Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = ultrathin Al2O3 film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2701 KiB  
Article
Ultra-Thin Al2O3 Grown by PEALD for Low-Power Molybdenum Disulfide Field-Effect Transistors
by Shiwei Sun, Dinghao Ma, Boxi Ye, Guanshun Liu, Nanting Luo and Hao Huang
J. Low Power Electron. Appl. 2025, 15(2), 26; https://doi.org/10.3390/jlpea15020026 - 30 Apr 2025
Viewed by 935
Abstract
The lack of ultra-thin, controllable dielectric layers poses challenges for reducing power consumption in 2D FETs. In this study, plasma-enhanced atomic layer deposition was employed to fabricate a highly reliable, ultra-thin aluminum oxide (Al2O3) dielectric layer with a thickness [...] Read more.
The lack of ultra-thin, controllable dielectric layers poses challenges for reducing power consumption in 2D FETs. In this study, plasma-enhanced atomic layer deposition was employed to fabricate a highly reliable, ultra-thin aluminum oxide (Al2O3) dielectric layer with a thickness of 4 nm. The Al2O3 film grown on highly conductive silicon substrates demonstrated a maximum breakdown field of 5.98 MV/cm and a leakage current density as low as 2.48 × 10−7 A/cm2 at 1 MV/cm. MoS2 FETs incorporating this Al2O3 gate dielectric exhibited high-performance n-type characteristics at a low operating voltage of 1 V, achieving a subthreshold swing (SS) of 65 mV/dec, a threshold voltage (Vth) of −0.96 V, a high carrier mobility (μ) of 34.85 cm2·V−1·s−1, and an on/off current ratio exceeding 106. These results highlight the potential of Al2O3 in enabling low-power 2D electronic devices for post-Moore applications. Full article
Show Figures

Figure 1

12 pages, 3358 KiB  
Article
Water-Soluble Sacrificial Layer of Sr3Al2O6 for the Synthesis of Free-Standing Doped Ceria and Strontium Titanate
by Simone Sanna, Olga Krymskaya and Antonello Tebano
Appl. Sci. 2025, 15(4), 2192; https://doi.org/10.3390/app15042192 - 19 Feb 2025
Viewed by 2850
Abstract
Epitaxial layers of water-soluble Sr3Al2O6 were fabricated as sacrificial layers on SrTiO3 (100) single-crystal substrates using the Pulsed Laser Deposition technique. This approach envisages the possibility of developing a new generation of micro-Solid Oxide Fuel Cells and [...] Read more.
Epitaxial layers of water-soluble Sr3Al2O6 were fabricated as sacrificial layers on SrTiO3 (100) single-crystal substrates using the Pulsed Laser Deposition technique. This approach envisages the possibility of developing a new generation of micro-Solid Oxide Fuel Cells and micro-Solid Oxide Electrochemical Cells for portable energy conversion and storage devices. The sacrificial layer technique offers a pathway to engineering free-standing membranes of electrolytes, cathodes, and anodes with total thicknesses on the order of a few nanometers. Furthermore, the ability to etch the SAO sacrificial layer and transfer ultra-thin oxide films from single-crystal substrates to silicon-based circuits opens possibilities for creating a novel class of mixed electronic and ionic devices with unexplored potential. In this work, we report the growth mechanism and structural characterization of the SAO sacrificial layer. Epitaxial samarium-doped ceria films, grown on SrTiO3 substrates using Sr3Al2O6 as a buffer layer, were successfully transferred onto silicon wafers. This demonstration highlights the potential of the sacrificial layer method for integrating high-quality oxide thin films into advanced device architectures, bridging the gap between oxide materials and silicon-based technologies. Full article
(This article belongs to the Special Issue Advanced Materials for Photoelectrochemical Energy Conversion)
Show Figures

