Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = ultra-thin-walled tube

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8754 KiB  
Article
Investigating Fireside Corrosion Behavior and Mechanism of Low-Alloy Water Wall Tube of Ultra-Supercritical Power Plant
by Yifan Ni, Weijie Weng, Zuogui Zhang, Jianning Li and Chenghao Fan
Materials 2025, 18(7), 1666; https://doi.org/10.3390/ma18071666 - 4 Apr 2025
Viewed by 434
Abstract
The corrosion thinning behavior and mechanism of low-alloy water wall tubes of an ultra-supercritical power plant was investigated via SEM, EPMA, XRD, TEM, and laboratory simulation experiments. Fireside corrosion was first initiated by chemical potential- and concentration-governed transportation and diffusion, sequentially facilitated by [...] Read more.
The corrosion thinning behavior and mechanism of low-alloy water wall tubes of an ultra-supercritical power plant was investigated via SEM, EPMA, XRD, TEM, and laboratory simulation experiments. Fireside corrosion was first initiated by chemical potential- and concentration-governed transportation and diffusion, sequentially facilitated by sensitization, which was observed by TEM in terms of the carbide matrix precipitation on the grain boundary, and finally accelerated by the kinetic controlled growth, leading to the final thinning behavior. Laboratory experiments revealed that the reduced atmosphere corrosion kinetic simulation followed the linear law, as well as a different corrosion scale structure layer, compared to the furnace corrosion sample; the reduced atmosphere condition in the laboratory experiment inhibited the oxidation process and layer growth. The frequent shift between the oxidizing and reducing properties of the atmosphere around the water wall tubes during boiler operation may contribute to the delaminated oxidation layer. Full article
(This article belongs to the Special Issue Microstructures and Properties of Corrosion-Resistant Alloys)
Show Figures

Figure 1

18 pages, 4692 KiB  
Article
Horizontal Hysteretic Behavior of Circular Concrete-Filled Steel Tubular Columns with Ultra-Large Diameter-to-Thickness Ratios
by Jun Wei, Bo Hu, Zhenshan Wang and Hao Meng
Buildings 2024, 14(8), 2313; https://doi.org/10.3390/buildings14082313 - 26 Jul 2024
Viewed by 883
Abstract
Thin-walled concrete-filled steel tubes are efficient and economical with promising applications in civil and light industrial buildings. However, their local buckling resistance and deformation capacity are low, which adversely affects the seismic safety of structures. There are relatively few studies on thin-walled concrete-filled [...] Read more.
Thin-walled concrete-filled steel tubes are efficient and economical with promising applications in civil and light industrial buildings. However, their local buckling resistance and deformation capacity are low, which adversely affects the seismic safety of structures. There are relatively few studies on thin-walled concrete-filled steel tubular columns with ultra-large diameter-to-thickness ratios, and there is also a lack of relevant experimental research on them. In this study, horizontal hysteresis tests were conducted on concrete columns with a large diameter-to-thickness ratio. The seismic performances of regular and straight-ribbed specimens were analyzed and compared, including the analyses of load-displacement hysteresis curves, strain distribution, skeleton curves, ductility, and energy dissipation capacity. Using these results, a restoring force model for concrete columns with a large diameter-to-thickness ratio was established. The findings indicate that under horizontal loading, the ductility of concrete columns with a regular thin-walled steel tube is 3.9, with an equivalent viscous damping coefficient of 1.65. Meanwhile, the ultimate bearing capacity is 201 kN. After adding stiffening ribs, the ultimate bearing capacity reaches 266 kN and the ductility coefficient reaches 4.4, resulting in the stiffeners increasing the ultimate bearing capacity and ductility by >30% and 12.8%, respectively. However, they have a less pronounced effect on deformation and energy dissipation. Building on these research outcomes, we propose a dimensionless three-line skeleton curve model and a restoring force model. The calculation results from these models align well with the test results, offering valuable insights for the seismic safety analysis of real-world engineering structures. Full article
Show Figures

Figure 1

14 pages, 8162 KiB  
Article
Research on Hydraulic Push-Pull Bending Process of Ultra-Thin-Walled Tubes
by Xin Zhang, Changcai Zhao, Bing Du, Duan Chen, Yang Li and Zhaojian Han
Metals 2021, 11(12), 1932; https://doi.org/10.3390/met11121932 - 29 Nov 2021
Cited by 9 | Viewed by 2581
Abstract
Due to their high strength, high performance, and lightweight characteristics, bent tubes are widely used in many high-end industries, such as aviation, aerospace, shipbuilding, automobile, and petrochemical industries. Ultra-thin-walled (thickness-to-diameter ratio t/D < 0.01) bent tubes are more prone to wrinkling, fracture, and [...] Read more.
Due to their high strength, high performance, and lightweight characteristics, bent tubes are widely used in many high-end industries, such as aviation, aerospace, shipbuilding, automobile, and petrochemical industries. Ultra-thin-walled (thickness-to-diameter ratio t/D < 0.01) bent tubes are more prone to wrinkling, fracture, and cross-section distortion than ordinary bent tubes, which are difficult to form integrally by traditional bending processes. In this paper, a new bending process with combined loading of hydraulic pressure, push, and pull was proposed to provide a new method for the bending of ultra-thin-walled tube. This process is characterized by the ability to optimize the combination of push, pull, and internal pressure according to the actual bending process in order to minimize the wrinkling of ultra-thin-walled tube during bending. Based on ABAQUS finite element (FE) software, the FE model of the hydraulic push-pull bending process for ultra-thin-walled tube was established. The influence of internal pressure, die clearance, and friction coefficient on the forming quality of bent tubes was discussed, and the optimum process parameters were obtained. Bent tubes with an initial thickness of 0.3 mm, diameter of 60 mm, and bending radius of 165 mm were manufactured in experiments. Through the comparative analysis of experiment and simulation, the accuracy of the FE simulation was verified. Full article
Show Figures

