Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = two way Fluid-Structure Interaction (FSI) problem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6671 KiB  
Article
Hydroelasto-Plastic Response of a Ship Model in Freak Waves: An Experimental and Numerical Investigation
by Weiqin Liu, Yining Mo, Luonan Xiong, Haodong Xu, Xuemin Song and Ye Li
J. Mar. Sci. Eng. 2024, 12(9), 1555; https://doi.org/10.3390/jmse12091555 - 5 Sep 2024
Viewed by 990
Abstract
Freak waves have caused numerous accidents resulting in the collapse of ship structures due to structural plasticity, buckling, and instability, leading to the loss of life and property. Consequently, there is a growing academic interest in understanding ship structural collapsed responses induced by [...] Read more.
Freak waves have caused numerous accidents resulting in the collapse of ship structures due to structural plasticity, buckling, and instability, leading to the loss of life and property. Consequently, there is a growing academic interest in understanding ship structural collapsed responses induced by freak waves. This paper presents both numerical and experimental investigations on the structural collapse response of a ship model caused by freak waves. The study uses the Peregrine breather solution theory based on the Nonlinear Schrödinger (NLS) equation to generate a theoretical freak wave, and the nonlinear time-domain wave elevation and velocity field are obtained. The theoretical history of wave elevation is transferred into the wave maker of the wave tank to create experimental freak waves, and the velocity field of the freak wave is defined in a Computational Fluid Dynamics (CFD) solver to generate 3D numerical freak waves. A similar hydroelasto-plastic model is designed, and a hydroelasto-plastic experiment is conducted to observe experimental freak waves and large rotational deformations. The theoretical velocity field from the Peregrine breather solution theory, based on the NLS equation, is defined in a CFD platform to generate 3D numerical freak waves. A two-way Fluid-Structure Interaction (FSI) numerical hydroelasto-plastic approach coupling of CFD with a nonlinear Finite Element Method (FEM) solver is applied. Co-simulation of wave pressures and the structural collapsed response of the ship model caused by freak waves is performed. The wave elevation of experimental and numerical freak waves and the large rotational deformation of the buckling hinge are analyzed and compared, revealing a good agreement between the experiment and calculation. The maximum simulation rotational angle is 38.9°, while the maximum experimental rotational angle is equal to 42.3° for a typical wave case H2, which means numerical model accuracy and performance are acceptable for the simulating hydroelasto-plastic problem. The findings demonstrate that the numerical approach proposed in this study can effectively solve the hydroelasto-plastic response of ship structures in freak waves, offering a valuable tool for evaluating ship strength in these conditions and guiding future ship structural design. Full article
Show Figures

Figure 1

24 pages, 14820 KiB  
Article
Dynamic Response of Outer Windshield Structure in Different Schemes under Aerodynamic Load
by Ming-Zan Tang, Xiao-Hui Xiong, Xiao-Bai Li, Guang Chen, Jie Zhang, Mu Zhong and Bo Sun
Appl. Sci. 2023, 13(6), 3879; https://doi.org/10.3390/app13063879 - 18 Mar 2023
Cited by 3 | Viewed by 1795
Abstract
With the increase in high-speed train (HST) operation speed, the light-weight design of the train body and component structure is pursued to reduce energy consumption during operation, but this seriously deteriorates the aerodynamic performance of the light-weight structure outside the train body under [...] Read more.
With the increase in high-speed train (HST) operation speed, the light-weight design of the train body and component structure is pursued to reduce energy consumption during operation, but this seriously deteriorates the aerodynamic performance of the light-weight structure outside the train body under the effect of strong unsteady airflow, and the more obvious case is the frequently occurring problem of vibration, large deformation, and damage to the rubber exterior windshield at the connection position of HST carriages. We investigate the fluid–structure coupling mechanism of the interaction between the rubber external windshield and aerodynamic force, and compare the dynamic characteristics of windshield structure under different design parameters. A numerical simulation of three rubber outer windshield structure parameters (sidewall distance of U-shaped capsule, sidewall thickness, sidewall inclination angle) is carried out using FSI simulation of the two-way coupling method. The aerodynamic load, airflow dynamics around the windshield, and the nonlinear vibration and deformation form of the windshield is analyzed in detail. The results show that the aerodynamic response of the HST rubber external windshield analyzed by the FSI method is in good agreement with the full-scale test results. Additionally, the stiffness of the windshield can be improved by increasing the thickness of the windshield sidewall. When the distance between the sidewall of the windshield is increased, an insufficient thickness at the top of the arc causes a large local deformation at the top of the arc of the windshield. The method established and relevant research results can provide good support for the aerodynamic stability evaluation of HST windshields. Full article
(This article belongs to the Special Issue Aerodynamics of High-Speed Trains)
Show Figures