Figure 1

7 pages, 1711 KiB  
Article
Control of Threshold Voltage in ZnO/Al2O3 Thin-Film Transistors through Al2O3 Growth Temperature
by Dongki Baek, Se-Hyeong Lee, So-Young Bak, Hyeongrok Jang, Jinwoo Lee and Moonsuk Yi
Electronics 2024, 13(8), 1544; https://doi.org/10.3390/electronics13081544 - 18 Apr 2024
Cited by 3 | Viewed by 1931
Abstract
Ultra-thin ZnO thin-film transistors with a channel thickness of <10 nm have disadvantages of a high threshold voltage and a low carrier mobility due to a low carrier concentration. Although these issues can be addressed by utilizing the strong reducing power of tri-methyl-aluminum, [...] Read more.
Ultra-thin ZnO thin-film transistors with a channel thickness of <10 nm have disadvantages of a high threshold voltage and a low carrier mobility due to a low carrier concentration. Although these issues can be addressed by utilizing the strong reducing power of tri-methyl-aluminum, a method is required to control parameters such as the threshold voltage. Therefore, we fabricated a ZnO/Al2O3 thin-film transistor with a thickness of 6 nm and adjusted the threshold voltage and carrier mobility through the modulation of carrier generation by varying the growth temperature of Al2O3. As the growth temperature of Al2O3 increased, oxygen vacancies generated at the hetero–oxide interface increased, supplying a free carrier into the channel and causing the threshold voltage to shift in the negative direction. The optimized device, a ZnO/Al2O3 thin-film transistor with a growth temperature of 140 °C, exhibited a μsat of 12.26 cm2/V∙s, Vth of 8.16 V, SS of 0.65 V/decade, and ION/OFF of 3.98 × 106. X-ray photoelectron spectroscopy was performed to analyze the properties of ZnO/Al2O3 thin films. Full article
(This article belongs to the Section Semiconductor Devices)
Show Figures

Figure 1

14 pages, 3715 KiB  
Article
Al2O3 Thin Layer Formed inside Porous Membrane Using Spray Synthesis Method and Its Application
by Masato Imai, Tadahiko Kubota, Atsushi Miyazawa, Masahiro Aoki, Haruna Mori, Yuta Komaki and Kenji Yoshino
Crystals 2024, 14(2), 195; https://doi.org/10.3390/cryst14020195 - 17 Feb 2024
Cited by 1 | Viewed by 1835
Abstract
Aluminum oxide (Al2O3) films have been investigated for use in various applications, and numerous deposition techniques have been reported. The spray synthesis method has the advantage of forming a thin layer of crystal at low temperatures using the appropriate [...] Read more.
Aluminum oxide (Al2O3) films have been investigated for use in various applications, and numerous deposition techniques have been reported. The spray synthesis method has the advantage of forming a thin layer of crystal at low temperatures using the appropriate precursors. A precursor prepared by diluting Methylaluminoxane with N-methyl pyrrolidone was sprayed onto a porous membrane while varying conditions such as the substrate temperature, feeding speed, and spray amount. The solution penetrated the film during spray application, and the ultra-thin layers deposited on the side wall of the internal pores were observed using a cross-sectional transmission electron microscope (XTEM). The lattice image obtained using the TEM and the composition analysis conducted using a scanning TEM and an energy-dispersive X-ray spectroscope suggest that this thin layer is a layer of Al2O3. The formation of Al2O3 occurred at lower temperatures than in previous reports. This is a major advantage for applications with low-melting-point materials. The most suitable spraying conditions were determined based on the state of deposition on the surface and inside the membrane. These conditions were applied to a three-layer separator for lithium-ion batteries and their effect on thermal stability was investigated. Through heating experiments and XRD analysis, it was confirmed that the shrinkage and melting of the separator are suppressed by spraying. This process can be expected to have wide applications in low-melting-point materials such as polyolefin. Full article
Show Figures

