characterization of Lactiplantibacillus plantarum Strains Possessing Differential Antiviral Immunomodulatory Activities
by Leonardo Albarracin, Fernanda Raya Tonetti, Kohtaro Fukuyama, Yoshihito Suda, Binghui Zhou, Ayelén A. Baillo, Silvina Fadda, Lucila Saavedra, Shoichiro Kurata, Elvira M. Hebert, Haruki Kitazawa and Julio Villena
Bacteria 2022, 1(3), 136-160; https://doi.org/10.3390/bacteria1030012 - 6 Jul 2022
Cited by 16 | Viewed by 7606
Abstract
Lactiplantibacillus plantarum strains are used in the food industry for their probiotic properties. Some of these bacteria have immunomodulatory effects on the host and are able to improve resistance against different pathogens, including viruses. However, to date, the bacterial genes involved in the [...] Read more.
Lactiplantibacillus plantarum strains are used in the food industry for their probiotic properties. Some of these bacteria have immunomodulatory effects on the host and are able to improve resistance against different pathogens, including viruses. However, to date, the bacterial genes involved in the immunomodulatory effect are not known. In this work, the complete genomes of L. plantarum MPL16, CRL1506, CRL681 and TL2766 were used to perform comparative genomics with the aim of identifying the genes involved in their differential immunomodulatory effects. L. plantarum WCFS1, a strain with proven probiotic activity, was also used for comparisons. The analysis of the genes involved in the metabolic pathways of the five strains did not reveal differences in the metabolism of amino acids, lipids, nucleotides, cofactors and vitamins, nor in the genes associated with energy metabolism or the biosynthesis of lipoproteins and teichoic acids. However, differences were found between the five strains when considering carbohydrate metabolism pathways, particularly in the presence/absence of glycosylhydrolases and glycosyltransferases. In addition, a great variability was detected in the predicted surface proteins of each L. plantarum strain. These results suggest that the surface molecules expressed in the different strains of L. plantarum could be involved in their differential ability to modulate the innate antiviral immune response. Full article
Show Figures

Figure 1

20 pages, 2725 KB  
Article
Sheep Infection Trials with ‘Phase-Locked’ Vpma Expression Variants of Mycoplasma agalactiae—Towards Elucidating the Role of a Multigene Family Encoding Variable Surface Lipoproteins in Infection and Disease
by Rohini Chopra-Dewasthaly, Andreas Dagn, Christian Lohinger, René Brunthaler, Martina Flöck, Munkhtsetseg Kargl, Shrilakshmi Hegde, Joachim Spergser and Renate Rosengarten
Microorganisms 2022, 10(4), 815; https://doi.org/10.3390/microorganisms10040815 - 14 Apr 2022
Cited by 1 | Viewed by 2593
Abstract
The significance of large multigene families causing high-frequency surface variations in mycoplasmas is not well-understood. Previously, VpmaY and VpmaU clonal variants of the Vpma family of lipoproteins of M. agalactiae were compared via experimental sheep infections using the two corresponding ‘Phase-Locked Mutants’. However, [...] Read more.
The significance of large multigene families causing high-frequency surface variations in mycoplasmas is not well-understood. Previously, VpmaY and VpmaU clonal variants of the Vpma family of lipoproteins of M. agalactiae were compared via experimental sheep infections using the two corresponding ‘Phase-Locked Mutants’. However, nothing is known about the infectivity of the remaining four Vpma expression variants VpmaX, VpmaW, VpmaZ and VpmaV as they were never evaluated in vivo. Here, in vivo infection and disease progression of all six Vpma expressers constituting the Vpma family of type strain PG2 were compared using the corresponding xer1-disrupted PLMs expressing single well-characterized Vpmas. Each of the six PLMs were separately evaluated using the intramammary sheep infection model along with the control phase-variable wildtype strain PG2. Thorough bacteriological, pathological and clinical examinations were performed, including assessment of milk quality, quantity and somatic cell counts. Altogether, the results indicated that the inability to vary the Vpma expression phase does not hamper the initiation of infection leading to mastitis for all six PLMs, except for PLMU, which showed a defect in host colonization and multiplication for the first 24 h p.i. and pathological/bacteriological analysis indicated a higher potential for systemic spread for PLMV and PLMX. This is the first study in which all isogenic expression variants of a large mycoplasma multigene family are tested in the natural host. Full article
(This article belongs to the Special Issue Mycoplasma Pathogenicity, Persistence and Virulence)
Show Figures

Figure 1

10 pages, 1057 KB  
Article
Predominant Single Stable VpmaV Expression in Strain GM139 and Major Differences with Mycoplasma agalactiae Type Strain PG2
by Maysa Santos Barbosa, Joachim Spergser, Lucas Miranda Marques, Jorge Timenetsky, Renate Rosengarten and Rohini Chopra-Dewasthaly
Animals 2022, 12(3), 265; https://doi.org/10.3390/ani12030265 - 21 Jan 2022
Cited by 4 | Viewed by 2635
Abstract
Although mycoplasmas have a reduced genome and no cell wall, they have important mechanisms for the antigenic variation in surface lipoproteins that modulate their interactions with the host. Mycoplasma agalactiae, the main etiological agent of contagious agalactia, has a multigene family involved [...] Read more.
Although mycoplasmas have a reduced genome and no cell wall, they have important mechanisms for the antigenic variation in surface lipoproteins that modulate their interactions with the host. Mycoplasma agalactiae, the main etiological agent of contagious agalactia, has a multigene family involved in the high-frequency phase variation in surface lipoproteins called variable proteins of M. agalactiae (Vpmas). The Vpma lipoproteins are involved in the immune evasion, colonization, dissemination, and persistence of M. agalactiae in the host. In this paper, we evaluate the Vpma phenotypic profiles of two different strains of M. agalactiae, namely, GM139 and the type strain PG2, to assess possible correlations between Vpma phase variability and the geographic localization, animal origin, and pathogenicity of these two strains. Using monospecific Vpma antibodies against individual Vpmas in immunoblots, we demonstrate that, unlike PG2, which expresses six Vpma proteins with high-frequency phase variation, colonies of GM139 predominantly express VpmaV and do not exhibit any sectoring phenotype for any Vpma. Since VpmaV is one of the most important Vpmas for cell adhesion and invasion, its predominant sole expression in GM139 without high-frequency variation may be the basis of the differential pathogenicity of GM139 and PG2. Additionally, MALDI-ToF MS analysis also demonstrates significant differences between these two strains and their relatedness with other M. agalactiae strains. Full article
Show Figures

