Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = ultrasonic deep rolling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5385 KiB  
Article
Effect of High-Temperature-Assisted Ultrasonic Deep Rolling on Microstructure and Tribological Properties of Ni-WC Coatings
by Jun Zhang, Yuncai Zhao, Yang He, Cheng Meng, Xinyu Zhang and Shilei Zhang
Coatings 2023, 13(3), 499; https://doi.org/10.3390/coatings13030499 - 24 Feb 2023
Viewed by 1816
Abstract
Cermet coatings are post-treated by a new surface microcrystallization technology, namely high-temperature-assisted ultrasonic deep rolling (HT + UDR). The process parameters of ultrasonic deep rolling significantly affect the microstructure and tribological properties of the Ni-WC coatings. In this paper, the samples were treated [...] Read more.
Cermet coatings are post-treated by a new surface microcrystallization technology, namely high-temperature-assisted ultrasonic deep rolling (HT + UDR). The process parameters of ultrasonic deep rolling significantly affect the microstructure and tribological properties of the Ni-WC coatings. In this paper, the samples were treated with different preloading depths (0.20 mm, 0.25 mm, and 0.30 mm), and the microstructure and properties of the coatings were characterized by SEM, EDS, X-ray stress analysis, and micro-Vickers hardness testing. An MMW-1A-type friction and wear tester was used for the dry friction and wear test at room temperature, respectively. Compared with the untreated sample, plastic rheology occurred on the surface of the coatings after HT + UDR, showing a phenomenon of “cutting peaks and filling valleys”. In the treated coatings, visible cracks were eliminated, and the inside of the coating was denser. The surface hard phase was increased as a “skeleton” and embedded with the soft phase, which played a role in strong and tough bonding. After HT + UDR + 0.25 mm treatment, the surface roughness increased by 68%, the microhardness of the surface layer reached a maximum of 726.3 HV0.1, and the residual tensile stress changed from 165.5 MPa to −337.9 MPa, which inhibited the germination and propagation of cracks. HT + UDR improved the wear resistance of the coating in many aspects. The coating after the 0.25 mm preloading depth treatment possessed the smallest friction coefficient and the lowest wear amount, which is 0.04 and 4.5 mg, respectively. The wear form was abrasive wear, and the comprehensive tribological performance is the best. Full article
(This article belongs to the Special Issue Laser-Assisted Coating Techniques and Surface Modifications)
Show Figures

Figure 1

32 pages, 6303 KiB  
Review
Ultrasonic Surface Rolling Process: Properties, Characterization, and Applications
by Merbin John, Alessandro M. Ralls, Scott C. Dooley, Akhil Kishore Vellooridathil Thazhathidathil, Ashok Kumar Perka, Udaya Bhat Kuruveri and Pradeep L. Menezes
Appl. Sci. 2021, 11(22), 10986; https://doi.org/10.3390/app112210986 - 19 Nov 2021
Cited by 78 | Viewed by 8175
Abstract
Ultrasonic surface rolling process (USRP) is a novel surface severe plastic deformation (SPD) method that integrates ultrasonic impact peening (UIP) and deep rolling (DR) to enhance the surface integrity and surface mechanical properties of engineering materials. USRP can induce gradient nanostructured surface (GNS) [...] Read more.
Ultrasonic surface rolling process (USRP) is a novel surface severe plastic deformation (SPD) method that integrates ultrasonic impact peening (UIP) and deep rolling (DR) to enhance the surface integrity and surface mechanical properties of engineering materials. USRP can induce gradient nanostructured surface (GNS) layers on the substrate, providing superior mechanical properties, thus preventing premature material failure. Herein, a comprehensive overview of current-state-of-the art USRP is provided. More specifically, the effect of the USRP on a broad range of materials exclusively used for aerospace, automotive, nuclear, and chemical industries is explained. Furthermore, the effect of USRP on different mechanical properties, such as hardness, tensile, fatigue, wear resistance, residual stress, corrosion resistance, and surface roughness are summarized. In addition, the effect of USRP on grain refinement and the formation of gradient microstructure is discussed. Finally, this study elucidates the application and recent advances of the USRP process. Full article
(This article belongs to the Special Issue Feature Papers in Surface Sciences and Technology Section)
Show Figures