Figure 1

11 pages, 2518 KiB  
Article
Ultrathin Flexible Encapsulation Materials Based on Al2O3/Alucone Nanolaminates for Improved Electrical Stability of Silicon Nanomembrane-Based MOS Capacitors
by Zhuofan Wang, Hongliang Lu, Yuming Zhang, Chen Liu, Haonan Zhang and Yanhao Yu
Micromachines 2024, 15(1), 41; https://doi.org/10.3390/mi15010041 - 24 Dec 2023
Cited by 1 | Viewed by 2107
Abstract
Ultrathin flexible encapsulation (UFE) using multilayered films has prospects for practical applications, such as implantable and wearable electronics. However, existing investigations of the effect of mechanical bending strains on electrical properties after the encapsulation procedure provide insufficient information for improving the electrical stability [...] Read more.
Ultrathin flexible encapsulation (UFE) using multilayered films has prospects for practical applications, such as implantable and wearable electronics. However, existing investigations of the effect of mechanical bending strains on electrical properties after the encapsulation procedure provide insufficient information for improving the electrical stability of ultrathin silicon nanomembrane (Si NM)-based metal oxide semiconductor capacitors (MOSCAPs). Here, we used atomic layer deposition and molecular layer deposition to generate 3.5 dyads of alternating 11 nm Al2O3 and 3.5 nm aluminum alkoxide (alucone) nanolaminates on flexible Si NM-based MOSCAPs. Moreover, we bent the MOSCAPs inwardly to radii of 85 and 110.5 mm and outwardly to radii of 77.5 and 38.5 mm. Subsequently, we tested the unbent and bent MOSCAPs to determine the effect of strain on various electrical parameters, namely the maximum capacitance, minimum capacitance, gate leakage current density, hysteresis voltage, effective oxide charge, oxide trapped charge, interface trap density, and frequency dispersion. The comparison of encapsulated and unencapsulated MOSCAPs on these critical parameters at bending strains indicated that Al2O3/alucone nanolaminates stabilized the electrical and interfacial characteristics of the Si NM-based MOSCAPs. These results highlight that ultrathin Al2O3/alucone nanolaminates are promising encapsulation materials for prolonging the operational lifetimes of flexible Si NM-based metal oxide semiconductor field-effect transistors. Full article
(This article belongs to the Special Issue Reliability Issues in Advanced Transistor Nodes)
Show Figures

Figure 1

11 pages, 3434 KiB  
Article
The Excellent Bending Limit of a Flexible Si-Based Hf0.5Zr0.5O2 Ferroelectric Capacitor with an Al Buffer Layer
by Xinyu Xie, Jiabin Qi, Hui Wang, Zongfang Liu, Wenhao Wu, Choonghyun Lee and Yi Zhao
Electronics 2024, 13(1), 24; https://doi.org/10.3390/electronics13010024 - 20 Dec 2023
Viewed by 1566
Abstract
Flexible Si-based Hf0.5Zr0.5O2 (HZO) ferroelectric devices exhibit numerous advantages in the internet of things (IoT) and edge computing due to their low-power operation, superior scalability, excellent CMOS compatibility, and light weight. However, limited by the brittleness of Si, [...] Read more.
Flexible Si-based Hf0.5Zr0.5O2 (HZO) ferroelectric devices exhibit numerous advantages in the internet of things (IoT) and edge computing due to their low-power operation, superior scalability, excellent CMOS compatibility, and light weight. However, limited by the brittleness of Si, defects are easily induced in ferroelectric thin films, leading to ferroelectricity degradation and a decrease in bending limit. Thus, a solution involving the addition of an ultra-thin Al buffer layer on the back of the device is proposed to enhance the bending limit and preserve ferroelectric performance. The device equipped with an Al buffer layer exhibits a 2Pr value of 29.5 μC/cm2 (25.1 μC/cm2) at an outward (inward) bending radius of 5 mm, and it experiences a decrease to 22.1 μC/cm2 (16.8 μC/cm2), even after 6000 bending cycles at a 12 mm outward (inward) radius. This outstanding performance can be attributed to the additional stress generated by the dense Al buffer layer, which is transmitted to the Si substrate and reduces the bending stress on the Si substrate. Notably, the diminished bending stress leads to a reduced crack growth in ferroelectric devices. This work will be beneficial for the development of flexible Si-based ferroelectric devices with high durability, fatigue resistance, and functional mobility. Full article
Show Figures

Figure 1

20 pages, 4281 KiB  
Article
Combination of Multiple Operando and In-Situ Characterization Techniques in a Single Cluster System for Atomic Layer Deposition: Unraveling the Early Stages of Growth of Ultrathin Al2O3 Films on Metallic Ti Substrates
by Carlos Morales, Ali Mahmoodinezhad, Rudi Tschammer, Julia Kosto, Carlos Alvarado Chavarin, Markus Andreas Schubert, Christian Wenger, Karsten Henkel and Jan Ingo Flege
Inorganics 2023, 11(12), 477; https://doi.org/10.3390/inorganics11120477 - 14 Dec 2023
Cited by 5 | Viewed by 3033
Abstract
This work presents a new ultra-high vacuum cluster tool to perform systematic studies of the early growth stages of atomic layer deposited (ALD) ultrathin films following a surface science approach. By combining operando (spectroscopic ellipsometry and quadrupole mass spectrometry) and in situ (X-ray [...] Read more.
This work presents a new ultra-high vacuum cluster tool to perform systematic studies of the early growth stages of atomic layer deposited (ALD) ultrathin films following a surface science approach. By combining operando (spectroscopic ellipsometry and quadrupole mass spectrometry) and in situ (X-ray photoelectron spectroscopy) characterization techniques, the cluster allows us to follow the evolution of substrate, film, and reaction intermediates as a function of the total number of ALD cycles, as well as perform a constant diagnosis and evaluation of the ALD process, detecting possible malfunctions that could affect the growth, reproducibility, and conclusions derived from data analysis. The homemade ALD reactor allows the use of multiple precursors and oxidants and its operation under pump and flow-type modes. To illustrate our experimental approach, we revisit the well-known thermal ALD growth of Al2O3 using trimethylaluminum and water. We deeply discuss the role of the metallic Ti thin film substrate at room temperature and 200 °C, highlighting the differences between the heterodeposition (<10 cycles) and the homodeposition (>10 cycles) growth regimes at both conditions. This surface science approach will benefit our understanding of the ALD process, paving the way toward more efficient and controllable manufacturing processes. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Materials)
Show Figures

Figure 1

10 pages, 7054 KiB  
Communication
Improved Breakdown Strength and Restrained Leakage Current of Sandwich Structure Ferroelectric Polymers Utilizing Ultra-Thin Al2O3 Nanosheets
by Yi Zeng, Hao Pan, Zhonghui Shen, Yang Shen and Zhifu Liu
Nanomaterials 2023, 13(21), 2836; https://doi.org/10.3390/nano13212836 - 26 Oct 2023
Cited by 3 | Viewed by 1663
Abstract
Flexible capacity applications demand a large energy storage density and high breakdown electric field strength of flexible films. Here, P(VDF-HFP) with ultra-thin Al2O3 nanosheet composite films were designed and fabricated through an electrospinning process followed by hot-pressing into a sandwich [...] Read more.
Flexible capacity applications demand a large energy storage density and high breakdown electric field strength of flexible films. Here, P(VDF-HFP) with ultra-thin Al2O3 nanosheet composite films were designed and fabricated through an electrospinning process followed by hot-pressing into a sandwich structure. The results show that the insulating ultra-thin Al2O3 nanosheets and the sandwich structure can enhance the composites’ breakdown strength (by 24.8%) and energy density (by 30.6%) compared to the P(VDF-HFP) polymer matrix. An energy storage density of 23.5 J/cm3 at the ultrahigh breakdown strength of 740 kV/mm can be therefore realized. The insulating test and phase-field simulation results reveal that ultra-thin nanosheets insulating buffer layers can reduce the leakage current in composites; thus, it affects the electric field spatial distribution to enhance breakdown strength. Our research provides a feasible method to increase the breakdown strength of ferroelectric polymers, which is comparable to those of non-ferroelectric polymers. Full article
Show Figures

Figure 1

14 pages, 4640 KiB  
Article
Synthesis of TiO2/Al2O3 Double-Layer Inverse Opal by Thermal and Plasma-Assisted Atomic Layer Deposition for Photocatalytic Applications
by Hamsasew Hankebo Lemago, Feras Shugaa Addin, Dániel Atilla Kárajz, Tamás Igricz, Bence Parditka, Zoltán Erdélyi, Dóra Hessz and Imre Miklós Szilágyi
Nanomaterials 2023, 13(8), 1314; https://doi.org/10.3390/nano13081314 - 8 Apr 2023
Cited by 5 | Viewed by 3639
Abstract
In comparison to conventional nano-infiltration approaches, the atomic layer deposition (ALD) technology exhibits greater potential in the fabrication of inverse opals (IOs) for photocatalysts. In this study, TiO2 IO and ultra-thin films of Al2O3 on IO were successfully deposited [...] Read more.
In comparison to conventional nano-infiltration approaches, the atomic layer deposition (ALD) technology exhibits greater potential in the fabrication of inverse opals (IOs) for photocatalysts. In this study, TiO2 IO and ultra-thin films of Al2O3 on IO were successfully deposited using thermal or plasma-assisted ALD and vertical layer deposition from a polystyrene (PS) opal template. SEM/EDX, XRD, Raman, TG/DTG/DTA-MS, PL spectroscopy, and UV Vis spectroscopy were used for the characterization of the nanocomposites. The results showed that the highly ordered opal crystal microstructure had a face-centered cubic (FCC) orientation. The proposed annealing temperature efficiently removed the template, leaving the anatase phase IO, which provided a small contraction in the spheres. In comparison to TiO2/Al2O3 plasma ALD, TiO2/Al2O3 thermal ALD has a better interfacial charge interaction of photoexcited electron–hole pairs in the valence band hole to restrain recombination, resulting in a broad spectrum with a peak in the green region. This was demonstrated by PL. Strong absorption bands were also found in the UV regions, including increased absorption due to slow photons and a narrow optical band gap in the visible region. The results from the photocatalytic activity of the samples show decolorization rates of 35.4%, 24.7%, and 14.8%, for TiO2, TiO2/Al2O3 thermal, and TiO2/Al2O3 plasma IO ALD samples, respectively. Our results showed that ultra-thin amorphous ALD-grown Al2O3 layers have considerable photocatalytic activity. The Al2O3 thin film grown by thermal ALD has a more ordered structure compared to the one prepared by plasma ALD, which explains its higher photocatalytic activity. The declined photocatalytic activity of the combined layers was observed due to the reduced electron tunneling effect resulting from the thinness of Al2O3. Full article
Show Figures

Figure 1

11 pages, 3760 KiB  
Article
Composite p-Si/Al2O3/Ni Photoelectrode for Hydrogen Evolution Reaction
by Putinas Kalinauskas, Laurynas Staišiūnas, Asta Grigucevičienė, Konstantinas Leinartas, Aldis Šilėnas, Dalia Bučinskienė and Eimutis Juzeliūnas
Materials 2023, 16(7), 2785; https://doi.org/10.3390/ma16072785 - 30 Mar 2023
Viewed by 1602
Abstract
A photoelectrode for hydrogen evolution reaction (HER) is proposed, which is based on p-type silicon (p-Si) passivated with an ultrathin (10 nm) alumina (Al2O3) layer and modified with microformations of a nickel catalyst. The Al2O3 layer [...] Read more.
A photoelectrode for hydrogen evolution reaction (HER) is proposed, which is based on p-type silicon (p-Si) passivated with an ultrathin (10 nm) alumina (Al2O3) layer and modified with microformations of a nickel catalyst. The Al2O3 layer was formed using atomic layer deposition (ALD), while the nickel was deposited photoelectrochemically. The alumina film improved the electronic properties of the substrate and, at the same time, protected the surface from corrosion and enabled the deposition of nickel microformations. The Ni catalyst increased the HER rate up to one order of magnitude, which was comparable with the rate measured on a hydrogen-terminated electrode. Properties of the alumina film on silicon were comprehensively studied. Grazing incidence X-ray diffraction (GI-XRD) identified the amorphous structure of the ALD oxide layer. Optical profilometry and spectroscopic ellipsometry (SE) showed stability of the film in an acid electrolyte. Resistivity measurements showed that annealing of the film increases its electric resistance by four times. Full article
Show Figures

Figure 1

10 pages, 3404 KiB  
Communication
Al2O3 Ultra-Thin Films Deposited by PEALD for Rubidium Optically Pumped Atomic Magnetometers with On-Chip Photodiode
by Florival M. Cunha, Manuel F. Silva, Nuno M. Gomes and José H. Correia
Coatings 2023, 13(3), 638; https://doi.org/10.3390/coatings13030638 - 17 Mar 2023
Cited by 3 | Viewed by 3097
Abstract
This communication shows the recipe for plasma-enhanced atomic layer deposition (PEALD) Al2O3 ultra-thin films with thicknesses below 40 nm. Al2O3 ultra-thin films were deposited by PEALD to improve the rubidium optically pumped atomic magnetometers’ (OPMs) cell lifetime. [...] Read more.
This communication shows the recipe for plasma-enhanced atomic layer deposition (PEALD) Al2O3 ultra-thin films with thicknesses below 40 nm. Al2O3 ultra-thin films were deposited by PEALD to improve the rubidium optically pumped atomic magnetometers’ (OPMs) cell lifetime. This requirement is due to the consumption of the alkali metal (rubidium) inside the vapor cells. Moreover, as a silicon wafer was used, an on-chip photodiode was already integrated into the fabrication of the OPM. The ALD parameters were achieved with a GPC close to 1.2 Å/cycle and the ALD window threshold at 250 °C. The PEALD Al2O3 ultra-thin films showed a refractive index of 1.55 at 795 nm (tuned to the D1 transition of rubidium for spin-polarization of the atoms). The EDS chemical elemental analysis showed an atomic percentage of 58.65% for oxygen (O) and 41.35% for aluminum (Al), with a mass percentage of 45.69% for O and 54.31% for Al. A sensitive XPS surface elemental composition confirmed the formation of the PEALD Al2O3 ultra-thin film with an Al 2s peak at 119.2 eV, Al 2p peak at 74.4 eV, and was oxygen rich. The SEM analysis presented a non-uniformity of around 3%. Finally, the rubidium consumption in the coated OPM was monitored. Therefore, PEALD Al2O3 ultra-thin films were deposited while controlling their optical refractive index, crystalline properties, void fraction, surface roughness and thickness uniformity (on OPM volume 1 mm × 1 mm × 0.180 mm cavity etched by RIE), as well as the chemical composition for improving the rubidium OPM lifetime. Full article
(This article belongs to the Special Issue Advanced Films and Coatings Based on Atomic Layer Deposition)
Show Figures

