Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,804)

Search Parameters:
Keywords = tumor immune genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1516 KiB  
Article
Association of Enterotoxigenic Bacteroides fragilis with Immune Modulation in Colorectal Cancer Liver Metastasis
by Rumiko Saito, Yasuyuki Shigematsu, Mahmut Amori, Gulanbar Amori, Manabu Takamatsu, Kenji Nishida, Hiroaki Kanda, Yu Takahashi, Yuji Miura, Kengo Takeuchi, Shunji Takahashi and Kentaro Inamura
Cancers 2025, 17(17), 2733; https://doi.org/10.3390/cancers17172733 - 22 Aug 2025
Abstract
Background: Enterotoxigenic Bacteroides fragilis (ETBF) carries the bft toxin gene, which influences the host immune response and inflammatory pathways and promotes colorectal cancer (CRC). This study investigated the potential role of ETBF in CRC liver metastasis. Methods: We reviewed the records [...] Read more.
Background: Enterotoxigenic Bacteroides fragilis (ETBF) carries the bft toxin gene, which influences the host immune response and inflammatory pathways and promotes colorectal cancer (CRC). This study investigated the potential role of ETBF in CRC liver metastasis. Methods: We reviewed the records of 226 consecutive patients who underwent curative-intent (R0) resection of CRC liver metastases. ETBF DNA in fresh-frozen metastasis specimens was quantified using droplet digital PCR (ddPCR). Patients were grouped into very-low (≤80%; N = 178), low (80–90%; N = 24), and high (>90%; N = 24) ETBF-DNA groups. Three tissue cores per specimen were stained for CD8, CD4, CD20, FOXP3, CD68, and CD163, and immune-cell densities were measured digitally (cells/mm2). Results: ETBF DNA was detected in 219 of 226 lesions (96.9%). The densities of cytotoxic CD8+ T-cells, effector CD4+ T-cells, CD20+ B-cells, and CD163+ macrophages did not differ significantly by ETBF-DNA group (Ptrend all > 0.12). FOXP3+ regulatory T-cells (Tregs) decreased (Ptrend = 0.010), and CD68+ macrophages increased (Ptrend = 0.020) as ETBF-DNA levels increased. ETBF-DNA levels in CRC liver metastases were not associated with disease-free survival or overall survival or serum C-reactive protein levels. Conclusions: ETBF was present in almost all CRC liver metastases. Higher ETBF levels were associated with a tumor-immune microenvironment enriched in CD68+ macrophages and deficient in FOXP3+ Tregs, suggesting that ETBF facilitates immune evasion without loss of effector lymphocytes. Although ETBF-DNA levels did not predict survival in this single-center cohort, the potential role of ETBF in immune remodeling and as a candidate biomarker and therapeutic target in metastatic CRC warrants further study. Full article
(This article belongs to the Special Issue Colorectal Cancer Liver Metastases)
Show Figures

Figure 1

34 pages, 4867 KiB  
Review
Polymeric Nanoparticles for Targeted Lung Cancer Treatment: Review and Perspectives
by Devesh U. Kapoor, Sonam M. Gandhi, Sambhavi Swarn, Basant Lal, Bhupendra G. Prajapati, Supang Khondee, Supachoke Mangmool, Sudarshan Singh and Chuda Chittasupho
Pharmaceutics 2025, 17(9), 1091; https://doi.org/10.3390/pharmaceutics17091091 - 22 Aug 2025
Abstract
Lung cancer remains a foremost cause of cancer-related impermanence globally, demanding innovative and effective therapeutic strategies. Polymeric nanoparticles (NPs) have turned up as a promising transport system for drugs due to their biodegradability, biocompatibility, and capability to provide controlled and targeted release of [...] Read more.
Lung cancer remains a foremost cause of cancer-related impermanence globally, demanding innovative and effective therapeutic strategies. Polymeric nanoparticles (NPs) have turned up as a promising transport system for drugs due to their biodegradability, biocompatibility, and capability to provide controlled and targeted release of therapeutic agents. This review offers a thorough examination of different polymeric NP platforms, such as chitosan, gelatin, alginate, poly (lactic acid), and polycaprolactone, highlighting their mechanisms, formulations, and applications in the treatment of lung cancer. These NPs facilitate the delivery of chemotherapeutic agents, gene therapies, and immune modulators, with enhanced bioavailability and reduced systemic toxicity. Additionally, advanced formulations such as ligand-conjugated, stimuli-responsive, and multifunctional NPs demonstrate improved tumor-specific accumulation and cellular uptake. The review also discusses quantum dots, magnetic and lipid-based NPs, and green-synthesized metallic polymeric hybrids, emphasizing their potential in theranostics and combination therapies. Preclinical studies show promising results, yet clinical translation faces challenges; for example, large-scale production, long-term toxicity, and regulatory hurdles. Overall, polymeric NPs represent a powerful platform for advancing personalized lung cancer therapy, with future prospects rooted in multifunctional, targeted, and patient-specific nanomedicine. Full article
(This article belongs to the Special Issue Nanoparticle-Mediated Targeted Drug Delivery Systems)
Show Figures

