Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = van der Waals epitaxy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2319 KiB  
Review
Advancements in Free-Standing Ferroelectric Films: Paving the Way for Transparent Flexible Electronics
by Riya Pathak, Gopinathan Anoop and Shibnath Samanta
J. Compos. Sci. 2025, 9(2), 71; https://doi.org/10.3390/jcs9020071 - 5 Feb 2025
Cited by 2 | Viewed by 1423
Abstract
Free-standing ferroelectric films have emerged as a transformative technology in the field of flexible electronics, offering unique properties that enable a wide range of applications, including sensors, actuators, and energy harvesting devices. This review paper explores recent advancements in the fabrication, characterization, and [...] Read more.
Free-standing ferroelectric films have emerged as a transformative technology in the field of flexible electronics, offering unique properties that enable a wide range of applications, including sensors, actuators, and energy harvesting devices. This review paper explores recent advancements in the fabrication, characterization, and application of free-standing ferroelectric films, highlighting innovative techniques such as multilayer structures and van der Waals epitaxy that enhance their performance while maintaining mechanical flexibility. We discuss the critical role of these films in next-generation devices, emphasizing their potential for integration into multifunctional systems that combine energy harvesting and sensing capabilities. Additionally, we address challenges related to leakage currents, polarization stability, and scalability that must be overcome to facilitate commercialization. By synthesizing current research findings and identifying future directions, this paper aims to provide a comprehensive overview of the state-of-the-art in free-standing ferroelectric films and their impact on the development of sustainable and efficient flexible electronic technologies. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

11 pages, 4947 KiB  
Article
Growth of Hg0.7Cd0.3Te on Van Der Waals Mica Substrates via Molecular Beam Epitaxy
by Shuo Ma, Wenwu Pan, Xiao Sun, Zekai Zhang, Renjie Gu, Lorenzo Faraone and Wen Lei
Molecules 2024, 29(16), 3947; https://doi.org/10.3390/molecules29163947 - 21 Aug 2024
Viewed by 4122
Abstract
In this paper, we present a study on the direct growth of Hg0.7Cd0.3Te thin films on layered transparent van der Waals mica (001) substrates through weak interface interaction through molecular beam epitaxy. The preferred orientation for [...] Read more.
In this paper, we present a study on the direct growth of Hg0.7Cd0.3Te thin films on layered transparent van der Waals mica (001) substrates through weak interface interaction through molecular beam epitaxy. The preferred orientation for growing Hg0.7Cd0.3Te on mica (001) substrates is found to be the (111) orientation due to a better lattice match between the Hg0.7Cd0.3Te layer and the underlying mica substrate. The influence of growth parameters (mainly temperature and Hg flux) on the material quality of epitaxial Hg0.7Cd0.3Te thin films is studied, and the optimal growth temperature and Hg flux are found to be approximately 190 °C and 4.5 × 104 Torr as evidenced by higher crystalline quality and better surface morphology. Hg0.7Cd0.3Te thin films (3.5 µm thick) grown under these optimal growth conditions present a full width at half maximum of 345.6 arc sec for the X-ray diffraction rocking curve and a root-mean-square surface roughness of 6 nm. However, a significant number of microtwin defects are observed using cross-sectional transmission electron microscopy, which leads to a relatively high etch pit density (mid-107 cm2) in the Hg0.7Cd0.3Te thin films. These findings not only facilitate the growth of HgCdTe on mica substrates for fabricating curved IR sensors but also contribute to a better understanding of growth of traditional zinc-blende semiconductors on layered substrates. Full article
(This article belongs to the Special Issue Recent Advances in Epitaxial Growth: Materials and Methods)
Show Figures