Figure 1

10 pages, 2313 KiB  
Article
Modeling of Conduction Mechanisms in Ultrathin Films of Al2O3 Deposited by ALD
by Silvestre Salas-Rodríguez, Joel Molina-Reyes, Jaime Martínez-Castillo, Rosa M. Woo-Garcia, Agustín L. Herrera-May and Francisco López-Huerta
Electronics 2023, 12(4), 903; https://doi.org/10.3390/electronics12040903 - 10 Feb 2023
Cited by 6 | Viewed by 3023
Abstract
We reported the analysis and modeling of some conduction mechanisms in ultrathin aluminum oxide (Al2O3) films of 6 nm thickness, which are deposited by atomic layer deposition (ALD). This modeling included current-voltage measurements to metal-insulator-semiconductor (MIS) capacitors with gate [...] Read more.
We reported the analysis and modeling of some conduction mechanisms in ultrathin aluminum oxide (Al2O3) films of 6 nm thickness, which are deposited by atomic layer deposition (ALD). This modeling included current-voltage measurements to metal-insulator-semiconductor (MIS) capacitors with gate electrode areas of 3.6 × 10−5 cm2 and 6.4 × 10−5 cm2 at room temperature. The modeling results showed the presence of ohmic conduction, Poole Frenkel emission, Schottky emission, and trap-assisted tunneling mechanisms through the Al2O3 layer. Based on extracted results, we measured a dielectric conductivity of 5 × 10−15 S/cm at low electric fields, a barrier height at oxide/semiconductor interface of 2 eV, and an energy trap level into bandgap with respect to the conduction band of 3.11 eV. These results could be affected by defect density related to oxygen vacancies, dangling bonds, fixed charges, or interface traps, which generate conduction mechanisms through and over the dielectric energy barrier. In addition, a current density model is developed by considering the sum of dominant conduction mechanisms and results based on the finite element method for electronic devices, achieving a good match with experimental data. Full article
(This article belongs to the Special Issue Advances in Thin-Film Systems)
Show Figures

Figure 1

16 pages, 8744 KiB  
Article
Modeling and Investigation of Rear-Passivated Ultrathin CIGS Solar Cell
by Nour El I. Boukortt, Salvatore Patanè and Mabrouk Adouane
Electronics 2023, 12(3), 758; https://doi.org/10.3390/electronics12030758 - 2 Feb 2023
Cited by 3 | Viewed by 2166
Abstract
In this paper, we use numerical simulations to investigate ultrathin Cu (In1−xGax) Se2 solar cells. In the first part, we focus on the cell configuration in which the PV parameters fit and match the fabricated cell characteristics. Our [...] Read more.
In this paper, we use numerical simulations to investigate ultrathin Cu (In1−xGax) Se2 solar cells. In the first part, we focus on the cell configuration in which the PV parameters fit and match the fabricated cell characteristics. Our goal is to investigate the impact of different loss mechanisms, such as interface trap density (Dit) and absorber trap density (Nt), in different cell pitch sizes on cell performances. Dit defines the number of carrier traps at CIGS/Al2O3 interfaces to recombine with photogenerated carriers. Nt defines the number of carrier traps in the absorber layer. Recombination through traps has been found to be the primary loss process in the investigated cell. Additional numerical simulations reveal appreciable gains in cell performance for various cell pitch sizes, absorber doping densities, Ga content, and graded bandgap under AM1.5 illumination. Research during the recent decade has clarified that the most promising strategy to achieve maximum efficiency consists of the so-called tandem configuration. Therefore, we here propose a u-CIGS/PERT silicon device employing, as a top cell, a u-CIGS cell optimized to take into account the above procedure. The results of these simulations provide insights into the optimization of ultrathin-film CIGS solar cells. Full article
Show Figures