Figure 1

25 pages, 1496 KiB  
Review
Unraveling the Epigenetic Landscape of Mature B Cell Neoplasia: Mechanisms, Biomarkers, and Therapeutic Opportunities
by Nawar Maher, Francesca Maiellaro, Joseph Ghanej, Silvia Rasi, Riccardo Moia and Gianluca Gaidano
Int. J. Mol. Sci. 2025, 26(17), 8132; https://doi.org/10.3390/ijms26178132 - 22 Aug 2025
Abstract
Epigenetic regulation is critical to B cell development, guiding gene expression via DNA methylation, histone modifications, chromatin remodeling, and noncoding RNAs. In mature B cell neoplasms, particularly diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), and chronic lymphocytic leukemia (CLL), these mechanisms [...] Read more.
Epigenetic regulation is critical to B cell development, guiding gene expression via DNA methylation, histone modifications, chromatin remodeling, and noncoding RNAs. In mature B cell neoplasms, particularly diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), and chronic lymphocytic leukemia (CLL), these mechanisms are frequently disrupted. Recurrent mutations in key epigenetic regulators such as EZH2, KMT2D, CREBBP, and TET2 lead to altered chromatin states, repression of tumor suppressor genes, and enhanced oncogenic signaling. Dysregulation of specific microRNAs (e.g., miR-155, miR-21) further contributes to pathogenesis and therapeutic resistance. In DLBCL, hypermethylation of SMAD1 and CREBBP mutations are associated with immune evasion and chemoresistance. In FL, EZH2 gain-of-function and KMT2D loss-of-function mutations alter germinal center B cell programming, while in CLL, DNA hypomethylation patterns reflect the cell of origin and correlate with clinical outcome. Targeted therapies such as the EZH2 inhibitor tazemetostat have demonstrated efficacy in EZH2-mutant FL, while HDAC and BET inhibitors show variable responses across B cell malignancies. The limitations of current epigenetic therapies reflect the complexity of targeting epigenetic dysregulation rather than therapeutic futility. These challenges nonetheless highlight the relevance of epigenetic alterations as biomarkers and therapeutic targets, with potential to improve the management of mature B cell neoplasms. Full article
(This article belongs to the Special Issue Leukemia and Lymphoma: A Focus on Molecular Genetics Research)
Show Figures

Figure 1

41 pages, 1765 KiB  
Review
Probiotics and the Gut–Brain Axis: Emerging Therapeutic Strategies for Epilepsy and Depression Comorbidity
by Mustafa M. Shokr, Reem M. Eladawy, Yasmena O. Azar and Seham M. Al Raish
Foods 2025, 14(17), 2926; https://doi.org/10.3390/foods14172926 - 22 Aug 2025
Abstract
The bidirectional relationship between epilepsy and depression illustrates shared neurobiological mechanisms of neuroinflammation, hypothalamic–pituitary–adrenal axis dysregulation, and glutamatergic dysfunction. Depression is present in 20–55% of people with epilepsy, far greater than in the general population, while depression doubles epilepsy risk 2.5-fold, indicating shared [...] Read more.
The bidirectional relationship between epilepsy and depression illustrates shared neurobiological mechanisms of neuroinflammation, hypothalamic–pituitary–adrenal axis dysregulation, and glutamatergic dysfunction. Depression is present in 20–55% of people with epilepsy, far greater than in the general population, while depression doubles epilepsy risk 2.5-fold, indicating shared pathophysiology. Neuroinflammatory mediators (interleukin-6, tumor necrosis factor alpha, high-mobility group box 1) establish a vicious cycle: seizures exacerbate inflammation and mood disruption, and stress lowers seizure thresholds. Hippocampal damage and cortisol toxicity also link these disorders, with early life stress imprinting lifelong risk via epigenetic alteration. Genetic studies identify pleiotropic genes (brain-derived neurotrophic factor) that regulate synaptic plasticity, serotonin activity, and immune responses. New treatments target shared pathways: ketamine and AMPAkines normalize glutamate tone; mGluR5 antagonists attenuate hyperexcitability and inflammation; DNA methyltransferase inhibitors reverse aberrant DNA methylation; and probiotics manipulate the gut–brain axis by boosting neuroprotective metabolites like butyrate. Despite challenges—transient effects, precision dosing, and blood–brain barrier penetration—these advances constitute a paradigm shift toward mechanistic repair rather than symptom management. The way forward includes clustered regularly interspaced short palindromic repeats (CRISPR)-based epigenome editing, biomarker-led therapies, and combination approaches (e.g., ketamine and probiotics). Such comorbidity needs to be managed holistically through integrated neuropsychiatry care, offering hope to patients with treatment-refractory symptoms. Full article
Show Figures