Figure 1

16 pages, 9167 KiB  
Article
Deformation Property and Suppression of Ultra-Thin-Walled Rectangular Tube in Rotary Draw Bending
by Kunito Nakajima, Noah Utsumi, Yoshihisa Saito and Masashi Yoshida
Metals 2020, 10(8), 1074; https://doi.org/10.3390/met10081074 - 10 Aug 2020
Cited by 11 | Viewed by 5102
Abstract
Recently, miniaturization and weight reduction have become important issues in various industries such as automobile and aerospace. To achieve weight reduction, it is effective to reduce the material thickness. Generally, a secondary forming process such as bending is performed on the tube, and [...] Read more.
Recently, miniaturization and weight reduction have become important issues in various industries such as automobile and aerospace. To achieve weight reduction, it is effective to reduce the material thickness. Generally, a secondary forming process such as bending is performed on the tube, and it is applied as a structural member for various products and a member for transmitting electromagnetic waves and fluids. If the wall thickness of this tube can be thinned and the bending technology can be established, it will contribute to further weight reduction. Therefore, in this study, we fabricated an aluminum alloy rectangular tube with a height H0 = 20 mm, width W0 = 10 mm, wall thickness t0 = 0.5 mm (H0/t0 = 40) and investigated the deformation properties in the rotary draw bending. As a result, the deformation in the height direction of the tube was suppressed applying the laminated mandrel. In contrast, it was found that the pear-shaped deformation peculiar to the ultra-thin wall tube occurs. In addition, axial tension and lateral constraint were applied. Furthermore, the widthwise clearance of the mandrel was adjusted to be bumpy. As a result, the pear-shaped deformation was suppressed, and a more accurate cross-section was obtained. Full article
(This article belongs to the Special Issue Latest Hydroforming Technology of Metallic Tubes and Sheets)
Show Figures

Figure 1

15 pages, 10975 KiB  
Article
Research on AZ80 + 0.4%Ce (wt %) Ultra-Thin-Walled Tubes of Magnesium Alloys: The Forming Process, Microstructure Evolution and Mechanical Properties
by Zhaoming Yan, Min Fang, Zhendong Lian, Zhimin Zhang, Jiaxuan Zhu, Guanshi Zhang and Yiding Wang
Metals 2019, 9(5), 563; https://doi.org/10.3390/met9050563 - 14 May 2019
Cited by 12 | Viewed by 3255
Abstract
Ultra-thin-walled tubes of magnesium alloys have received more and more attention in producing precision components for medical devices. Therefore, thin-walled tubes with high quality are desperately needed. In this study, the process of multi-pass variable wall thickness extrusion was carried out on an [...] Read more.
Ultra-thin-walled tubes of magnesium alloys have received more and more attention in producing precision components for medical devices. Therefore, thin-walled tubes with high quality are desperately needed. In this study, the process of multi-pass variable wall thickness extrusion was carried out on an AZ80 + 0.4%Ce Mg alloy with up to five passes—one-pass backward extrusion and four-pass extension—to fabricate the seamless thin-walled tube with an inside diameter of 6.0 mm and a wall thickness of 0.6 mm. The average grain size decreased from 46.3 μm to 8.9 μm at the appropriate deformation temperature of 350 °C with the punch speed of 0.1 mm/s. X-ray diffraction (XRD), optical microscope (OM), scanning electron microscopy (SEM), and the Vickers hardness (HV) tester were utilized to study the phases, microstructure, and hardness evolution. It can be observed that low deformation temperatures (240 °C and 270 °C) and low strain (1 pass extrusion and 1 pass extension) lead to twins that occupy the grains to coordinate deformation, and a slip system was activated with the accumulation of strain. The results of the Vickers hardness test showed that twinning, precipitation of second phases, twinning dynamic recrystallization (TDRX), and work hardening were combined to change the hardness of tubes at 240 °C and 270 °C. The hardness reached 93 HV after the third pass extension without annealing at 350 °C. Full article
Show Figures

Figure 1

Back to TopTop