Figure 1

29 pages, 12117 KiB  
Article
CFD-FEM Simulation of Slamming Loads on Wedge Structure with Stiffeners Considering Hydroelasticity Effects
by Zhenwei Chen, Jialong Jiao, Qiang Wang and Shan Wang
J. Mar. Sci. Eng. 2022, 10(11), 1591; https://doi.org/10.3390/jmse10111591 - 27 Oct 2022
Cited by 12 | Viewed by 3275
Abstract
In this paper, both numerical and experimental methods are adopted to study the fluid–structure interaction (FSI) problem of a wedge structure with stiffeners impacted with water during the free-falling water entry process. In the numerical model, a partitioned two-way couple of CFD and [...] Read more.
In this paper, both numerical and experimental methods are adopted to study the fluid–structure interaction (FSI) problem of a wedge structure with stiffeners impacted with water during the free-falling water entry process. In the numerical model, a partitioned two-way couple of CFD and FEM solvers is applied to deal with the FSI problem, where the external fluid pressure exported from the CFD simulation is used to derive the structural responses in the FEM solver, and the structural deformations are fed back into the CFD solver to deform the mesh. Moreover, a tank experiment using a steel wedge model that has the same structural properties is also conducted to compare with the numerical results. Verification and validation of the numerical results indicate that the CFD-FEM coupled method is feasible and reliable. The slamming response results by numerical simulation and experiments, including displacement, velocity, acceleration, slamming pressure, deformation, structural stresses and total forces on the wedge, accounting for hydroelasticity effects in different free falling height conditions are comprehensively analyzed and discussed. Full article
(This article belongs to the Special Issue Ship Motions and Wave Loads)
Show Figures

Figure 1

28 pages, 16020 KiB  
Article
A Framework of Runge–Kutta, Discontinuous Galerkin, Level Set and Direct Ghost Fluid Methods for the Multi-Dimensional Simulation of Underwater Explosions
by Nan Si and Alan Brown
Fluids 2022, 7(1), 13; https://doi.org/10.3390/fluids7010013 - 29 Dec 2021
Cited by 4 | Viewed by 2465
Abstract
This work describes the development of a hybrid framework of Runge–Kutta (RK), discontinuous Galerkin (DG), level set (LS) and direct ghost fluid (DGFM) methods for the simulation of near-field and early-time underwater explosions (UNDEX) in early-stage ship design. UNDEX problems provide a series [...] Read more.
This work describes the development of a hybrid framework of Runge–Kutta (RK), discontinuous Galerkin (DG), level set (LS) and direct ghost fluid (DGFM) methods for the simulation of near-field and early-time underwater explosions (UNDEX) in early-stage ship design. UNDEX problems provide a series of challenging issues to be solved. The multi-dimensional, multi-phase, compressible and inviscid fluid-governing equations must be solved numerically. The shock front in the solution field must be captured accurately while maintaining the total variation diminishing (TVD) properties. The interface between the explosive gas and water must be tracked without letting the numerical diffusion across the material interface lead to spurious pressure oscillations and thus the failure of the simulation. The non-reflecting boundary condition (NRBC) must effectively absorb the wave and prevent it from reflecting back into the fluid. Furthermore, the CFD solver must have the capability of dealing with fluid–structure interactions (FSI) where both the fluid and structural domains respond with significant deformation. These issues necessitate a hybrid model. In-house CFD solvers (UNDEXVT) are developed to test the applicability of this framework. In this development, code verification and validation are performed. Different methods of implementing non-reflecting boundary conditions (NRBCs) are compared. The simulation results of single and multi-dimensional cases that possess near-field and early-time UNDEX features—such as shock and rarefaction waves in the fluid, the explosion bubble, and the variation of its radius over time—are presented. Continuing research on two-way coupled FSI with large deformation is introduced, and together with a more complete description of the direct ghost fluid method (DGFM) in this framework will be described in subsequent papers. Full article
(This article belongs to the Special Issue Hydrodynamics and Its Interaction with Structures)
Show Figures