Figure 1

29 pages, 8536 KiB  
Review
Hexagonal Boron Nitride Based Photonic Quantum Technologies
by Madhava Krishna Prasad, Mike P. C. Taverne, Chung-Che Huang, Jonathan D. Mar and Ying-Lung Daniel Ho
Materials 2024, 17(16), 4122; https://doi.org/10.3390/ma17164122 - 20 Aug 2024
Cited by 5 | Viewed by 2937
Abstract
Hexagonal boron nitride is rapidly gaining interest as a platform for photonic quantum technologies, due to its two-dimensional nature and its ability to host defects deep within its large band gap that may act as room-temperature single-photon emitters. In this review paper we [...] Read more.
Hexagonal boron nitride is rapidly gaining interest as a platform for photonic quantum technologies, due to its two-dimensional nature and its ability to host defects deep within its large band gap that may act as room-temperature single-photon emitters. In this review paper we provide an overview of (1) the structure, properties, growth and transfer of hexagonal boron nitride; (2) the creationof colour centres in hexagonal boron nitride and assignment of defects by comparison with ab initio calculations for applications in photonic quantum technologies; and (3) heterostructure devices for the electrical tuning and charge control of colour centres that form the basis for photonic quantum technology devices. The aim of this review is to provide readers a summary of progress in both defect engineering and device fabrication in hexagonal boron nitride based photonic quantum technologies. Full article
Show Figures

Figure 1

11 pages, 2530 KiB  
Article
Direct Selective Epitaxy of 2D Sb2Te3 onto Monolayer WS2 for Vertical p–n Heterojunction Photodetectors
by Baojun Pan, Zhenjun Dou, Mingming Su, Ya Li, Jialing Wu, Wanwan Chang, Peijian Wang, Lijie Zhang, Lei Zhao, Mei Zhao and Sui-Dong Wang
Nanomaterials 2024, 14(10), 884; https://doi.org/10.3390/nano14100884 - 19 May 2024
Cited by 3 | Viewed by 2056
Abstract
Two-dimensional transition metal dichalcogenides (2D-TMDs) possess appropriate bandgaps and interact via van der Waals (vdW) forces between layers, effectively overcoming lattice compatibility challenges inherent in traditional heterojunctions. This property facilitates the creation of heterojunctions with customizable bandgap alignments. However, the prevailing method for [...] Read more.
Two-dimensional transition metal dichalcogenides (2D-TMDs) possess appropriate bandgaps and interact via van der Waals (vdW) forces between layers, effectively overcoming lattice compatibility challenges inherent in traditional heterojunctions. This property facilitates the creation of heterojunctions with customizable bandgap alignments. However, the prevailing method for creating heterojunctions with 2D-TMDs relies on the low-efficiency technique of mechanical exfoliation. Sb2Te3, recognized as a notable p-type semiconductor, emerges as a versatile component for constructing diverse vertical p–n heterostructures with 2D-TMDs. This study presents the successful large-scale deposition of 2D Sb2Te3 onto inert mica substrates, providing valuable insights into the integration of Sb2Te3 with 2D-TMDs to form heterostructures. Building upon this initial advancement, a precise epitaxial growth method for Sb2Te3 on pre-existing WS2 surfaces on SiO2/Si substrates is achieved through a two-step chemical vapor deposition process, resulting in the formation of Sb2Te3/WS2 heterojunctions. Finally, the development of 2D Sb2Te3/WS2 optoelectronic devices is accomplished, showing rapid response times, with a rise/decay time of 305 μs/503 μs, respectively. Full article
Show Figures

Figure 1

15 pages, 11880 KiB  
Article
Epitaxial Growth of GaN Films on Chemical-Vapor-Deposited 2D MoS2 Layers by Plasma-Assisted Molecular Beam Epitaxy
by Iwan Susanto, Hong-Shan Liu, Yen-Ten Ho and Ing-Song Yu
Nanomaterials 2024, 14(8), 732; https://doi.org/10.3390/nano14080732 - 22 Apr 2024
Cited by 2 | Viewed by 2730
Abstract
The van der Waals epitaxy of wafer-scale GaN on 2D MoS2 and the integration of GaN/MoS2 heterostructures were investigated in this report. GaN films have been successfully grown on 2D MoS2 layers using three different Ga fluxes via a plasma-assisted [...] Read more.
The van der Waals epitaxy of wafer-scale GaN on 2D MoS2 and the integration of GaN/MoS2 heterostructures were investigated in this report. GaN films have been successfully grown on 2D MoS2 layers using three different Ga fluxes via a plasma-assisted molecular beam epitaxy (PA-MBE) system. The substrate for the growth was a few-layer 2D MoS2 deposited on sapphire using chemical vapor deposition (CVD). Three different Ga fluxes were provided by the gallium source of the K-cell at temperatures of 825, 875, and 925 °C, respectively. After the growth, RHEED, HR-XRD, and TEM were conducted to study the crystal structure of GaN films. The surface morphology was obtained using FE-SEM and AFM. Chemical composition was confirmed by XPS and EDS. Raman and PL spectra were carried out to investigate the optical properties of GaN films. According to the characterizations of GaN films, the van der Waals epitaxial growth mechanism of GaN films changed from 3D to 2D with the increase in Ga flux, provided by higher temperatures of the K-cell. GaN films grown at 750 °C for 3 h with a K-cell temperature of 925 °C demonstrated the greatest crystal quality, chemical composition, and optical properties. The heterostructure of 3D GaN on 2D MoS2 was integrated successfully using the low-temperature PA-MBE technique, which could be applied to novel electronics and optoelectronics. Full article
Show Figures

Figure 1

11 pages, 5235 KiB  
Article
Electrostimulation and Nanomanipulation of Two-Dimensional MoO3-x Layers Grown on Graphite
by Aleksandra Nadolska, Dorota A. Kowalczyk, Iaroslav Lutsyk, Michał Piskorski, Paweł Krukowski, Paweł Dąbrowski, Maxime Le Ster, Witold Kozłowski, Rafał Dunal, Przemysław Przybysz, Wojciech Ryś, Klaudia Toczek, Paweł J. Kowalczyk and Maciej Rogala
Crystals 2023, 13(6), 905; https://doi.org/10.3390/cryst13060905 - 1 Jun 2023
Cited by 5 | Viewed by 2199
Abstract
Molybdenum trioxide shows many attractive properties, such as a wide electronic band gap and a high relative permittivity. Monolayers of this material are particularly important, as they offer new avenues in optoelectronic devices, e.g., to alter the properties of graphene electrodes. Nanoscale electrical [...] Read more.
Molybdenum trioxide shows many attractive properties, such as a wide electronic band gap and a high relative permittivity. Monolayers of this material are particularly important, as they offer new avenues in optoelectronic devices, e.g., to alter the properties of graphene electrodes. Nanoscale electrical characterization is essential for potential applications of monolayer molybdenum trioxide. We present a conductive atomic force microscopy study of an epitaxially grown 2D molybdenum oxide layer on a graphene-like substrate, such as highly oriented pyrolytic graphite (HOPG). Monolayers were also investigated using X-ray photoelectron spectroscopy, atomic force microscopy (semi-contact and contact mode), Kelvin probe force microscopy, and lateral force microscopy. We demonstrate mobility of the unpinned island under slight mechanical stress as well as shaping and detachment of the material with applied electrical stimulation. Non-stoichiometric MoO3-x monolayers show heterogeneous behavior in terms of electrical conductivity, which can be related to the crystalline domains and defects in the structure. Different regions show various I–V characteristics, which are correlated with their susceptibility to electrodegradation. In this work, we cover the existing gap regarding nanomanipulation and electrical nanocharacterization of the MoO3 monolayer. Full article
(This article belongs to the Special Issue Electronic Phenomena of Transition Metal Oxides Volume II)
Show Figures

Figure 1

11 pages, 3117 KiB  
Article
Temperature−Dependent Raman Scattering Investigation on vdW Epitaxial PbI2/CrOCl Heterostructure
by Siwen You, Xiao Guo, Junjie Jiang, Dingbang Yang, Mingjun Li, Fangping Ouyang, Haipeng Xie, Han Huang and Yongli Gao
Crystals 2023, 13(1), 104; https://doi.org/10.3390/cryst13010104 - 6 Jan 2023
Cited by 5 | Viewed by 3016
Abstract
Van der Waals (vdW) epitaxial growth provides an efficient strategy to prepare heterostructures with atomically and electronically sharp interfaces. Herein, PbI2 was in situ thermally deposited onto exfoliated thin−layered CrOCl nanoflakes in high vacuum to fabricate vdW PbI2/CrOCl heterostructures. Optical [...] Read more.
Van der Waals (vdW) epitaxial growth provides an efficient strategy to prepare heterostructures with atomically and electronically sharp interfaces. Herein, PbI2 was in situ thermally deposited onto exfoliated thin−layered CrOCl nanoflakes in high vacuum to fabricate vdW PbI2/CrOCl heterostructures. Optical microscopy, atomic force microscopy, X−ray diffraction, and temperature−dependent Raman spectroscopy were used to investigate the structural properties and phonon behaviors of the heterostructures. The morphology of PbI2 films on the CrOCl substrate obviously depended on the substrate temperature, changing from hemispherical granules to 2D nanoflakes with flat top surfaces. In addition, anomalous blueshift of the Ag1 and Au2 modes as the temperature increased in PbI2/CrOCl heterostructure was observed for the first time. Our results provide a novel material platform for the vdW heterostructure and a possible method for optimizing heterostructure growth behaviors. Full article
(This article belongs to the Topic Advanced Structural Crystals)
Show Figures

Figure 1

24 pages, 7885 KiB  
Review
‘Molecular Beam Epitaxy’ on Organic Semiconductor Single Crystals: Characterization of Well-Defined Molecular Interfaces by Synchrotron Radiation X-ray Diffraction Techniques
by Yasuo Nakayama, Ryohei Tsuruta and Tomoyuki Koganezawa
Materials 2022, 15(20), 7119; https://doi.org/10.3390/ma15207119 - 13 Oct 2022
Cited by 9 | Viewed by 3230
Abstract
Epitaxial growth, often termed “epitaxy”, is one of the most essential techniques underpinning semiconductor electronics, because crystallinities of the materials seriously dominate operation efficiencies of the electronic devices such as power gain/consumption, response speed, heat loss, and so on. In contrast to already [...] Read more.
Epitaxial growth, often termed “epitaxy”, is one of the most essential techniques underpinning semiconductor electronics, because crystallinities of the materials seriously dominate operation efficiencies of the electronic devices such as power gain/consumption, response speed, heat loss, and so on. In contrast to already well-established epitaxial growth methodologies for inorganic (covalent or ionic) semiconductors, studies on inter-molecular (van der Waals) epitaxy for organic semiconductors is still in the initial stage. In the present review paper, we briefly summarize recent works on the epitaxial inter-molecular junctions built on organic semiconductor single-crystal surfaces, particularly on single crystals of pentacene and rubrene. Experimental methodologies applicable for the determination of crystal structures of such organic single-crystal-based molecular junctions are also illustrated. Full article
Show Figures

Figure 1

13 pages, 16844 KiB  
Article
Revisiting the van der Waals Epitaxy in the Case of (Bi0.4Sb0.6)2Te3 Thin Films on Dissimilar Substrates
by Liesbeth Mulder, Daan H. Wielens, Yorick A. Birkhölzer, Alexander Brinkman and Omar Concepción
Nanomaterials 2022, 12(11), 1790; https://doi.org/10.3390/nano12111790 - 24 May 2022
Cited by 4 | Viewed by 2745
Abstract
Ultrathin films of the ternary topological insulator (Bi0.4Sb0.6)2Te3 are fabricated by molecular beam epitaxy. Although it is generally assumed that the ternary topological insulator tellurides grow by van der Waals epitaxy, our results show that the [...] Read more.
Ultrathin films of the ternary topological insulator (Bi0.4Sb0.6)2Te3 are fabricated by molecular beam epitaxy. Although it is generally assumed that the ternary topological insulator tellurides grow by van der Waals epitaxy, our results show that the influence of the substrate is substantial and governs the formation of defects, mosaicity, and twin domains. For this comparative study, InP (111)A, Al2O3 (001), and SrTiO3 (111) substrates were selected. While the films deposited on lattice-matched InP (111)A show van der Waals epitaxial relations, our results point to a quasi-van der Waals epitaxy for the films grown on substrates with a larger lattice mismatch. Full article
Show Figures

Figure 1

15 pages, 6502 KiB  
Article
Van der Waals Epitaxial Growth of ZnO Films on Mica Substrates in Low-Temperature Aqueous Solution
by Hou-Guang Chen, Yung-Hui Shih, Huei-Sen Wang, Sheng-Rui Jian, Tzu-Yi Yang and Shu-Chien Chuang
Coatings 2022, 12(5), 706; https://doi.org/10.3390/coatings12050706 - 20 May 2022
Cited by 6 | Viewed by 3341
Abstract
In this article, we demonstrate the van der Waals (vdW) epitaxial growth of ZnO layers on mica substrates through a low-temperature hydrothermal process. The thermal pretreatment of mica substrates prior to the hydrothermal growth of ZnO is essential for growing ZnO crystals in [...] Read more.
In this article, we demonstrate the van der Waals (vdW) epitaxial growth of ZnO layers on mica substrates through a low-temperature hydrothermal process. The thermal pretreatment of mica substrates prior to the hydrothermal growth of ZnO is essential for growing ZnO crystals in epitaxy with the mica substrates. The addition of sodium citrate into the growth solution significantly promotes the growth of ZnO crystallites in a lateral direction to achieve fully coalesced, continuous ZnO epitaxial layers. As confirmed through transmission electron microscopy, the epitaxial paradigm of the ZnO layer on the mica substrate was regarded as an incommensurate van der Waals epitaxy. Furthermore, through the association of the Mist-CVD process, the high-density and uniform distribution of ZnO seeds preferentially occurred on mica substrates, leading to greatly improving the epitaxial qualities of the hydrothermally grown ZnO layers and obtaining flat surface morphologies. The electrical and optoelectrical properties of the vdW epitaxial ZnO layer grown on mica substrates were comparable with those grown on sapphire substrates through conventional solution-based epitaxy techniques. Full article
(This article belongs to the Special Issue Recent Advances in the Growth and Characterizations of Thin Films)
Show Figures

Figure 1

10 pages, 4246 KiB  
Article
MOVPE Growth of GaN via Graphene Layers on GaN/Sapphire Templates
by Kazimieras Badokas, Arūnas Kadys, Dominykas Augulis, Jūras Mickevičius, Ilja Ignatjev, Martynas Skapas, Benjaminas Šebeka, Giedrius Juška and Tadas Malinauskas
Nanomaterials 2022, 12(5), 785; https://doi.org/10.3390/nano12050785 - 25 Feb 2022
Cited by 11 | Viewed by 3865
Abstract
The remote epitaxy of GaN epilayers on GaN/sapphire templates was studied by using different graphene interlayer types. Monolayer, bilayer, double-stack of monolayer, and triple-stack of monolayer graphenes were transferred onto GaN/sapphire templates using a wet transfer technique. The quality of the graphene interlayers [...] Read more.
The remote epitaxy of GaN epilayers on GaN/sapphire templates was studied by using different graphene interlayer types. Monolayer, bilayer, double-stack of monolayer, and triple-stack of monolayer graphenes were transferred onto GaN/sapphire templates using a wet transfer technique. The quality of the graphene interlayers was examined by Raman spectroscopy. The impact of the interlayer type on GaN nucleation was analyzed by scanning electron microscopy. The graphene interface and structural quality of GaN epilayers were studied by transmission electron microscopy and X-ray diffraction, respectively. The influence of the graphene interlayer type is discussed in terms of the differences between remote epitaxy and van der Waals epitaxy. The successful exfoliation of GaN membrane is demonstrated. Full article
(This article belongs to the Topic Application of Graphene-Based Materials)
Show Figures

