Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = tumor’s ischemic region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1612 KiB  
Article
Neuroprotective Effects of Tryptanthrin-6-Oxime in a Rat Model of Transient Focal Cerebral Ischemia
by Mark B. Plotnikov, Galina A. Chernysheva, Vera I. Smol’yakova, Oleg I. Aliev, Anna M. Anishchenko, Olga A. Ulyakhina, Eugene S. Trofimova, Anastasia A. Ligacheva, Nina D. Anfinogenova, Anton N. Osipenko, Anastasia R. Kovrizhina, Andrei I. Khlebnikov, Igor A. Schepetkin, Anastasia G. Drozd, Evgenii V. Plotnikov, Dmitriy N. Atochin and Mark T. Quinn
Pharmaceuticals 2023, 16(8), 1057; https://doi.org/10.3390/ph16081057 - 25 Jul 2023
Cited by 3 | Viewed by 3312
Abstract
The activation of c-Jun N-terminal kinase (JNK) plays an important role in stroke outcomes. Tryptanthrin-6-oxime (TRYP-Ox) is reported to have high affinity for JNK and anti-inflammatory activity and may be of interest as a promising neuroprotective agent. The aim of this study [...] Read more.
The activation of c-Jun N-terminal kinase (JNK) plays an important role in stroke outcomes. Tryptanthrin-6-oxime (TRYP-Ox) is reported to have high affinity for JNK and anti-inflammatory activity and may be of interest as a promising neuroprotective agent. The aim of this study was to investigate the neuroprotective effects of TRYP-Ox in a rat model of transient focal cerebral ischemia (FCI), which involved intraluminal occlusion of the left middle cerebral artery (MCA) for 1 h. Animals in the experimental group were administered intraperitoneal injections of TRYP-Ox 30 min before reperfusion and 23 and 47 h after FCI. Neurological status was assessed 4, 24, and 48 h following FCI onset. Treatment with 5 and 10 mg/kg of TRYP-Ox decreased mean scores of neurological deficits by 35–49 and 46–67% at 24 and 48 h, respectively. At these doses, TRYP-Ox decreased the infarction size by 28–31% at 48 h after FCI. TRYP-Ox (10 mg/kg) reduced the content of interleukin (IL) 1β and tumor necrosis factor (TNF) in the ischemic core area of the MCA region by 33% and 38%, respectively, and attenuated cerebral edema by 11% in the left hemisphere, which was affected by infarction, and by 6% in the right, contralateral hemisphere 24 h after FCI. TRYP-Ox reduced c-Jun phosphorylation in the MCA pool at 1 h after reperfusion. TRYP-Ox was predicted to have high blood–brain barrier permeability using various calculated descriptors and binary classification trees. Indeed, reactive oxidant production was significantly lower in the brain homogenates from rats treated with TRYP-Ox versus that in control animals. Our data suggest that the neuroprotective activity of TRYP-Ox may be due to the ability of this compound to inhibit JNK and exhibit anti-inflammatory and antioxidant activity. Thus, TRYP-Ox may be considered a promising neuroprotective agent that potentially could be used for the development of new treatment strategies in cerebral ischemia. Full article
(This article belongs to the Special Issue Emerging Therapeutic Candidates for Stroke Treatment)
Show Figures

Figure 1

13 pages, 1450 KiB  
Article
Fatalities Involving Khat in Jazan, Saudi Arabia, 2018 to 2021
by Ghassan Shaikhain, Mohammed Gaballah, Ahmad Alhazmi, Ibrahim Khardali, Ahmad Hakami, Magbool Oraiby, Sultan Alharbi, Mohammad Tobaigi, Mohammed Ghalibi, Mohsen Fageeh, Mohammed Albeishy and Ibraheem Attafi
Toxics 2023, 11(6), 506; https://doi.org/10.3390/toxics11060506 - 4 Jun 2023
Cited by 6 | Viewed by 2773
Abstract
Interpreting fatalities involving khat is challenging due to a lack of data on cathinone and cathine reference concentrations in postmortem tissues. This study investigated the autopsy findings and toxicological results of fatalities involving khat in Saudi Arabia’s Jazan region from 1 January 2018 [...] Read more.
Interpreting fatalities involving khat is challenging due to a lack of data on cathinone and cathine reference concentrations in postmortem tissues. This study investigated the autopsy findings and toxicological results of fatalities involving khat in Saudi Arabia’s Jazan region from 1 January 2018 to 31 December 2021. All confirmed cathine and cathinone results in postmortem blood, urine, brain, liver, kidney, and stomach samples were recorded and analyzed. Autopsy findings and the manner and cause of death of the deceased were assessed. Saudi Arabia’s Forensic Medicine Center investigated 651 fatality cases over four years. Thirty postmortem samples were positive for khat’s active constituents, cathinone and cathine. The percentage of fatalities involving khat was 3% in 2018 and 2019 and increased from 4% in 2020 to 9% in 2021, when compared with all fatal cases. They were all males ranging in age from 23 to 45. Firearm injuries (10 cases), hanging (7 cases), road traffic accident (2 cases), head injury (2 cases), stab wounds (2 cases), poisoning (2 cases), unknown (2 cases), ischemic heart disease (1 case), brain tumor (1 case), and choking (1 case) were responsible for the deaths. In total, 57% of the postmortem samples tested positive for khat only, while 43% tested positive for khat with other drugs. Amphetamine is the drug most frequently involved. The average cathinone and cathine concentrations were 85 and 486 ng/mL in the blood, 69 and 682 ng/mL in the brain, 64 and 635 ng/mL in the liver, and 43 and 758 ng/mL in the kidneys, respectively. The 10th–90th percentiles of blood concentrations of cathinone and cathine were 18–218 ng/mL and 222–843 ng/mL, respectively. These findings show that 90% of fatalities involving khat had cathinone concentrations greater than 18 ng/mL and cathine concentrations greater than 222 ng/mL. According to the cause of death, homicide was the most common fatality involving khat alone (77%). More research is required, especially toxicological and autopsy findings, to determine the involvement of khat in crimes and fatalities. This study may help forensic scientists and toxicologists investigate fatalities involving khat. Full article
(This article belongs to the Special Issue Clinical and Post-Mortem Toxicology)
Show Figures