Figure 1

30 pages, 26712 KiB  
Article
Coupling with the Embedded Boundary Method in a Runge-Kutta Discontinuous-Galerkin Direct Ghost-Fluid Method (RKDG-DGFM) Framework for Fluid-Structure Interaction Simulations of Underwater Explosions
by Nan Si, Zhaokuan Lu and Alan Brown
J. Mar. Sci. Eng. 2021, 9(12), 1375; https://doi.org/10.3390/jmse9121375 - 3 Dec 2021
Cited by 1 | Viewed by 2302
Abstract
Solution of near-field underwater explosion (UNDEX) problems frequently require the modeling of two-way coupled fluid-structure interaction (FSI). This paper describes the addition of an embedded boundary method to an UNDEX modeling framework for multiphase, compressible and inviscid fluid using the combined algorithms of [...] Read more.
Solution of near-field underwater explosion (UNDEX) problems frequently require the modeling of two-way coupled fluid-structure interaction (FSI). This paper describes the addition of an embedded boundary method to an UNDEX modeling framework for multiphase, compressible and inviscid fluid using the combined algorithms of Runge-Kutta, discontinuous-Galerkin, level-set and direct ghost-fluid methods. A computational fluid dynamics (CFD) solver based on these algorithms has been developed as described in previous work. A fluid-structure coupling approach was required to perform FSI simulation interfacing with an external structural mechanics solver. Large structural deformation and possible rupture and cracking characterize the FSI phenomenon in an UNDEX, so the embedded boundary method (EBM) is more appealing for this application in comparison to dynamic mesh methods such as the arbitrary Lagrangian-Eulerian (ALE) method to enable the fluid-structure coupling algorithm in the fluid. Its limitation requiring a closed interface that is fully submerged in the fluid domain is relaxed by an adjustment described in this paper so that its applicability is extended. Two methods of implementing the fluid-structure wall boundary condition are also compared. The first solves a local 1D fluid-structure Riemann problem at each intersecting point between the wetted elements and fluid mesh. In this method, iterations are required when the Tait equation of state is utilized. A second method that does not require the Riemann solution and iterations is also implemented and the results are compared. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 12883 KiB  
Article
Numerical Study on the Influence of Mass and Stiffness Ratios on the Vortex Induced Motion of an Elastically Mounted Cylinder for Harnessing Power
by Vidya Chandran, Sekar M., Sheeja Janardhanan and Varun Menon
Energies 2018, 11(10), 2580; https://doi.org/10.3390/en11102580 - 27 Sep 2018
Cited by 12 | Viewed by 3499
Abstract
Harnessing the power of vortices shed in the wake of bluff bodies is indeed a boon to society in the face of fuel crisis. This fact serves as an impetus to develop a device called a hydro vortex power generator (HVPG), comprised of [...] Read more.
Harnessing the power of vortices shed in the wake of bluff bodies is indeed a boon to society in the face of fuel crisis. This fact serves as an impetus to develop a device called a hydro vortex power generator (HVPG), comprised of an elastically mounted cylinder that is free to oscillate in the cross-flow (CF) direction even in a low velocity flow field. The oscillatory motions in turn can be converted to useful power. This paper addresses the influence of system characteristics viz. stiffness ratio (k*) and mass ratio (m*) on the maximum response amplitude of the elastically mounted cylinder. Computational fluid dynamics (CFD) simulations have been used here to solve a two way fluid–structure interaction (FSI) problem for predicting the trend of variation of the non-dimensional amplitude Y/D with reduced velocity Ur through a series of simulations. Maximum amplitude motions have been attributed to the lowest value of m* with Ur = 8. However, the maximum lift forces correspond to Ur = 4, providing strong design inputs as well as indicating the best operating conditions. The numerical results have been compared with those of field tests in an irrigation canal and have shown reasonable agreement. Full article
(This article belongs to the Special Issue Engineering Fluid Dynamics 2018)
Show Figures

Figure 1

11 pages, 8660 KiB  
Article
Numerical Simulation of an Oscillatory-Type Tidal Current Powered Generator Based on Robotic Fish Technology
by Ikuo Yamamoto, Guiming Rong, Yoichi Shimomoto and Murray Lawn
Appl. Sci. 2017, 7(10), 1070; https://doi.org/10.3390/app7101070 - 16 Oct 2017
Cited by 4 | Viewed by 6421
Abstract
The generation of clean renewable energy is becoming increasingly critical, as pollution and global warming threaten the environment in which we live. While there are many different kinds of natural energy that can be harnessed, marine tidal energy offers reliability and predictability. However, [...] Read more.
The generation of clean renewable energy is becoming increasingly critical, as pollution and global warming threaten the environment in which we live. While there are many different kinds of natural energy that can be harnessed, marine tidal energy offers reliability and predictability. However, harnessing energy from tidal flows is inherently difficult, due to the harsh environment. Current mechanisms used to harness tidal flows center around propeller-based solutions but are particularly prone to failure due to marine fouling from such as encrustations and seaweed entanglement and the corrosion that naturally occurs in sea water. In order to efficiently harness tidal flow energy in a cost-efficient manner, development of a mechanism that is inherently resistant to these harsh conditions is required. One such mechanism is a simple oscillatory-type mechanism based on robotic fish tail fin technology. This uses the physical phenomenon of vortex-induced oscillation, in which water currents flowing around an object induce transverse motion. We consider two specific types of oscillators, firstly a wing-type oscillator, in which the optimal elastic modulus is being sort. Secondly, the optimal selection of shape from 6 basic shapes for a reciprocating oscillating head-type oscillator. A numerical analysis tool for fluid structure-coupled problems—ANSYS—was used to select the optimum softness of material for the first type of oscillator and the best shape for the second type of oscillator, based on the exhibition of high lift coefficients. For a wing-type oscillator, an optimum elastic modulus for an air-foil was found. For a self-induced vibration-type mechanism, based on analysis of vorticity and velocity distribution, a square-shaped head exhibited a lift coefficient of more than two times that of a cylindrically shaped head. Analysis of the flow field clearly showed that the discontinuous flow caused by a square-headed oscillator results in higher lift coefficients due to intense vortex shedding, and that stable operation can be achieved by selecting the optimum length to width ratio. Full article
(This article belongs to the Special Issue Bio-Inspired Robotics)
Show Figures

Graphical abstract

Back to TopTop