Figure 1

19 pages, 4023 KiB  
Article
Ferroptosis as a Therapeutic Avenue in Triple-Negative Breast Cancer: Mechanistic Insights and Prognostic Potential
by Taimoor Riaz, Muhammad Ali Saleem, Muhammad Umar Muzafar Khan, Muhammad Abdul Rehman Rashid and Muhammad Zubair
Biomedicines 2025, 13(8), 2037; https://doi.org/10.3390/biomedicines13082037 - 21 Aug 2025
Abstract
Background and Aims: Triple-negative breast cancer (TNBC) is a clinically aggressive malignancy marked by rapid disease progression, limited therapeutic avenues, and high recurrence risk. Ferroptosis an iron-dependent, lipid peroxidation-driven form of regulated cell death that has emerged as a promising therapeutic vulnerability in [...] Read more.
Background and Aims: Triple-negative breast cancer (TNBC) is a clinically aggressive malignancy marked by rapid disease progression, limited therapeutic avenues, and high recurrence risk. Ferroptosis an iron-dependent, lipid peroxidation-driven form of regulated cell death that has emerged as a promising therapeutic vulnerability in oncology. This study delineates the ferroptosis-associated molecular architecture of TNBC to identify key regulatory genes with prognostic and translational significance. Methods: Transcriptomic profiles from the GSE103091 dataset (130 TNBC and 30 normal breast tissue samples) were analyzed to identify ferroptosis-related differentially expressed genes (DEGs) using GEO2R. Protein–protein interaction (PPI) networks were constructed via STRING and GeneMANIA, with functional enrichment performed through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome analyses. Prognostic relevance was evaluated using GEPIA, BC-GenExMiner, and Kaplan–Meier Plotter survival analyses. Results: Six ferroptosis drivers (MAPK1, TLR4, IFNG, ATM, ULK2, and ATF3) and five suppressors (NFS1, GCLC, TP63, CD44, and SRC) were identified alongside HMOX1, a bifunctional regulator with context-dependent pro- and anti-ferroptotic activity. Enrichment analyses revealed significant associations with oxidative stress regulation, autophagy, immune modulation, and tumor progression pathways. Elevated IFNG expression was consistently linked to improve overall, disease-free, and distant metastasis-free survival, underscoring its dual function in antitumor immunity and ferroptosis sensitization. Conclusions: Ferroptosis represents a critical axis in TNBC pathophysiology, with IFNG emerging as both a prognostic biomarker and a viable therapeutic target. These insights provide a mechanistic foundation for integrating ferroptosis-inducing agents with immunotherapeutic modalities to enhance clinical outcomes and overcome therapeutic resistance in TNBC. Full article
Show Figures

