Magnetic and Resonance Properties of a Low-Dimensional Cobalt–Aluminum Oxide–Germanium Film Tunnel Junction Deposited by Magnetron Sputtering
Abstract
:1. Introduction
2. Materials and Methods
Experimental Results and Discussion
3. Conclusions
- (1)
- Diffusion of cobalt particles and Al2O3 layer and formation of weakly magnetic interface.
- (2)
- Influence of Al2O3 layer growth structure on cobalt layer growth and, consequently, predominance of either shape anisotropy or crystallographic magnetic anisotropy of ferromagnetic particles.
- (3)
- The formation of Co-Al2O3 granules at the interface and in the volume of the cobalt layer.
- (4)
- Formation of the CoO antiferromagnetic layer on the atmospheric side.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, A.; Zhang, R.; Kumar, P.; Kumar, V.; Kumar, A. Nano-Structured Dilute Magnetic Semiconductors for Efficient Spintronics at Room Temperature. Magnetochemistry 2020, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Viglin, N.A.; Gribov, I.V.; Tsvelikhovskaya, V.M.; Patrakov, E.I. Oxide Removal from the InSb Plate Surface to Produce Lateral Spin Valves. Semiconductors 2019, 53, 264. [Google Scholar] [CrossRef]
- Fert, A.; Jaffrès, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 2001, 64, 184420. [Google Scholar] [CrossRef]
- Danilov, A.P.; Scherbakov, A.V.; Glavin, B.A.; Linnik, T.L.; Kalashnikova, A.M.; Shelukhin, L.A.; Pattnaik, D.P.; Rushforth, A.W.; Love, C.J.; Cavill, S.A.; et al. Optically excited spin pumping mediating collective magnetization dynamics in a spin valve structure. Phys. Rev. B 2018, 98, 060406(R). [Google Scholar] [CrossRef] [Green Version]
- Stupakiewicz, A.; Szerenos, K.; Davydova, M.; Zvezdin, K.A.; Zvezdin, A.K.; Kirilyuk, A.; Kimel, A.V. Selection rules for all-optical magnetic recording in iron garnet. Nat. Commun. 2019, 10, 612. [Google Scholar] [CrossRef] [Green Version]
- Tarasenko, S.A.; Perel’, V.I.; Yassievich, I.N. In-Plane Electric Current Is Induced by Tunneling of Spin-Polarized Carriers. Phys. Rev. Lett. 2004, 93, 056601. [Google Scholar] [CrossRef] [Green Version]
- Nikitchenko, A.I.; Pertsev, N.A. Nanoscale Spin Injector Driven by a Microwave Voltage. Phys. Rev. Appl. 2020, 14, 034022. [Google Scholar] [CrossRef]
- Davidson, A.; Amin, V.P.; Aljuaid, W.S.; Haney, P.M.; Fan, X. Perspectives of electrically generated spin currents in ferromagnetic materials. Phys. Lett. A 2020, 384, 126228. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Maekawa, S.; Xie, X. Spin current as a probe of quantum materials. Nat. Mater. 2020, 19, 139–152. [Google Scholar] [CrossRef]
- Cao, Y.; Xing, G.; Lin, H.; Zhang, N.; Zheng, H.; Wang, K. Prospect of Spin-OrbitronicDevices and Their Applications. iScience 2020, 23, 101614. [Google Scholar] [CrossRef]
- Dieny, B.; Prejbeanu, I.L.; Garello, K.; Gambardella, P.; Freitas, P.; Lehndorff, R.; Raberg, W.; Ebels, U.; Demokritov, S.O.; Akerman, J.; et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 2020, 3, 446–459. [Google Scholar] [CrossRef]
- Tung, R.T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 2014, 1, 1. [Google Scholar]
- Sarkar, A.; Adhikari, R.; Das, A.K. Spin-dependent giant junction magnetoresistance in simple Fe/p-Si(001) Schottky heretrojunction at low temperature. Appl. Phys. A 2019, 125, 60. [Google Scholar] [CrossRef]