Figure 1

25 pages, 11216 KiB  
Article
Bending Fatigue Behaviour and Fatigue Endurance Limit Prediction of 20Cr2Ni4A Gear Steel after the Ultrasonic Surface Rolling Process
by Zhiyuan Wang, Yangfei Huang, Zhiguo Xing, Haidou Wang, Debin Shan, Fengkuan Xie and Jiming Li
Materials 2021, 14(10), 2516; https://doi.org/10.3390/ma14102516 - 12 May 2021
Cited by 12 | Viewed by 2927
Abstract
To study the effect of the surface properties on the bending fatigue performance of heavy-duty gear steel, the authors of this paper used the ultrasonic surface rolling process (USRP) to strengthen 20Cr2Ni4A carburized gear steel. USRP is a novel technique in which the [...] Read more.
To study the effect of the surface properties on the bending fatigue performance of heavy-duty gear steel, the authors of this paper used the ultrasonic surface rolling process (USRP) to strengthen 20Cr2Ni4A carburized gear steel. USRP is a novel technique in which the ultrasonic technology is incorporated into the concept of conventional deep rolling. In this study, we illustrated how the surface properties and cross-section mechanical property influence the three-point bending fatigue life of the samples before and after USRP treatment. At the same time, the predicted failure probability-stress-number of cycles (P-S-N) curve was drawn, and the fatigue fracture was analysed. The results show that the fatigue limit increased from 651.36 MPa to 918.88 MPa after USRP treatment. The fatigue source is mainly from the sample interior or surface scratches, and the fatigue performance is positively correlated with the results of the material surface roughness, surface residual stress and surface hardness. At the same time, combined with the change in the phase structure, dislocation structure, residual stress and hardness of the cross section of the material, it is found that the USRP process turns the steel into a gradient material with five layers. Finally, the coupling mechanism between the ultrasonic surface strengthening deformation layer and the carburized layer of 20Cr2Ni4A carburized gear steel is presented, and the grain structure distribution diagram of the section of the 20Cr2Ni4A model after surface strengthening treatment was simulated. The mechanism that influenced the fatigue performance after USRP treatment is explained from the perspectives of the surface and cross section of the samples. Full article
Show Figures

Figure 1

24 pages, 11090 KiB  
Article
Influence of Postprocessing on Wear Resistance of Aerospace Steel Parts Produced by Laser Powder Bed Fusion
by Alexander S. Metel, Sergey N. Grigoriev, Tatiana V. Tarasova, Anastasia A. Filatova, Sergey K. Sundukov, Marina A. Volosova, Anna A. Okunkova, Yury A. Melnik and Pavel A. Podrabinnik
Technologies 2020, 8(4), 73; https://doi.org/10.3390/technologies8040073 - 2 Dec 2020
Cited by 14 | Viewed by 3708
Abstract
The paper is devoted to the research of the effect of ultrasonic postprocessing—specifically, the effects of ultrasonic cavitation-abrasive finishing, ultrasonic plastic deformation, and vibration tumbling on surface quality, wear resistance, and the ability of real aircraft parts with complex geometries and with sizes [...] Read more.
The paper is devoted to the research of the effect of ultrasonic postprocessing—specifically, the effects of ultrasonic cavitation-abrasive finishing, ultrasonic plastic deformation, and vibration tumbling on surface quality, wear resistance, and the ability of real aircraft parts with complex geometries and with sizes less than and more than 100 mm to work in exploitation conditions. The parts were produced by laser powder bed fusion from two types of anticorrosion steels of austenitic and martensitic grades—20Kh13 (DIN 1.4021, X20Cr13, AISI 420) and 12Kh18N9T (DIN 1.4541, X10CrNiTi18-10, AISI 321). The finishing technologies based on mechanical action—plastic deformation, abrasive wear, and complex mechanolysis showed an effect on reducing the submicron surface roughness, removing the trapped powder granules from the manufactured functional surfaces and their wear resistance. The tests were completed by proving resistance of the produced parts to exploitation conditions—vibration fatigue and corrosion in salt fog. The roughness arithmetic mean deviation Ra was improved by 50–52% after cavitation-abrasive finishing, by 28–30% after ultrasonic plastic deformation, and by 65–70% after vibratory tumbling. The effect on wear resistance is correlated with the improved roughness. The effect of used techniques on resistance to abrasive wear was explained and grounded. Full article
(This article belongs to the Special Issue 3D Printing Technologies II)
Show Figures