Figure 1

26 pages, 1795 KiB  
Article
Effects of Mannan Oligosaccharides on Growth, Antioxidant and Immune Performance, and mTOR Signaling Pathway in Juvenile Tilapia (Oreochromis niloticus)
by Qin Zhang, Luoqing Li, Ziyi Ma, Wenyan He, Enhao Huang, Liuqing Meng, Lan Li, Tong Tong, Huizan Yang, Yongqiang Liu and Haijuan Liu
Animals 2025, 15(16), 2459; https://doi.org/10.3390/ani15162459 - 21 Aug 2025
Abstract
Mannan oligosaccharide (MOS), a prebiotic derived from yeast cell walls, has been shown to enhance growth performance and health status in various aquatic species. As an exogenous antigen adjuvant, MOS modulates T-cell-mediated immune responses, thereby improving immune function and suppressing excessive inflammatory reactions. [...] Read more.
Mannan oligosaccharide (MOS), a prebiotic derived from yeast cell walls, has been shown to enhance growth performance and health status in various aquatic species. As an exogenous antigen adjuvant, MOS modulates T-cell-mediated immune responses, thereby improving immune function and suppressing excessive inflammatory reactions. This study aimed to evaluate the effects of dietary MOS supplementation on growth performance, serum biochemical parameters, muscle composition, digestive enzyme activity, antioxidant and immune status, and the mTOR signaling pathway in juvenile GIFT tilapia (Oreochromis niloticus). Juveniles (initial body weight: 16.17 ± 1.32 g) were randomly assigned to six treatment groups (three replicate tanks per group) and fed diets supplemented with MOS at 0, 0.2%, 0.4%, 0.6%, 0.8%, and 1% (equivalent to 0, 2, 4, 6, 8, and 10 g/kg of diet, respectively) for 60 days. Compared with the control group, fish fed MOS-supplemented diets exhibited significantly higher (p < 0.05) weight gain rates, specific growth rates, and protein efficiency ratios, along with a significantly lower (p < 0.05) feed conversion ratio. Serum albumin, high-density lipoprotein, and lysozyme levels were significantly increased (p < 0.05), whereas triglycerides, low-density lipoprotein, aspartate aminotransferase, and alanine aminotransferase levels were significantly decreased (p < 0.05). In the liver, head kidney, and spleen, the expression of pro-inflammatory genes (tumor necrosis factor α, interleukin 1β, interleukin 6, interleukin 8, and interferon γ) was significantly downregulated (p < 0.05), while the expression of antioxidant and protective genes (superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, nuclear factor erythroid 2-related factor 2, lysozyme, alkaline phosphatase, interleukin-10, transforming growth factor β, and heat shock protein 70) as well as mTOR signaling pathway-related genes (mammalian target of rapamycin, akt protein kinase B, phosphatidylinositol 3 kinase, and ribosomal protein S6 kinase polypeptide 1) was significantly upregulated (p < 0.05). Overall, MOS positively affects tilapia’s growth, health, and immunity, with 0.60% identified as the optimal dietary level based on growth performance. Full article
Show Figures

Figure 1

15 pages, 11641 KiB  
Article
Cell-Free DNA Based Next-Generation Sequencing Does Not Differentiate Between Oligoprogression and Systemic Progression in Non-Small Cell Lung Cancer Patients Treated with Immune Checkpoint Inhibitors—An Explorative Study
by Pim Rozendal, Hanneke Kievit, Paul van der Leest, Idris Bahce, Michiel Pegtel, Harry J. M. Groen, Léon C. van Kempen, T. Jeroen N. Hiltermann and Ed Schuuring
Int. J. Mol. Sci. 2025, 26(16), 8087; https://doi.org/10.3390/ijms26168087 - 21 Aug 2025
Abstract
Immune checkpoint inhibitors (ICIs) are a key treatment for advanced non-small cell lung cancer (NSCLC), but most patients will ultimately experience disease progression due to acquired resistance to ICI. Clinically, it is relevant to differentiate between systemic progression (SP) and oligoprogression (OP). Following [...] Read more.
Immune checkpoint inhibitors (ICIs) are a key treatment for advanced non-small cell lung cancer (NSCLC), but most patients will ultimately experience disease progression due to acquired resistance to ICI. Clinically, it is relevant to differentiate between systemic progression (SP) and oligoprogression (OP). Following SP, ICI treatment is usually discontinued, while in OP, patients are preferably treated with local ablative treatment with continuation of the ICI treatment. However, with progressive disease, it remains difficult to differentiate between true OP or SP. Circulating tumor DNA (ctDNA) analysis provides an accurate real-time reflection of the tumor burden. It remains elusive if ctDNA abundance and/or dynamics can discriminate between OP and SP. Therefore, the aim of this exploratory cohort study is to evaluate whether the sequential molecular tumor profiling of ctDNA is suitable for discriminating between true OP and SP in advanced NSCLC. Patients with stage III/IV NSCLC showing progression after ≥3 months of ICI were included. OP was defined retrospectively by RECIST response ≥ 6 months after local treatment and continued ICIs. Serial plasma samples were analyzed using the AVENIO ctDNA Expanded NGS assay targeting 77 cancer-related genes. Twenty patients (6 OP, 14 SP) were included. Somatic alterations were detected in 16 patients (median 4 mutations). No significant differences in baseline ctDNA levels, changes at progression, or mutation patterns were observed between OP and SP. Although ctDNA levels generally decreased early after the start of ICI treatment, and were increased at disease progression, mutational profiles of the 77 genes using the AVENIO Expanded ctDNA panel did not distinguish OP from SP. Full article
Show Figures