- Yamada, M.; Kuroda, F.; Tsukahara, M.; Yamada, S.; Fukushima, T.; Sawano, K.; Oguchi, T.; Hamaya, K. Spin injection through energy-band symmetry matching with high spin polarization in atomically controlled ferromagnet/ferromagnet/semiconductor structures. NPG Asia Mater. 2020, 12, 47. [Google Scholar] [CrossRef]
- Franco, A.F. A neural network for prediction of high intensity resonance modes in magnetic multilayers. New J. Phys. 2020, 22, 013017. [Google Scholar] [CrossRef]
- Ma, P.; Guo, W.; Sun, J.; Gao, J.; Zhang, G.; Xin, Q.; Li, Y.; Song, A. Electron transport mechanism through ultrathin Al2O3 films grown at low temperatures using atomic–layer deposition. Semicond. Sci. Technol. 2019, 34, 10. [Google Scholar] [CrossRef]
- Fujimori, H.; Mitani, S.; Ohnuma, S. Tunnel-type GMR in metal-nonmetal granular alloy thin films. Mater. Sci. Eng. 1995, 31, 219–223. [Google Scholar] [CrossRef]
- Fujimori, H.; Mitani, S.; Ohnuma, S. Atomically Thin Al2O3 Films for Tunnel Junctions. Phys. Rev. Appl. 2017, 7, 064022. [Google Scholar]
- Min, B.; Lodder, J.C.; Jansen, R.; Motohashi, K. Cobalt-Al2O3-silicon tunnel contacts for electrical spin injection into silicon. J. Appl. Phys. 2006, 99, 08S701. [Google Scholar] [CrossRef] [Green Version]
- Kahnouji, H.; Kratzer, P.; Hashemifar, S.J. Abinitio simulation of the structure and transport properties of zirconium and ferromagnetic cobalt contacts on the two-dimensional semiconductor WS2. Phys. Rev. B 2019, 99, 035418. [Google Scholar] [CrossRef] [Green Version]
- Andrieu, S.; Hauet, T.; Gottwald, M.; Garreau, Y. Co/Ni multilayers for spintronics: High spin polarization and tunable magnetic anisotropy. Phys. Rev. Mater. 2018, 2, 064410. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Chen, X.; Zhang, X.; Shi, C. Synthesis and magnetic properties of nickel and cobalt nanoparticles obtained in DMF solution. Solid State Commun. 2006, 139, 403–405. [Google Scholar] [CrossRef]
- Patrin, G.S.; Turpanov, I.A.; Kobyakov, A.V.; Velikanov, D.A.; Patrin, K.G.; Li, L.A.; Mal’tsev, V.K.; Zharkov, S.M.; Yushkov, V.I. Synthesis and magnetic states of cobalt in three-layer Co/Ge/Co films. Phys. Solid State 2014, 56, 301–307. [Google Scholar] [CrossRef]
- Patrin, G.S.; Maltsev, V.K.; Krayukhin, I.N.; Turpanov, I.A. NMR studies of the magnetic state of interfacial cobalt in (Co/Ge)(n) films. JETP 2013, 117, 1097–1100. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Wang, H.; Huo, D.; Tan, W. Room-temperature magnetoresistive and magnetocaloric effect in La1−xBaxMnO3 compounds: Role of Griffiths phase with ferromagnetic metal cluster above Curie temperature. J. Appl. Phys. 2022, 131, 043901. [Google Scholar] [CrossRef]
- Kobyakov, A.V.; Turpanov, I.A.; Patrin, G.S.; Rudenko, R.Y.; Yushkov, V.I.; Kosyrev, N.N. Structural and Magnetic Properties of the Al2O3/Ge-p/ Al2O3/Co System. Tech. Phys. 2019, 64, 236–241. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Wang, Y.; Tan, W.; Huo, D. Spin glass feature and exchange bias effect in metallic Pt/antiferromagnetic LaMnO3 heterostructure. J. Phys. Condens. Matter 2021, 33, 285802. [Google Scholar] [CrossRef]
- Dzhumaliev, A.S.; Nikulin, Y.V.; Filimonov, Y.A. Formation of textured Ni(200) and Ni(111) films by magnetron sputtering. Tech. Phys. 2018, 63, 1678–1686. [Google Scholar] [CrossRef]