Figure 1

23 pages, 3243 KB  
Article
Comprehensive Study of Atorvastatin Nanostructured Lipid Carriers through Multivariate Conceptualization and Optimization
by Heba A. Ghanem, Ali M. Nasr, Tamer H. Hassan, Mahmoud M. Elkhoudary, Reem Alshaman, Abdullah Alattar and Shadeed Gad
Pharmaceutics 2021, 13(2), 178; https://doi.org/10.3390/pharmaceutics13020178 - 28 Jan 2021
Cited by 25 | Viewed by 4112
Abstract
The aim of the current study is to establish a comprehensive experimental design for the screening and optimization of Atorvastatin-loaded nanostructured lipid carriers (AT-NLCs). Initially, combined D-optimal screening design was applied to find the most significant factors affecting AT-NLCs properties. The studied variables [...] Read more.
The aim of the current study is to establish a comprehensive experimental design for the screening and optimization of Atorvastatin-loaded nanostructured lipid carriers (AT-NLCs). Initially, combined D-optimal screening design was applied to find the most significant factors affecting AT-NLCs properties. The studied variables included mixtures of solid and liquid lipids, the solid/liquid lipid ratio, surfactant type and concentration, homogenization speed as well as sonication time. Then, the variables homogenization speed (A), the ratio of solid lipid/liquid lipid (B), and concentration of the surfactant (C) were optimized using a central composite design. Particle size, polydispersity index, zeta potential, and entrapment efficiency were chosen as dependent responses. The optimized AT-NLCs demonstrated a nanometric size (83.80 ± 1.13 nm), Polydispersity Index (0.38 ± 0.02), surface charge (−29.65 ± 0.65 mV), and high drug incorporation (93.1 ± 0.04%). Fourier Transform Infrared Spectroscopy (FTIR) analysis showed no chemical interaction between Atorvastatin and the lipid mixture. Differential Scanning Calorimetry (DSC) analysis of the AT-NLCs suggested the transformation of Atorvastatin crystal into an amorphous state. Administration of the optimized AT-NLCs led to a significant reduction (p < 0.001) in serum levels of rats’ total cholesterol, triglycerides, and low-density lipoproteins. This change was histologically validated by reducing the relevant steatosis of the liver. Full article
Show Figures

Figure 1

18 pages, 2485 KB  
Article
Understanding the Influence of a Bifunctional Polyethylene Glycol Derivative in Protein Corona Formation around Iron Oxide Nanoparticles
by Amalia Ruiz, Adán Alpízar, Lilianne Beola, Carmen Rubio, Helena Gavilán, Marzia Marciello, Ildefonso Rodríguez-Ramiro, Sergio Ciordia, Christopher J. Morris and María del Puerto Morales
Materials 2019, 12(14), 2218; https://doi.org/10.3390/ma12142218 - 10 Jul 2019
Cited by 24 | Viewed by 4653
Abstract
Superparamagnetic iron oxide nanoparticles are one of the most prominent agents used in theranostic applications, with MRI imaging the main application assessed. The biomolecular interface formed on the surface of a nanoparticle in a biological medium determines its behaviour in vitro and in [...] Read more.
Superparamagnetic iron oxide nanoparticles are one of the most prominent agents used in theranostic applications, with MRI imaging the main application assessed. The biomolecular interface formed on the surface of a nanoparticle in a biological medium determines its behaviour in vitro and in vivo. In this study, we have compared the formation of the protein corona on highly monodisperse iron oxide nanoparticles with two different coatings, dimercaptosuccinic acid (DMSA), and after conjugation, with a bifunctional polyethylene glycol (PEG)-derived molecule (2000 Da) in the presence of Wistar rat plasma. The protein fingerprints around the nanoparticles were analysed in an extensive proteomic study. The results presented in this work indicate that the composition of the protein corona is very difficult to predict. Proteins from different functional categories—cell components, lipoproteins, complement, coagulation, immunoglobulins, enzymes and transport proteins—were identified in all samples with very small variability. Although both types of nanoparticles have similar amounts of bonded proteins, very slight differences in the composition of the corona might explain the variation observed in the uptake and biotransformation of these nanoparticles in Caco-2 and RAW 264.7 cells. Cytotoxicity was also studied using a standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Controlling nanoparticles’ reactivity to the biological environment by deciding on its surface functionalization may suggest new routes in the control of the biodistribution, biodegradation and clearance of multifunctional nanomedicines. Full article
(This article belongs to the Special Issue Nanoparticles for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop