Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (159)

Search Parameters:
Keywords = underground drainage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5241 KiB  
Review
Global Environmental Geochemistry and Molecular Speciation of Heavy Metals in Soils and Groundwater from Abandoned Smelting Sites: Analysis of the Contamination Dynamics and Remediation Alternatives in Karst Settings
by Hang Xu, Qiao Han, Muhammad Adnan, Mengfei Li, Mingshi Wang, Mingya Wang, Fengcheng Jiang and Xixi Feng
Toxics 2025, 13(7), 608; https://doi.org/10.3390/toxics13070608 - 21 Jul 2025
Viewed by 507
Abstract
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, [...] Read more.
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, and carbonate mineralogy) influence the mobility, speciation, and bioavailability of “metallic” pollutants, such as Pb, Cd, Zn, and As. In some areas, such as Guizhou (China), the Cd content in the surface soil is as high as 23.36 mg/kg, indicating a regional risk. Molecular-scale analysis, such as synchrotron-based XAS, can elucidate the speciation forms that underlie toxicity and remediation potential. Additionally, we emphasize discrepancies between karst in Asia, Europe, and North America and synthesize cross-regional contamination events. The risk evaluation is complicated, particularly when dynamic flow systems and spatial heterogeneity are permanent, and deep models like DI-NCPI are required as a matter of course. The remediation is still dependent on the site; however, some technologies, such as phytoremediation, biosorption, and bioremediation, are promising if suitable geochemical and microbial conditions are present. This review presents a framework for integrating molecular data and hydrogeological concepts to inform the management of risk and sustainable remediation of legacy metal pollution in karst. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

22 pages, 15362 KiB  
Article
The Influence of Different Concentrations of Methane in Ditches on the Propagation Characteristics of Explosions
by Xingxing Liang, Junjie Cheng, Yibo Zhang and Zhongqi Wang
Fire 2025, 8(7), 275; https://doi.org/10.3390/fire8070275 - 11 Jul 2025
Viewed by 479
Abstract
As the urban underground natural gas pipeline network expands, the explosion risk arising from methane accumulation in drainage ditches due to pipeline leakage has increased severely. A two-dimensional numerical model—9.7 m in length (including a 1-m obstacle section), 0.1 m in diameter, and [...] Read more.
As the urban underground natural gas pipeline network expands, the explosion risk arising from methane accumulation in drainage ditches due to pipeline leakage has increased severely. A two-dimensional numerical model—9.7 m in length (including a 1-m obstacle section), 0.1 m in diameter, and with a water volume fraction of 0.2—was developed to address the flexible boundary characteristics of urban underground ditches. The investigation examined the influence of methane concentration on explosion propagation characteristics. Results indicated that, at a methane concentration of 11%, the peak pressure attained 157.9 kPa, and the peak temperature exceeded 3100 K—all of which were significantly higher than the corresponding values at 10%, 13%, and 16% concentrations. Explosion-induced water motion exerted a cooling effect that inhibited heat and pressure transfer, while obstacles imposed partial restrictions on flame propagation. Temporal profiles of temperature and pressure exhibited three distinct stages: “initial stability–rapid rise–attenuation”. Notably, at a methane concentration of 16%, the water column formed by fluid vibration demonstrated a pronounced cooling effect, causing faster decreases in measured temperatures and pressures compared to other concentrations. Full article
Show Figures

Figure 1

39 pages, 22539 KiB  
Article
Numerical Studies of Advanced Methane Drainage Employing Underground Long-Reach Directional Drilling
by Wiesław Szott, Małgorzata Słota-Valim, Piotr Ruciński, Krzysztof Miłek and Piotr Łętkowski
Energies 2025, 18(14), 3608; https://doi.org/10.3390/en18143608 - 8 Jul 2025
Viewed by 261
Abstract
This paper presents the procedures and results of the numerical modelling and simulations performed to analyse an innovative method of advanced methane drainage employing underground long-reach directional drilling (LRDD) technology. The analysis involved the implementation of geomechanical and dynamic reservoir models to simulate [...] Read more.
This paper presents the procedures and results of the numerical modelling and simulations performed to analyse an innovative method of advanced methane drainage employing underground long-reach directional drilling (LRDD) technology. The analysis involved the implementation of geomechanical and dynamic reservoir models to simulate processes in coal seams and the surrounding rocks during coal mining and concurrent methane drainage, in accordance with the proposed technology. The analysis aimed to quantitatively assess the effectiveness of the technology, evaluate its sensitivity to the geological and geomechanical properties of the rocks, and identify the potential for optimisation of its technological and operational parameters in the proposed strategy. The works presented in this paper include the following key tasks: the construction of a system of geological, geomechanical, and dynamic simulation models; the analysis of the geomechanical effects of various types and regions of occurrence; the implementation of the correlation between the geomechanical states of the rocks and their transport properties; and the performance of the effectively coupled geomechanical and reservoir fluid flow simulations. The proposed approach was applied to the specific conditions of the multi-seam Murcki–Staszic Coal Mine operated by Jastrzębska Spółka Węglowa, Poland. Full article
(This article belongs to the Special Issue Advances in Unconventional Reservoirs and Enhanced Oil Recovery)
Show Figures

Figure 1

33 pages, 3778 KiB  
Article
Technical System for Urban Stormwater Carrying Capacity Assessment and Optimization
by Kun Mao, Junqi Li, Di Liu, Xiaojing Li, Miansong Huang and Lulu Xiang
Buildings 2025, 15(11), 1889; https://doi.org/10.3390/buildings15111889 - 30 May 2025
Viewed by 433
Abstract
The combined effects of rapid urbanization and climate change are increasingly exacerbating the risk of urban flooding. This study develops a data-efficient framework for estimating a city’s Urban Stormwater Carrying Capacity (USCC)—the maximum stormwater volume that can be safely infiltrated, stored, and conveyed. [...] Read more.
The combined effects of rapid urbanization and climate change are increasingly exacerbating the risk of urban flooding. This study develops a data-efficient framework for estimating a city’s Urban Stormwater Carrying Capacity (USCC)—the maximum stormwater volume that can be safely infiltrated, stored, and conveyed. The framework couples three rainfall scenarios—frequent, heavy, and extreme—with nine widely adopted drainage and storage measures, ranging from green spaces and permeable pavements to pipes and underground emergency reservoirs, and expresses USCC through a streamlined water-balance equation. Applied to the 24 km2 Zhangmian River district in Weifang, China, the framework yields capacities of 4.84, 5.86, and 9.80 × 106 m3 for the three scenarios, respectively; underground reservoirs supply ≈ 40% of the extreme-event capacity. Sensitivity analysis shows that increasing the imperviousness coefficient from 0.65 to 0.85 raises peak drainage demand by 30.8%, whereas halving reservoir depth lowers total capacity by 27.8%. Because the method requires only rainfall depth, land-cover data, and basic facility dimensions, it enables rapid, transparent scenario testing and helps planners prioritize cost-effective upgrades. The approach is transferable to other cities and can be extended to incorporate water quality or digital-twin modules in future research. Full article
(This article belongs to the Special Issue Urban Building and Green Stormwater Infrastructure)
Show Figures

Figure 1

31 pages, 14316 KiB  
Article
Impact of Multi-Defect Coupling Effects on the Safety of Shield Tunnels and Cross Passages
by Xiaokai Niu, Hongchuan Xing, Wei Li, Wei Song and Zhitian Xie
Buildings 2025, 15(10), 1696; https://doi.org/10.3390/buildings15101696 - 17 May 2025
Cited by 1 | Viewed by 322
Abstract
As urban rail transit networks age, understanding the synergistic impacts of multi-defect interactions on tunnel structural safety has become critical for underground infrastructure maintenance. This study investigates defect interaction mechanisms in shield tunnels and cross passages of Beijing Metro Line 8, integrating field [...] Read more.
As urban rail transit networks age, understanding the synergistic impacts of multi-defect interactions on tunnel structural safety has become critical for underground infrastructure maintenance. This study investigates defect interaction mechanisms in shield tunnels and cross passages of Beijing Metro Line 8, integrating field monitoring, numerical simulations, and Bayesian network analysis. Long-term field surveys identified spatiotemporal coupling characteristics of four key defects—lining leakage, structural voids, material deterioration, and deformation—while revealing typical defect propagation patterns such as localized leakage at track beds and drainage pipe-induced voids. A 3D fluid–solid coupling numerical model simulated multi-defect interactions, demonstrating that defect clusters in structurally vulnerable zones (e.g., pump rooms) significantly altered pore pressure distribution and intensified displacement, whereas void expansion exacerbated lining uplift and asymmetric ground settlement. Stress concentrations were notably amplified at tunnel–cross passage interfaces. The Bayesian network risk model further validated the dominant roles of defect volume and burial depth in controlling structural safety. Results highlight an inverse correlation between defect severity and structural integrity. Based on these findings, a coordinated maintenance framework combining priority monitoring of high-stress interfaces with targeted grouting treatments is proposed, offering a systematic approach to multi-defect risk management that bridges theoretical models with practical engineering solutions. Full article
Show Figures

Figure 1

22 pages, 9264 KiB  
Article
A Flood Prevention Design for Guangzhou Metro Stations Under Extreme Rainfall Based on the SCS-CN Model
by Xin Chen, Hongyu Kuai, Xiaoqian Liu and Bo Xia
Buildings 2025, 15(10), 1689; https://doi.org/10.3390/buildings15101689 - 16 May 2025
Viewed by 609
Abstract
With the intensification of global climate change, the underground rail transit system of Guangzhou, as a major coastal city, faces severe flood risks. Through field investigations of 313 metro stations, this study identified 472 flood-related risk points, primarily involving water backflow at low-lying [...] Read more.
With the intensification of global climate change, the underground rail transit system of Guangzhou, as a major coastal city, faces severe flood risks. Through field investigations of 313 metro stations, this study identified 472 flood-related risk points, primarily involving water backflow at low-lying stations, insufficient elevation of structural components, and the threat of overbank flooding from adjacent rivers. By integrating GIS-based spatial analysis with the SCS-CN runoff model, an extreme rainfall scenario (534.98 mm) was simulated, revealing a maximum runoff depth of 484.23 mm. Based on these results, it is recommended to raise the flood protection design elevation to 582 mm and install additional waterproof barriers. Optimization strategies include establishing flood protection standards for new stations based on site topography and runoff volume, elevating station platforms or adding waterproof structures at existing stations, and upgrading drainage systems with real-time monitoring and early-warning mechanisms. This study emphasizes the necessity for Guangzhou’s metro system to integrate climate-adaptive urban planning and technological innovation to enhance flood resilience and promote sustainable urban development. Full article
Show Figures

Figure 1

26 pages, 9187 KiB  
Article
A New Perspective on Blue–Green Infrastructure for Climate Adaptation in Urbanized Areas: A Soil-Pipe System as a Multifunctional Solution
by Henrike Walther, Christoph Bennerscheidt, Dirk Jan Boudeling, Markus Streckenbach, Felix Simon, Christoph Mudersbach, Saphira Schnaut, Mark Oelmann and Markus Quirmbach
Land 2025, 14(5), 1065; https://doi.org/10.3390/land14051065 - 14 May 2025
Viewed by 931
Abstract
The implementation of a decentralized blue–green infrastructure (BGI) is a key strategy in climate adaptation and stormwater management. However, the integration of urban trees into the multifunctional infrastructure remains insufficiently addressed, particularly regarding rooting space in dense urban environments. Addressing this gap, the [...] Read more.
The implementation of a decentralized blue–green infrastructure (BGI) is a key strategy in climate adaptation and stormwater management. However, the integration of urban trees into the multifunctional infrastructure remains insufficiently addressed, particularly regarding rooting space in dense urban environments. Addressing this gap, the BoRSiS project developed the soil-pipe system (SPS), which repurposes the existing underground pipe trenches and roadway space to provide trees with significantly larger root zones without competing for additional urban space. This enhances tree-related ecosystem services, such as cooling, air purification, and runoff reduction. The SPS serves as a stormwater retention system by capturing excess rainwater during heavy precipitation events of up to 180 min, reducing the pressure on drainage systems. System evaluations show that, on average, each SPS module (20 m trench length) can store 1028–1285 L of water, enabling a moisture supply to trees for 3.4 to 25.7 days depending on the species and site conditions. This capacity allows the system to buffer short-term drought periods, which, according to climate data, recur with frequencies of 9 (7-day) and 2 (14-day) events per year. Geotechnical and economic assessments confirm the system stability and cost-efficiency. These findings position the SPS as a scalable, multifunctional solution for urban climate adaptation, tree vitality, and a resilient infrastructure. Full article
(This article belongs to the Special Issue Climate Adaptation Planning in Urban Areas)
Show Figures