- Binder, K.; Young, A.P. Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 1986, 58, 801. [Google Scholar] [CrossRef]
- Nakamura, S.; Iwashita, T.; Nojima, T.; Yoshihara, A.; Ohnuma, S.; Fujimori, H. Transport and magnetic properties of ferromagnetic Co-Al-O and Fe-Al-O granular films. J. Phys. Conf. Ser. 2011, 266, 012019. [Google Scholar] [CrossRef]
- Sato, K.; Naka, T.; Nakane, T.; Rangappa, D.; Takami, S.; Ohara, S.; Adschiri, T. Inhomogeneous magnetic phase in Co–Al–O spinel nanocrystals. J. Magn. Magn. Mater. 2014, 350, 161–166. [Google Scholar] [CrossRef]
- Khodakov, Y.; Constant, A.C.; Bechara, R.; Villain, F. Pore-Size Control of Cobalt Dispersion and Reducibility in Mesoporous Silicas. J. Phys. Chem. B 2001, 105, 9805–9811. [Google Scholar] [CrossRef]
- Koo, H.M.; Lee, B.S.; Park, M.J.; Moon, D.J.; Roh, H.S.; Bae, J.W. Fischer–Tropsch synthesis on cobalt/Al2O3-modified SiC catalysts: Effect of cobalt–alumina interactions. Catal. Sci. Technol. 2014, 4, 343. [Google Scholar] [CrossRef]
- Backman, L.; Rautiainen, A.; Lindblad, M.; Krause, A. The interaction of cobalt species with alumina on Co/Al2O3catalysts prepared by atomic layer deposition. Appl. Catal. A Gen. 2009, 360, 183–191. [Google Scholar] [CrossRef]
Samples | A1 | B1 | A2 | B2 | A3 | B3 | A4 | B4 | |
---|---|---|---|---|---|---|---|---|---|
Deposition Rate, nm/min | Layer 1: Al2O3 (130 nm) | 0.55 | 0.05 | ||||||
Layer 2: Ge (45 nm) | 14.4 | 2.4 | |||||||
Layer 3: Al2O3 (4.5 nm) | 0.55 | 0.05 | |||||||
Layer 4: Co (95 nm) | 7.2 | 1.2 | 1.2 | 7.2 | |||||
Average parameters of cobalt surface roughness. | Rms (nm.) | 8.3 | 16.5 | 4 | 12 | 4.4 | 13 | 5.3 | 14.5 |
Max height (Rmax) (nm.) | 53 | 133 | 39 | 156 | 48 | 122 | 51 | 182 | |
Rz (nm.) | 51.5 | 115 | 36 | 96 | 38 | 106 | 47 | 114 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobyakov, A.V.; Patrin, G.S.; Yushkov, V.I.; Shiyan, Y.G.; Rudenko, R.Y.; Kosyrev, N.N.; Zharkov, S.M. Magnetic and Resonance Properties of a Low-Dimensional Cobalt–Aluminum Oxide–Germanium Film Tunnel Junction Deposited by Magnetron Sputtering. Magnetochemistry 2022, 8, 130. https://doi.org/10.3390/magnetochemistry8100130
Kobyakov AV, Patrin GS, Yushkov VI, Shiyan YG, Rudenko RY, Kosyrev NN, Zharkov SM. Magnetic and Resonance Properties of a Low-Dimensional Cobalt–Aluminum Oxide–Germanium Film Tunnel Junction Deposited by Magnetron Sputtering. Magnetochemistry. 2022; 8(10):130. https://doi.org/10.3390/magnetochemistry8100130
Chicago/Turabian StyleKobyakov, Aleksandr V., Gennadiy S. Patrin, Vasiliy I. Yushkov, Yaroslav G. Shiyan, Roman Yu. Rudenko, Nikolay N. Kosyrev, and Sergey M. Zharkov. 2022. "Magnetic and Resonance Properties of a Low-Dimensional Cobalt–Aluminum Oxide–Germanium Film Tunnel Junction Deposited by Magnetron Sputtering" Magnetochemistry 8, no. 10: 130. https://doi.org/10.3390/magnetochemistry8100130
APA StyleKobyakov, A. V., Patrin, G. S., Yushkov, V. I., Shiyan, Y. G., Rudenko, R. Y., Kosyrev, N. N., & Zharkov, S. M. (2022). Magnetic and Resonance Properties of a Low-Dimensional Cobalt–Aluminum Oxide–Germanium Film Tunnel Junction Deposited by Magnetron Sputtering. Magnetochemistry, 8(10), 130. https://doi.org/10.3390/magnetochemistry8100130