Figure 1

24 pages, 1392 KiB  
Review
Intron Retention: A Reemerging Paradigm in RNA Biology and Post-Transcriptional Gene Regulation
by Ana L. Porras-Tobias, Abigail Caldera and Isabel Castro-Piedras
Genes 2025, 16(8), 986; https://doi.org/10.3390/genes16080986 - 21 Aug 2025
Viewed by 14
Abstract
For 40 years, Intron Retention (IR) was dismissed as splicing noise and is now recognized as a dynamic and evolutionarily conserved mechanism of post-transcriptional gene regulation. Unlike canonical splicing, which excises all introns from pre-mRNAs, IR selectively retains intronic sequences, albeit at seemingly [...] Read more.
For 40 years, Intron Retention (IR) was dismissed as splicing noise and is now recognized as a dynamic and evolutionarily conserved mechanism of post-transcriptional gene regulation. Unlike canonical splicing, which excises all introns from pre-mRNAs, IR selectively retains intronic sequences, albeit at seemingly random places; however, current research now reveals that this process is strategic in its retention. IR influences mRNA stability, localization, and translational potential. Retained introns can lead to nonsense-mediated decay, promote nuclear retention, or give rise to novel protein isoforms that contribute to expanding proteomic and transcriptomic profiles. IR is finely regulated by splice site strength, splicing regulatory elements, chromatin structure, methylation patterns, RNA polymerase II elongation rates, and the availability of co-transcriptional splicing factors. IR plays critical roles in cell-type and tissue-specific gene expression with observed patterns, particularly during neuronal, cardiac, hematopoietic, and immune development. It also functions as a molecular switch during cellular responses to environmental and physiological stressors such as hypoxia, heat shock, and infection. Dysregulated IR is increasingly associated with cancer, neurodegeneration, aging, and immune dysfunction, where it may alter protein function, suppress tumor suppressor genes, or generate immunogenic neoepitopes. Experimental and computational tools like RNA-seq, RT-PCR, IRFinder, and IntEREst have enabled transcriptome-wide detection and validation of IR events, uncovering their widespread functional roles. This review will examine current knowledge on the function, regulation, and detection of IR, and also summarize recent advances in understanding its role in both normal and pathophysiological settings. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

7 pages, 847 KiB  
Case Report
Treatment of Resistant TPM3::ALK + Fusion Protein Metastatic Inflammatory Myofibroblastic Tumor with ALK Targeting and Immune Checkpoint Inhibitor Combined Therapy
by Leonardo Simonelli, Sebastian James Khairkhahan, Francesco Alessandrino, Elizabeth Anne Montgomery and Gina D’Amato
Precis. Oncol. 2025, 1(1), 1; https://doi.org/10.3390/precisoncol1010001 - 20 Aug 2025
Viewed by 142
Abstract
Background and Clinical Significance: Inflammatory myofibroblastic tumors (IMTs) are rare neoplasms with low metastatic potential but a high recurrence rate. Approximately 60–80% of IMTs harbor anaplastic lymphoma kinase (ALK) gene rearrangements, making ALK inhibitors (ALKis) a key therapeutic option. However, resistance to ALKis [...] Read more.
Background and Clinical Significance: Inflammatory myofibroblastic tumors (IMTs) are rare neoplasms with low metastatic potential but a high recurrence rate. Approximately 60–80% of IMTs harbor anaplastic lymphoma kinase (ALK) gene rearrangements, making ALK inhibitors (ALKis) a key therapeutic option. However, resistance to ALKis remains a significant clinical challenge, necessitating alternative treatment strategies. Case Presentation: We report the case of a 23-year-old woman diagnosed with a metastatic TPM3::ALK fusion-positive IMT, initially managed with crizotinib and ceritinib. Disease progression prompted a switch to alectinib, followed by lorlatinib in combination with immune checkpoint inhibitors (nivolumab + ipilimumab). The patient tolerated this regimen well, with manageable side effects, and has remained progression-free for over three years, demonstrating the potential efficacy of ALK-ICI combination therapy. Conclusions: This case highlights the rapid development of resistance to first- and second-generation ALKis and the emerging role of immune checkpoint inhibitors (ICIs) in IMT treatment. PD-L1 expression in ALK-positive IMTs suggests an immune escape mechanism, supporting combination ALK-ICI therapy as a viable approach. The successful long-term disease control achieved in this case underscores the importance of molecular profiling in guiding personalized treatment strategies for IMT. This report contributes to the growing body of evidence supporting precision medicine and immunotherapy in rare sarcomas. Full article
Show Figures

Figure 1

13 pages, 794 KiB  
Communication
Preparturient Oral Selenitetriglycerides Supplementation Elevates Erythrocyte Glutathione Peroxidase Activity and Modulates Hepatic TNF-α, PPAR-α, and PPAR-δ mRNA in Postparturient Holstein–Friesian Cows
by Katarzyna Żarczyńska, Katarzyna Różańska, Paweł Brym and Dawid Tobolski
Int. J. Mol. Sci. 2025, 26(16), 8018; https://doi.org/10.3390/ijms26168018 - 19 Aug 2025
Viewed by 161
Abstract
The transition period in dairy cows, spanning late pregnancy and early lactation, is associated with substantial metabolic and immunological challenges, leading to increased oxidative stress and inflammation. Selenium (Se), particularly in organic forms, supports antioxidant defenses, immune function, and metabolic regulation. This study [...] Read more.
The transition period in dairy cows, spanning late pregnancy and early lactation, is associated with substantial metabolic and immunological challenges, leading to increased oxidative stress and inflammation. Selenium (Se), particularly in organic forms, supports antioxidant defenses, immune function, and metabolic regulation. This study investigated the effects of supplementing periparturient Holstein–Friesian cows with orally administered selenitetriglycerides (0.5 mg Se/kg body weight/day starting 12 days before the expected calving date and continuing until parturition) on antioxidant enzyme activity and on the hepatic expression of key inflammatory and metabolic genes. Serum selenium concentrations and erythrocyte glutathione peroxidase (GSH-Px) activity were assessed before and after parturition, and hepatic gene expression levels of tumor necrosis factor alpha (TNF-α), peroxisome proliferator-activated receptor alpha (PPAR-α) and delta (PPAR-δ) were assessed 24 h and 7 days postpartum. Supplemented cows showed significantly elevated serum Se levels and increased GSH-Px activity, reflecting improved antioxidant capacity. Moreover, hepatic expression of TNF-α and PPAR-δ was significantly reduced postpartum in the supplemented group, whereas PPAR-α expression remained stable. These findings indicate that selenitetriglycerides effectively enhance antioxidant defenses, moderate inflammation, and stabilize metabolic pathways during the periparturient phase, potentially reducing postpartum metabolic disorders and improving dairy-cow health. Full article
Show Figures

Figure 1

25 pages, 5512 KiB  
Article
Unraveling the Clinical Landscape of RNA Modification Regulators with Multi-Omics Insights in Pan-Cancer
by Qingman Li, Jingjing Zhang, Zuyi Cao, Jiale Wang, Jiaxing Song and Xianfu Yi
Cancers 2025, 17(16), 2695; https://doi.org/10.3390/cancers17162695 - 19 Aug 2025
Viewed by 181
Abstract
Background/Objectives: Cancer remains a major global health challenge, with RNA modifications increasingly recognized as key regulators of tumor progression. However, integrated pan-cancer analyses across multiple modification types are limited. Methods: We performed a comprehensive analysis of 170 RNA modification-related genes across 33 cancer [...] Read more.
Background/Objectives: Cancer remains a major global health challenge, with RNA modifications increasingly recognized as key regulators of tumor progression. However, integrated pan-cancer analyses across multiple modification types are limited. Methods: We performed a comprehensive analysis of 170 RNA modification-related genes across 33 cancer types, uncovering diverse expression, mutation, and epigenetic patterns. Results: Key regulators such as IGF2BP3, CFI, and ELF3 showed cancer-specific prognostic significance. We developed an RNA Modification Score (RMS) with strong prognostic performance (AUC up to 0.92), correlating with the tumor stage, immune infiltration, and immunotherapy response. High-risk groups exhibited immune checkpoint dysregulation and enriched M1 macrophages in glioblastoma. Drug screening highlighted oncrasin-72 as a potential therapy. Validation via single-cell/spatial transcriptomics and immunohistochemistry confirmed the spatial localization of critical genes like CFI and ELF3. Conclusions: Our study reveals the multifaceted role of RNA modifications in cancer, providing a translational framework for personalized prognosis and therapy in precision oncology. Full article
(This article belongs to the Special Issue Advancements in “Cancer Biomarkers” for 2025–2026)
Show Figures