Figure 1

9 pages, 2634 KiB  
Article
MnBi2Se4-Based Magnetic Modulated Heterostructures
by Evgeniy K. Petrov, Vladimir M. Kuznetsov and Sergey V. Eremeev
Magnetism 2022, 2(1), 1-9; https://doi.org/10.3390/magnetism2010001 - 4 Jan 2022
Cited by 1 | Viewed by 3192
Abstract
Thin films of magnetic topological insulators (TIs) are expected to exhibit a quantized anomalous Hall effect when the magnetizations on the top and bottom surfaces are parallel and a quantized topological magnetoelectric effect when the magnetizations have opposite orientations. Progress in the observation [...] Read more.
Thin films of magnetic topological insulators (TIs) are expected to exhibit a quantized anomalous Hall effect when the magnetizations on the top and bottom surfaces are parallel and a quantized topological magnetoelectric effect when the magnetizations have opposite orientations. Progress in the observation of these quantum effects was achieved earlier in the films with modulated magnetic doping. On the other hand, the molecular-beam-epitaxy technique allowing the growth of stoichiometric magnetic van der Waals blocks in combination with blocks of topological insulator was developed. This approach should allow the construction of modulated heterostructures with the desired architecture. In the present paper, based on the first-principles calculations, we study the electronic structure of symmetric thin film heterostructures composed of magnetic MnBi2Se4 blocks (septuple layers, SLs) and blocks of Bi2Se3 TI (quintuple layers, QLs) in dependence on the depth of the magnetic SLs relative to the film surface and the TI spacer between them. Among considered heterostructures we have revealed those characterized by nontrivial band topology. Full article
Show Figures

Figure 1

10 pages, 1628 KiB  
Communication
Epitaxial Growth of Diamond-Shaped Au1/2Ag1/2CN Nanocrystals on Graphene
by Chunggeun Park, Jimin Ham, Yun Jung Heo and Won Chul Lee
Materials 2021, 14(24), 7569; https://doi.org/10.3390/ma14247569 - 9 Dec 2021
Cited by 2 | Viewed by 2785
Abstract
Epitaxial synthesis of inorganic nanomaterials on pristine 2D materials is of interest in the development of nanostructured devices and nanocomposite materials, but is quite difficult because pristine surfaces of 2D materials are chemically inert. Previous studies found a few exceptions including AuCN, AgCN, [...] Read more.
Epitaxial synthesis of inorganic nanomaterials on pristine 2D materials is of interest in the development of nanostructured devices and nanocomposite materials, but is quite difficult because pristine surfaces of 2D materials are chemically inert. Previous studies found a few exceptions including AuCN, AgCN, CuCN, and Cu0.5Au0.5CN, which can be preferentially synthesized and epitaxially aligned onto various 2D materials. Here, we discover that Au1/2Ag1/2CN forms diamond-shaped nanocrystals epitaxially grown on pristine graphene surfaces. The nanocrystals synthesized by a simple drop-casting method are crystallographically aligned to lattice structures of the underlying graphene. Our experimental investigations on 3D structures and the synthesis conditions of the nanocrystals imply that the rhombic 2D geometries originate from different growth rates depending on orientations along and perpendicular to 1D molecular chains of Au1/2Ag1/2CN. We also perform in situ TEM observations showing that Au1/2Ag1/2CN nanocrystals are decomposed to Au and Ag alloy nanocrystals under electron beam irradiation. Our experimental results provide an additional example of 1D cyanide chain families that form ordered nanocrystals epitaxially aligned on 2D materials, and reveal basic physical characteristics of this rarely investigated nanomaterial. Full article
Show Figures