Graphical abstract

16 pages, 6008 KiB  
Article
Study of the Surface Integrity and High Cycle Fatigue Performance of AISI 4340 Steel after Composite Surface Modification
by Hai Fu and Yilong Liang
Metals 2019, 9(8), 856; https://doi.org/10.3390/met9080856 - 6 Aug 2019
Cited by 18 | Viewed by 4120
Abstract
In the field of materials science, the fabrication of a material with severe surface plastic deformation and a good surface state is an issue encountered in the development of counterbalanced gradient materials. For this paper, AISI 4340 steel was first processed with abrasive [...] Read more.
In the field of materials science, the fabrication of a material with severe surface plastic deformation and a good surface state is an issue encountered in the development of counterbalanced gradient materials. For this paper, AISI 4340 steel was first processed with abrasive water jet peening (AWJP) and then with ultrasonic surface rolling (USRE) to obtain a good surface state while maintaining large plastic deformation. The AISI 4340 steel composite surface was therefore modified, and the surface integrity and cycle fatigue performance were analyzed. The results show that the plastic deformation layer of the modified composite surface of the 4340 steel was 310 µm from the surface of the sample, the grain size 40 µm from the surface layer was refined to 70 nm, and the maximum surface roughness Ra is 0.06. The fatigue limit of the modified composite surfaces obtained by the tensile fatigue test was 595.7 MPa, which was 85.7 MPa higher than the 510 MPa fatigue limit of the unmodified matrix, indicating that the method of composite surface modification can produce a deep deformation layer while maintaining good surface conditions. The results show that work hardening caused by a composite surface treatment is the most important factor for improving the fatigue performance of materials. Full article
(This article belongs to the Special Issue Advanced Surface Enhancement)
Show Figures

Figure 1

12 pages, 13243 KiB  
Article
Effect of the Ultrasonic Surface Rolling Process on the Fretting Fatigue Behavior of Ti-6Al-4V Alloy
by Chengsong Liu, Daoxin Liu, Xiaohua Zhang, Shouming Yu and Weidong Zhao
Materials 2017, 10(7), 833; https://doi.org/10.3390/ma10070833 - 20 Jul 2017
Cited by 74 | Viewed by 6675
Abstract
The effect of the ultrasonic surface rolling process (USRP) on the rotary bending fretting fatigue (FF) of Ti-6Al-4V alloy was investigated. The reason for the USRP’s ability to improve the FF resistance of Ti-6Al-4V alloy was studied. The results revealed that the USRP [...] Read more.
The effect of the ultrasonic surface rolling process (USRP) on the rotary bending fretting fatigue (FF) of Ti-6Al-4V alloy was investigated. The reason for the USRP’s ability to improve the FF resistance of Ti-6Al-4V alloy was studied. The results revealed that the USRP induced a compressive residual stress field with a depth of 530 μm and a maximum residual stress of −930 MPa. Moreover, the surface micro-hardness of the USRP sample was significantly higher than that of the untreated base material (BM) sample, and the USRP yielded a 72.7% increase in the FF limit of the alloy. These further enhanced fatigue properties contributed mainly to the compressive residual stress field with large numerical value and deep distribution, which could effectively suppress FF crack initiation and early propagation. The USRP-induced surface work-hardening had only a minor impact on the FF resistance. Full article
Show Figures

Figure 1

Back to TopTop