Figure 1

38 pages, 2308 KiB  
Review
Galectin-9—An Emerging Glyco-Immune Checkpoint Target for Cancer Therapy
by Anastasia Iris Karkempetzaki, Tobias Schatton and Steven R. Barthel
Int. J. Mol. Sci. 2025, 26(16), 7998; https://doi.org/10.3390/ijms26167998 - 19 Aug 2025
Viewed by 162
Abstract
Galectin-9 (Gal-9, LGALS9) is a member of the family of carbohydrate-binding lectins known as galectins. Galectins bind a diverse repertoire of galactose-bearing glycoprotein receptors expressed across multiple cell types. These interactions elicit a broad spectrum of pleiotropic effects important in both normal [...] Read more.
Galectin-9 (Gal-9, LGALS9) is a member of the family of carbohydrate-binding lectins known as galectins. Galectins bind a diverse repertoire of galactose-bearing glycoprotein receptors expressed across multiple cell types. These interactions elicit a broad spectrum of pleiotropic effects important in both normal physiology and disease pathogenesis. Gal-9 contains two separate carbohydrate recognition domains with overlapping yet also divergent binding affinities for distinct glycostructures. This tandem repeat motif enables fine-tuning of its various biological functions. Additional control of Gal-9 activity is provided via multiple gene variants, protein isoforms, tissue distribution, and cell type-associated glycoprotein binding profiles. Within the tumor microenvironment, Gal-9 interacts with immune, non-immune, and cancer cells to influence malignant progression. Its binding of the premier immune checkpoint glycoreceptors, T-cell immunoglobulin and mucin-domain-containing-3 (TIM-3) and programmed cell death protein 1 (PD-1), places Gal-9 apart as a burgeoning target for immunotherapy. In this review, we delve into important aspects of Gal-9 immunobiology in tumorigenesis, including glycobiological and lineage-dependent functions. We further examine Gal-9 as a promising new glyco-immune checkpoint target for cancer therapy. Full article
(This article belongs to the Special Issue Galectins (Gals), 2nd Edition)
Show Figures

Figure 1

17 pages, 6478 KiB  
Article
The Role of the ALDH Family in Predicting Prognosis and Therapy Response in Pancreatic Cancer
by Xing Wu, Bolin Zhang, Yijun Chen, Bogusz Trojanowicz, Yoshiaki Sunami and Jörg Kleeff
Biomedicines 2025, 13(8), 2018; https://doi.org/10.3390/biomedicines13082018 - 19 Aug 2025
Viewed by 260
Abstract
Background: Pancreatic cancer ranks as the fourth leading cause of cancer-related deaths in the USA. The human aldehyde dehydrogenase (ALDH) family comprises 19 functional members and has been implicated in prognosis and therapy resistance. However, it remains unclear which specific ALDHs are [...] Read more.
Background: Pancreatic cancer ranks as the fourth leading cause of cancer-related deaths in the USA. The human aldehyde dehydrogenase (ALDH) family comprises 19 functional members and has been implicated in prognosis and therapy resistance. However, it remains unclear which specific ALDHs are associated with adverse prognoses in pancreatic cancer. Methods: We obtained transcriptomic and clinical data for pancreatic adenocarcinoma (PAAD) from the TCGA, corresponding mutational data, and normal pancreatic tissue transcriptomic data from GTEx. Prognostic analysis was carried out using Kaplan–Meier analysis. KEGG and GO analyses were used for biological signaling pathways, and ESTIMATE algorithms were used for tumor microenvironment (TME) assessment. CIBERSORT algorithm, immune infiltration analysis, and OncoPredict algorithms were employed for predicting chemotherapy sensitivity. Results: Our study identified four of the 19 ALDH genes (ALDH1L1, ALDH3A1, ALDH3B1, ALDH5A1) that were significantly associated with pancreatic cancer prognosis. High expression of ALDH1L1, ALDH3A1, and ALDH3B1 was associated with shorter overall survival, while ALDH5A1 expression was associated with longer overall survival of pancreatic cancer patients. Clinicopathological analysis revealed a significant association with KRAS mutational status and ALDH3A1 expression. Immune correlation analysis indicated that high expression of ALDH3A1 and ALDH3B1 was associated with lower expression of CD8+ T cell-associated gene expression. ESTIMATE analyses further revealed that high expression of ALDH3A1 and ALDH3B1 was associated with lower levels of immune cell infiltration. PAAD tumors with low ALDH3A1 expression were more sensitive to paclitaxel. Immunohistochemical analysis demonstrated high expression of ALDH3A1 in pancreatic cancer cells of human tumor tissues compared to normal pancreatic tissues. Conclusions: This study unveils specific ALDH family members relevant for prognosis and chemotherapy response in pancreatic cancer patients. These findings contribute valuable insights into prognostic biomarkers and their potential clinical utility in the treatment of pancreatic adenocarcinoma. Full article
Show Figures