Figure 1

13 pages, 4100 KiB  
Article
Tuning the Selectivity of Metal Oxide Gas Sensors with Vapor Phase Deposited Ultrathin Polymer Thin Films
by Stefan Schröder, Nicolai Ababii, Mihai Brînză, Nicolae Magariu, Lukas Zimoch, Mani Teja Bodduluri, Thomas Strunskus, Rainer Adelung, Franz Faupel and Oleg Lupan
Polymers 2023, 15(3), 524; https://doi.org/10.3390/polym15030524 - 19 Jan 2023
Cited by 13 | Viewed by 3333
Abstract
Metal oxide gas sensors are of great interest for applications ranging from lambda sensors to early hazard detection in explosive media and leakage detection due to their superior properties with regard to sensitivity and lifetime, as well as their low cost and portability. [...] Read more.
Metal oxide gas sensors are of great interest for applications ranging from lambda sensors to early hazard detection in explosive media and leakage detection due to their superior properties with regard to sensitivity and lifetime, as well as their low cost and portability. However, the influence of ambient gases on the gas response, energy consumption and selectivity still needs to be improved and they are thus the subject of intensive research. In this work, a simple approach is presented to modify and increase the selectivity of gas sensing structures with an ultrathin polymer thin film. The different gas sensing surfaces, CuO, Al2O3/CuO and TiO2 are coated with a conformal < 30 nm Poly(1,3,5,7-tetramethyl-tetravinyl cyclotetrasiloxane) (PV4D4) thin film via solvent-free initiated chemical vapor deposition (iCVD). The obtained structures demonstrate a change in selectivity from ethanol vapor to 2-propanol vapor and an increase in selectivity compared to other vapors of volatile organic compounds. In the case of TiO2 structures coated with a PV4D4 thin film, the increase in selectivity to 2-propanol vapors is observed even at relatively low operating temperatures, starting from >200 °C. The present study demonstrates possibilities for improving the properties of metal oxide gas sensors, which is very important in applications in fields such as medicine, security and food safety. Full article
Show Figures

Figure 1

13 pages, 7505 KiB  
Article
Magnetic and Resonance Properties of a Low-Dimensional Cobalt–Aluminum Oxide–Germanium Film Tunnel Junction Deposited by Magnetron Sputtering
by Aleksandr V. Kobyakov, Gennadiy S. Patrin, Vasiliy I. Yushkov, Yaroslav G. Shiyan, Roman Yu. Rudenko, Nikolay N. Kosyrev and Sergey M. Zharkov
Magnetochemistry 2022, 8(10), 130; https://doi.org/10.3390/magnetochemistry8100130 - 18 Oct 2022
Cited by 2 | Viewed by 1985
Abstract
The temperature behavior of saturation magnetization and the temperature behavior of the integral signal intensity in electron magnetic resonance spectra is experimentally studied comprehensively using a low-dimensional Al2O3/Ge/Al2O3/Co (aluminum oxide–cobalt–aluminum oxide–germanium) tunnel junction with different [...] Read more.
The temperature behavior of saturation magnetization and the temperature behavior of the integral signal intensity in electron magnetic resonance spectra is experimentally studied comprehensively using a low-dimensional Al2O3/Ge/Al2O3/Co (aluminum oxide–cobalt–aluminum oxide–germanium) tunnel junction with different deposition velocities of a ferromagnetic metal (Co) thin layer and non-magnetic layers (Al2O3/Ge/Al2O3). The cobalt ferromagnetic layer was deposited on aluminum oxide in two ways: in one cycle of creating the structure and with atmospheric injection before deposition of the cobalt layer. The thermomagnetic curves revealed the appearance of minima observed at low temperatures on both sides of the cobalt layer. Possible sources of precession perturbations at low temperatures can be explained by: the influence of the Al2O3 layer structure on the Al2O3/Co interface; residual gases in the working chamber atmosphere and finely dispersed cobalt pellets distributed over the cobalt film thickness. The work offers information of great significance in terms of practical application, for both fundamental physics and potential applications of ultrathin films. Full article
(This article belongs to the Special Issue Recent Research on Ferromagnetic Materials)
Show Figures

Figure 1

Back to TopTop