Figure 1

14 pages, 4675 KiB  
Article
A Numerical Simulation Study on the Spread of Mine Water Inrush in Complex Roadways
by Donglin Fan, Shoubiao Li, Peidong He, Sushe Chen, Xin Zou and Yang Wu
Water 2025, 17(10), 1434; https://doi.org/10.3390/w17101434 - 9 May 2025
Viewed by 380
Abstract
Emergency water release from underground reservoirs is characterized by its suddenness and significant harm. The quantitative prediction of water spreading processes in mine tunnels is crucial for enhancing underground safety. The study focuses on an underground roadway in a coal mine, constructing a [...] Read more.
Emergency water release from underground reservoirs is characterized by its suddenness and significant harm. The quantitative prediction of water spreading processes in mine tunnels is crucial for enhancing underground safety. The study focuses on an underground roadway in a coal mine, constructing a three-dimensional physical model of the complex tunnel network to explore the spatiotemporal characteristics of water flow spreading after water release in coal mine tunnels. The Volume of Fluid (VOF) model of the Eulerian multiphase flow was adopted to simulate the flow state of water in the roadway. The results indicate that after water release from the reservoir, water flows along the tunnel network towards locations with relatively lower altitude terrain. During the initial stage of water release, sloping tunnels act as barriers to water spreading. The water level height at each point in the tunnel network generally experiences three developmental stages: rapid rise, slow increase, and stable equilibrium. The water level height in the tunnel area near the water release outlet rises sharply within a time range of 550 s; tunnels farther from the water release outlet experience a rapid rise in water level height only after 13,200 s. The final stable equilibrium water level in the tunnel depends on the location of the water release outlet and the relative height of the terrain, with a water level height ranging from 0.3 to 3.3 m. The maximum safe evacuation time for personnel within a radius of 300 m from the drainage outlet is only 1 h. In contrast, areas farther away from the drainage location benefit from the water storage capacity of the complex tunnel network and have significantly extended evacuation opportunities. Full article
Show Figures

Figure 1

20 pages, 9089 KiB  
Article
Investigation and Monitoring of Sinkhole Subsidence and Collapse: Additional Data on the Case Study in Alcalá de Ebro (Zaragoza, Spain)
by Alberto Gracia, Francisco Javier Torrijo, Alberto García and Alberto Boix
Land 2025, 14(5), 1006; https://doi.org/10.3390/land14051006 - 6 May 2025
Viewed by 485
Abstract
Alcalá de Ebro is located 35 km northwest of the city of Zaragoza, on the right bank of the Ebro River at the outlet of a ravine (Juan Gastón) towards the river, with a catchment area of more than 230 km2. [...] Read more.
Alcalá de Ebro is located 35 km northwest of the city of Zaragoza, on the right bank of the Ebro River at the outlet of a ravine (Juan Gastón) towards the river, with a catchment area of more than 230 km2. Over time, urbanisation and agricultural development have eliminated the last stretch of the drainage channel, and these water inputs have been channelled underground, filtering through the ground. This section of the Ebro Valley rests on a marly tertiary substratum, which promotes dissolution-subbing processes that can lead to sinkholes. The ground tends to sink gradually or suddenly collapse. Many studies have been carried out to understand not only the origin of the phenomenon but also its geometry and the area affected by it in the town of Alcalá de Ebro. In this sense, it has been possible to model an area around the main access road, where numerous collapsing sinkholes have been found, blocking the road and affecting houses. It also affects the embankment that protects the town from the floods of the river Ebro. These studies have provided specific knowledge, enabling us to evaluate and implement underground consolidation measures, which have shown apparent success. Several injection campaigns have been carried out, initially with expansion resins and finally with columnar development, using special low-mobility mortars to fill and consolidate the undermined areas and prevent new subsidence. These technical solutions propose a method of ground treatment that we believe is novel for this type of geological process. The results have been satisfactory, but it is considered necessary to continue monitoring the situation and to extend attention to a wider area to prevent, as far as possible, new problems of subsidence and collapse. In this sense, the objective is to continue the control and monitoring of possible phenomena related to subsidence problems in the affected area and its immediate surroundings, to detect and, if necessary, anticipate subsidence or collapse phenomena that could affect the body of the embankment. Full article
Show Figures