Figure 1

22 pages, 8670 KiB  
Article
Proven Anti-Wetting Properties of Molybdenum Tested for High-Temperature Corrosion-Resistance with Potential Application in the Aluminum Industry
by François Gitzhofer, James Aluha, Pierre-Olivier Langlois, Faranak Barandehfard, Thabang A. Ntho and Nicolas Abatzoglou
Materials 2021, 14(18), 5355; https://doi.org/10.3390/ma14185355 - 16 Sep 2021
Cited by 2 | Viewed by 2919
Abstract
The behavior of Mo in contact with molten Al was modelled by classical molecular dynamics (CMD) simulation of a pure Mo solid in contact with molten Al at 1200 K using the Materials Studio®. Results showed that no reaction or cross [...] Read more.
The behavior of Mo in contact with molten Al was modelled by classical molecular dynamics (CMD) simulation of a pure Mo solid in contact with molten Al at 1200 K using the Materials Studio®. Results showed that no reaction or cross diffusion of atoms occurs at the Mo(s)–Al(l) interface, and that molten Al atoms exhibit an epitaxial alignment with the exposed solid Mo crystal morphology. Furthermore, the two phases {Mo(s) and Al(l)} are predicted to interact with weak van der Waals forces and give interfacial energy of about 203 mJ/m2. Surface energy measurements by the sessile drop experiment using the van Oss–Chaudhury–Good (VCG) theory established a Mo(s)–Al(l) interface energy equivalent to 54 mJ/m2, which supports the weak van der Waals interaction. The corrosion resistance of a high purity (99.97%) Mo block was then tested in a molten alloy of 5% Mg mixed in Al (Al-5 wt.%Mg) at 1123 K for 96 h, using the ALCAN’s standard “immersion” test, and the results are presented. No Mo was found to be dissolved in the molten Al-Mg alloy. However, a 20% mass loss in the Mo block was due to intergranular corrosion scissoring the Mo block in the ALCAN test, but not as a result of the reaction of pure Mo with the molten Al-Mg alloy. It was observed that the Al-Mg alloy did not stick to the Mo block. Full article
Show Figures

Figure 1

10 pages, 39661 KiB  
Article
Preparation and Research of Monolayer WS2 FETs Encapsulated by h-BN Material
by Tao Han, Hongxia Liu, Shupeng Chen, Shulong Wang and Kun Yang
Micromachines 2021, 12(9), 1006; https://doi.org/10.3390/mi12091006 - 24 Aug 2021
Cited by 5 | Viewed by 3065
Abstract
Functional devices that use vertical van der Waals (vdWs) heterostructure material can effectively combine the properties of single component materials, and the strong interlayer coupling effect can change their electronic and optical properties. According to our research, WS2/h-BN vertical vdWs heterostructure [...] Read more.
Functional devices that use vertical van der Waals (vdWs) heterostructure material can effectively combine the properties of single component materials, and the strong interlayer coupling effect can change their electronic and optical properties. According to our research, WS2/h-BN vertical vdWs heterostructure material can be synthesized by chemical vapor deposition (CVD) and wet transfer methods. Monolayer WS2 material and WS2/h-BN vertical vdWs heterostructure material can be tested and characterized using XPS, SEM, EDS, AFM and Raman spectroscopy, which can prove the existence of corresponding materials. When the thickness of the material decreases, the Coulomb scattering amongst two-dimensional (2D) layered materials increases. This is because both the shielding effect and the distance between the channel and the interface layer decrease. FET devices are then fabricated on WS2/h-BN vdWs heterostructure material by the electron beam lithography and evaporation processes. The effects of vdWs epitaxy on electrical transmission when WS2/h-BN vdWs heterostructure material is formed are explored. Finally, the related electrical performance of FET devices is tested and analyzed. Our experimental research provides guidance for the use of electronic devices with vdWs heterostructure material. Full article
(This article belongs to the Special Issue Electronic and Optoelectronic Devices Based on 2D Materials)
Show Figures

Figure 1

Back to TopTop