Figure 1

19 pages, 16639 KiB  
Article
Nucleotide Metabolism and Immune Genes Can Predict the Prognostic Risk of Hepatocellular Carcinoma and the Immune Microenvironment
by Xiaofang Wang, Qinghua Cui and Yuan Zhou
Biology 2025, 14(8), 1079; https://doi.org/10.3390/biology14081079 - 18 Aug 2025
Viewed by 255
Abstract
The overall survival of hepatocellular carcinoma (HCC) remains poor, highlighting the need for better prognostic tools. Nucleotide metabolism fuels tumor progression, while the immune microenvironment dictates therapy response, but integrated models combining both features are lacking. Using TCGA-LIHC transcriptomic/clinical data, we identified nucleotide [...] Read more.
The overall survival of hepatocellular carcinoma (HCC) remains poor, highlighting the need for better prognostic tools. Nucleotide metabolism fuels tumor progression, while the immune microenvironment dictates therapy response, but integrated models combining both features are lacking. Using TCGA-LIHC transcriptomic/clinical data, we identified nucleotide metabolism and immune-related differentially expressed genes (NMIRGs), which stratified HCC patients into two subtypes via non-negative matrix factorization. A nine-gene prognostic risk signature was constructed through LASSO/Cox regression and validated using independent GEO datasets, and the NMIRG signature was further validated experimentally via RT-qPCR in HCC cell lines and independently using the HPA database for protein-level evidence. As evaluated by our risk signature, high-risk patients exhibited altered immune profiles (T cells increasing, neutrophils decreasing), elevated tumor mutation burden and microsatellite instability, and worse predicted immunotherapy response. Gene set enrichment analysis linked high-risk genes to immune pathways and low-risk genes to metabolic processes. Our risk signature predicted HCC prognosis independent of demographic features and outperformed existing signatures with superior C-index accuracy, effectively predicting immune microenvironment status and therapy benefits. Together, this integrated NMIRG signature offers enhanced prognostication and identifies promising biomarkers for personalized HCC management. Full article
(This article belongs to the Special Issue Bioinformatics in RNA Modifications and Non-Coding RNAs)
Show Figures

Figure 1

20 pages, 1516 KiB  
Review
Ferroptosis and Nrf2 Signaling in Head and Neck Cancer: Resistance Mechanisms and Therapeutic Prospects
by Jaewang Lee, Youngin Seo and Jong-Lyel Roh
Antioxidants 2025, 14(8), 993; https://doi.org/10.3390/antiox14080993 - 13 Aug 2025
Viewed by 352
Abstract
Ferroptosis is an iron-dependent form of regulated cell death marked by lipid peroxidation in polyunsaturated phospholipids. In head and neck cancer (HNC), where resistance to chemotherapy and immunotherapy is common, ferroptosis offers a mechanistically distinct strategy to overcome therapeutic failure. However, cancer cells [...] Read more.
Ferroptosis is an iron-dependent form of regulated cell death marked by lipid peroxidation in polyunsaturated phospholipids. In head and neck cancer (HNC), where resistance to chemotherapy and immunotherapy is common, ferroptosis offers a mechanistically distinct strategy to overcome therapeutic failure. However, cancer cells often evade ferroptosis via activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of antioxidant and iron-regulatory genes. HNC remains therapeutically challenging due to therapy resistance driven by redox adaptation. This review highlights the ferroptosis pathway—a form of regulated necrosis driven by iron and lipid peroxidation—and its regulation by Nrf2, a master antioxidant transcription factor. We detail how Nrf2 contributes to ferroptosis evasion in HNC and summarize emerging preclinical studies targeting this axis. The review aims to synthesize molecular insights and propose therapeutic perspectives for overcoming resistance in HNC by modulating Nrf2–ferroptosis signaling. We conducted a structured narrative review of the literature using PubMed databases. Relevant studies from 2015 to 2025 focusing on ferroptosis, Nrf2 signaling, and head and neck cancer were selected based on their experimental design, novelty, and relevance to clinical resistance mechanisms. In HNC, Nrf2 mediates resistance through transcriptional upregulation of GPX4 and SLC7A11, epigenetic stabilization by PRMT4 and ALKBH5, and activation by FGF5 and platelet-derived extracellular vesicles. Epstein–Barr virus (EBV) infection also enhances Nrf2 signaling in nasopharyngeal carcinoma. More recently, loss-of-function KEAP1 mutations have been linked to persistent Nrf2 activation and upregulation of NQO1, which confer resistance to both ferroptosis and immune checkpoint therapy. Targeting NQO1 in KEAP1-deficient models restores ferroptosis and reactivates antitumor immunity. Additionally, the natural alkaloid trigonelline has shown promise in reversing Nrf2-mediated ferroptosis resistance in cisplatin-refractory tumors. Pharmacologic agents such as auranofin, fucoxanthin, carnosic acid, and disulfiram/copper complexes have demonstrated efficacy in sensitizing HNC to ferroptosis by disrupting the Nrf2 axis. This review summarizes emerging mechanisms of ferroptosis evasion and highlights therapeutic strategies targeting the Nrf2–ferroptosis network. Integrating ferroptosis inducers with immune and chemotherapeutic approaches may provide new opportunities for overcoming resistance in head and neck malignancies. Full article
(This article belongs to the Special Issue Oxidative Stress and NRF2 in Health and Disease—2nd Edition)
Show Figures

Graphical abstract

Back to TopTop