Figure 1

28 pages, 2480 KiB  
Article
Sustainable Water-Related Hazards Assessment in Open Pit-to-Underground Mining Transitions: An IDRR and MCDM Approach at Sijiaying Iron Mine, China
by Aboubakar Siddique, Zhuoying Tan, Wajid Rashid and Hilal Ahmad
Water 2025, 17(9), 1354; https://doi.org/10.3390/w17091354 - 30 Apr 2025
Cited by 2 | Viewed by 662
Abstract
The transition from open pit to underground mining intensifies water-related hazards such as Acid Mine Drainage (AMD), groundwater contamination, and aquifer depletion, threatening ecological and socio-economic sustainability. This study develops an Inclusive Disaster Risk Reduction (IDRR) framework using a Multi-Dimensional Risk (MDR) approach [...] Read more.
The transition from open pit to underground mining intensifies water-related hazards such as Acid Mine Drainage (AMD), groundwater contamination, and aquifer depletion, threatening ecological and socio-economic sustainability. This study develops an Inclusive Disaster Risk Reduction (IDRR) framework using a Multi-Dimensional Risk (MDR) approach to holistically assess water hazards in China’s mining regions, integrating environmental, social, governance, economic, technical, community-based, and technological dimensions. A Multi-Criteria Decision-Making (MCDM) model combining the Fuzzy Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) evaluates risks, enhanced by a Z-number Fuzzy Delphi AHP (ZFDAHP) spatiotemporal model to dynamically weight hazards across temporal (short-, medium-, long-term) and spatial (local to global) scales. Applied to the Sijiaying Iron Mine, AMD (78% severity) and groundwater depletion (72% severity) emerge as dominant hazards exacerbated by climate change impacts (36.3% dynamic weight). Real-time IoT monitoring systems and AI-driven predictive models demonstrate efficacy in mitigating contamination, while gender-inclusive governance and community-led aquifer protection address socio-environmental gaps. The study underscores the misalignment between static regulations and dynamic spatiotemporal risks, advocating for Lifecycle Assessments (LCAs) and transboundary water agreements. Policy recommendations prioritize IoT adoption, carbon–water nexus incentives, and Indigenous knowledge integration to align mining transitions with Sustainable Development Goals (SDGs) 6 (Clean Water), 13 (Climate Action), and 14 (Life Below Water). This research advances a holistic strategy to harmonize mineral extraction with water security, offering scalable solutions for global mining regions facing similar ecological and governance challenges. Full article
Show Figures

Figure 1

20 pages, 1363 KiB  
Review
Optimal Arrangement Strategy of IoT Sensors in Urban Drainage Networks: A Review
by Yiyi Ma, Tianyu Guo and Yiran Wang
Appl. Sci. 2025, 15(9), 4976; https://doi.org/10.3390/app15094976 - 30 Apr 2025
Viewed by 758
Abstract
The Urban Drainage Network (UDN) is a type of underground municipal infrastructure responsible for transporting sewage and rainwater. To keep abreast of the hydraulic and water quality conditions of the pipes and to detect problems such as pipe clogging, pollution and leakage, real-time [...] Read more.
The Urban Drainage Network (UDN) is a type of underground municipal infrastructure responsible for transporting sewage and rainwater. To keep abreast of the hydraulic and water quality conditions of the pipes and to detect problems such as pipe clogging, pollution and leakage, real-time monitoring sensors have been widely adopted, accomplished with the development of IoT technologies. However, the intricate topology and numerous nodes of drainage pipes complicate IoT sensor placement strategies, especially in the selection of sensors and the location of monitoring points. This review examines application cases of IoT sensors in UDNs and some other hydraulic networks, evaluating the characteristics and applicability of various optimal placement methods and theories. A general framework was proposed applicable to the optimal placement of IoT sensors in the UDN, including object classification–method selection–quantitative evaluation. Currently, the quantitative evaluation of monitoring schemes lacks a systematic process, and existing layout methods may not be optimal. Future research can explore dynamic optimization strategies through phased deployment and feedback iteration, which can enhance the accuracy and objectivity of sensor layout design and evaluation. Full article
(This article belongs to the Special Issue Application and Simulation of Fluid Dynamics in Pipeline Systems)
Show Figures

Figure 1

19 pages, 8359 KiB  
Article
Driving Effects of Coal Mining Activities on Microbial Communities and Hydrochemical Characteristics in Different Zones
by Zongkui Zhu, Yating Gao, Li Zhang and Yajun Sun
Sustainability 2025, 17(9), 4000; https://doi.org/10.3390/su17094000 - 29 Apr 2025
Viewed by 349
Abstract
Elucidating the microbial–hydrochemical interactions in distinct functional zones of coal mines holds significant implications for groundwater pollution mitigation strategies in mining regions. Taking Xinji No. 2 Coal Mine as an example, 15 water samples (including surface water, goaf water, sump water, working face [...] Read more.
Elucidating the microbial–hydrochemical interactions in distinct functional zones of coal mines holds significant implications for groundwater pollution mitigation strategies in mining regions. Taking Xinji No. 2 Coal Mine as an example, 15 water samples (including surface water, goaf water, sump water, working face drainage, rock roadway water, and coal roadway water) were collected from six surface and underground areas for hydrochemical and microbial detection analysis. The results show that bacterial genera such as Exiguobacterium and Mycobacterium cannot adapt to high-salinity environments with elevated K+ + Na+ concentrations, showing negative correlation with TDS. Microbial communities related to sulfate serve as important indicators for microbial technology-based pollution control in coal mine groundwater, where sulfate-reducing bacteria (e.g., norank_f__Desulfuromonadaceae) can reduce SO42− concentrations and improve mine water quality. Low dissolved oxygen (DO) concentrations lead to decreased abundance of aerobic microorganisms, hindering the formation of stable microbial communities in mines. Affected by mine water quality, the confluence of mine drainage into rivers results in HCO3 and SO42− concentrations at the confluence being higher than upstream, which gradually return to upstream concentrations after entering the downstream. However, due to the influx of nitrogen cycle-related bacteria and organic matter from mine water into surface water, increased microbial physiological activities and carbon sources cause NO3 concentrations to increase more than tenfold. The formation stages of mine water quality exhibit regional characteristics, with goaf areas showing distinct hydrochemical components and microbial communities compared to other zones. Based on this research, new microbial approaches for groundwater pollution control in coal mining areas are proposed: (1) selecting and cultivating functional microorganisms (such as SRB and organic matter-degrading bacteria) to develop biological materials for mine water remediation; (2) regulating the transformation of elements by adjusting carbon sources and oxygen supply according to indigenous microbial requirements, thereby reducing pollutant concentrations in water bodies. Full article
Show Figures

Figure 1

28 pages, 7877 KiB  
Article
Feasibility Analysis of the Utilization of Directional Butted-Well Salt Caverns with Large Height Difference for Underground Energy Storage
by Haitao Li, Dewen Zheng, Zhi Chen, Kang Li, Qiqi Wanyan, Yanxia Kou, Lina Ran, Song Bai, Jianan Wu, Min Zhang, Zeya Chen, Ye Tao and Yuanqing Wang
Appl. Sci. 2025, 15(9), 4716; https://doi.org/10.3390/app15094716 - 24 Apr 2025
Viewed by 439
Abstract
The reconstruction and utilization of old salt caverns with butted wells are of great significance for accelerating the construction of large-scale underground energy storage facilities, realizing energy transformation, and achieving the “dual carbon” goals. However, the renovation work of old butted-well caverns is [...] Read more.
The reconstruction and utilization of old salt caverns with butted wells are of great significance for accelerating the construction of large-scale underground energy storage facilities, realizing energy transformation, and achieving the “dual carbon” goals. However, the renovation work of old butted-well caverns is still in its infancy, facing technical bottlenecks in transformation methods and operational safety. This paper takes the butted-well salt cavern with a large height difference in Pingdingshan, Henan province, as the research object. Through theoretical analysis and numerical simulation, the feasibility of its reconstruction and utilization is systematically studied from the aspects of gas injection and brine discharge methods, technology parameters, and operation stability. The results show that the gas injection and brine drainage method of butted-well salt caverns is closely related to residue utilization. The “one-injection-one-discharge” method is suitable for the old butted-well salt cavern with a large height difference, considering residue utilization and economy. During gas storage, there are significant deformation differences on both sides of the cavity. The deeper cavern suffers more damage and has weaker stability compared with the shallower one, and the conventional method for determining the operating pressure based on the casing shoe has limitations. The internal pressures of this salt-cavern gas storage structure are basically equal. A new mode for determining the operating pressure of these large-height-difference butted-well salt caverns is proposed: taking the lower limit for the deeper cavern and the upper limit for the shallower one. Based on theoretical analysis, numerical simulation, and on-site pilot test insights, the renovation and utilization of old large-height-difference butted-well caverns are feasible. This study provides guidance for converting butted-well salt caverns into underground energy storage structures and accelerating the development of new-type energy storage facilities. Full article
(This article belongs to the Special Issue Applied Research on Energy Harvesting and Storage)
Show Figures

Figure 1

6 pages, 533 KiB  
Opinion
Urban Flood Risk and Resilience: How Can We Protect Our Cities from Flooding?
by Dragan Savić
Hydrology 2025, 12(4), 78; https://doi.org/10.3390/hydrology12040078 - 31 Mar 2025
Cited by 1 | Viewed by 1684
Abstract
This article draws on over 40 years of the author’s experience with hydroinformatics tools for water and sustainability challenges, including flooding. It aims to spark discussion on urban flood risk and resilience rather than provide a literature review or definitive answers. Assessing urban [...] Read more.
This article draws on over 40 years of the author’s experience with hydroinformatics tools for water and sustainability challenges, including flooding. It aims to spark discussion on urban flood risk and resilience rather than provide a literature review or definitive answers. Assessing urban flood risk and resilience is complex due to the spatio-temporal nature of rainfall, urban landscape features (e.g., buildings, roads, bridges and underpasses) and the interaction between aboveground and underground drainage systems. Flood simulation methods have evolved to analyse flood mitigation schemes, damage evaluation, flood risk mapping and green infrastructure impacts. Advances in terrain mapping technologies have improved flood analyses. Despite investments in flood management infrastructure, a residual flood risk remains, necessitating an understanding of the recovery and return to normality post-flood. Both risk and resilience approaches are essential for urban flood planning and management. Future challenges and opportunities include both technological and governance solutions, with artificial intelligence advancements offering the potential for digital twins to better protect urban communities and enhance the recovery from flood disasters. Full article
Show Figures

Figure 1

21 pages, 4414 KiB  
Article
Study on Seepage Effect of Roadway Based on Polyformaldehyde (POM) Fiber Concrete
by Yongshuai Sang and Guangjin Wang
Appl. Sci. 2025, 15(7), 3503; https://doi.org/10.3390/app15073503 - 23 Mar 2025
Viewed by 421
Abstract
This article presents the results of a study focused on enhancing the permeability resistance of roadways using polyformaldehyde fiber-reinforced concrete. The uniqueness of this study is its interest in polyformaldehyde fiber, which has not been widely studied in underground mining roadways, especially in [...] Read more.
This article presents the results of a study focused on enhancing the permeability resistance of roadways using polyformaldehyde fiber-reinforced concrete. The uniqueness of this study is its interest in polyformaldehyde fiber, which has not been widely studied in underground mining roadways, especially in relation to its impact on permeability resistance. The permeability resistance of polyformaldehyde fiber-reinforced concrete with different lengths (30 mm, 36 mm, 42 mm) and dosages (5 kg/m3, 7 kg/m3, 9 kg/m3) was tested by the step pressure method and seepage height method. The hydrostatic pressure and seepage height of polyformaldehyde fiber-reinforced concrete were analyzed, and the best polyformaldehyde fiber-reinforced concrete with the best permeability resistance was selected to carry out numerical simulation based on a phosphate mine in Yunnan Province. The changes in the pore water pressure, maximum principal stress, and displacement of the roadway’s surrounding rock under the influence of groundwater seepage were analyzed. The results show that the addition of polyformaldehyde fiber can effectively improve the impermeability of concrete. With the increase in length and dosage, the impermeability of the polyformaldehyde fiber concrete increases first and then decreases. Under ordinary support conditions, the surrounding rock of the roadway is affected by the seepage of groundwater over time, which leads to the roadway strength’s decline and creep deformation, necessitating the strengthening of the roadway’s anti-drainage measures. Under conditions of reinforcement with polyformaldehyde fiber concrete, the displacement of the top of the roadway obviously reduces, which can effectively improve the permeability resistance and stability of the roadway. Full article
Show Figures

Figure 1

Back to TopTop