Figure 1

14 pages, 3912 KiB  
Article
Characterization of MRI White Matter Signal Abnormalities in the Pediatric Population
by Katharina J. Wenger, Caroline E. Koldijk, Elke Hattingen, Luciana Porto and Wiebke Kurre
Children 2023, 10(2), 206; https://doi.org/10.3390/children10020206 - 24 Jan 2023
Cited by 2 | Viewed by 16820
Abstract
(1) Background and Purpose: The aim of this study was to retrospectively characterize WMSAs in an unselected patient cohort at a large pediatric neuroimaging facility, in order to learn more about the spectrum of the underlying disorders encountered in everyday clinical practice. (2) [...] Read more.
(1) Background and Purpose: The aim of this study was to retrospectively characterize WMSAs in an unselected patient cohort at a large pediatric neuroimaging facility, in order to learn more about the spectrum of the underlying disorders encountered in everyday clinical practice. (2) Materials and Methods: Radiology reports of 5166 consecutive patients with standard brain MRI (2006–2018) were searched for predefined keywords describing WMSAs. A neuroradiology specialist enrolled patients with WMSAs following a structured approach. Imaging characteristics, etiology (autoimmune disorders, non-genetic hypoxic and ischemic insults, traumatic white matter injuries, no final diagnosis due to insufficient clinical information, “non-specific” WMSAs, infectious white matter damage, leukodystrophies, toxic white matter injuries, inborn errors of metabolism, and white matter damage caused by tumor infiltration/cancer-like disease), and age/gender distribution were evaluated. (3) Results: Overall, WMSAs were found in 3.4% of pediatric patients scanned at our and referring hospitals within the ten-year study period. The majority were found in the supratentorial region only (87%) and were non-enhancing (78% of CE-MRI). WMSAs caused by autoimmune disorders formed the largest group (23%), followed by “non-specific” WMSAs (18%), as well as non-genetic hypoxic and ischemic insults (17%). The majority were therefore acquired as opposed to inherited. Etiology-based classification of WMSAs was affected by age but not by gender. In 17% of the study population, a definite diagnosis could not be established due to insufficient clinical information (mostly external radiology consults). (4) Conclusions: An “integrated diagnosis” that combines baseline demographics, including patient age as an important factor, clinical characteristics, and additional diagnostic workup with imaging patterns can be made in the majority of cases. Full article
(This article belongs to the Section Pediatric Neurology & Neurodevelopmental Disorders)
Show Figures

Figure 1

12 pages, 6147 KiB  
Article
Biosynthetic Gas Vesicles from Halobacteria NRC-1: A Potential Ultrasound Contrast Agent for Tumor Imaging
by Mingjie Wei, Manlin Lai, Jiaqi Zhang, Xiaoqing Pei and Fei Yan
Pharmaceutics 2022, 14(6), 1198; https://doi.org/10.3390/pharmaceutics14061198 - 3 Jun 2022
Cited by 24 | Viewed by 3816
Abstract
Ultrasound contrast agents are valuable for diagnostic imaging and drug delivery. Generally, chemically synthesized microbubbles (MBs) are micro-sized particles. Particle size is a limiting factor for the diagnosis and treatment of many extravascular diseases. Recently, gas vesicles (GVs) from some marine bacteria and [...] Read more.
Ultrasound contrast agents are valuable for diagnostic imaging and drug delivery. Generally, chemically synthesized microbubbles (MBs) are micro-sized particles. Particle size is a limiting factor for the diagnosis and treatment of many extravascular diseases. Recently, gas vesicles (GVs) from some marine bacteria and archaea have been reported as novel nanoscale contrast agents, showing great potential for biomedical applications. However, most of the GVs reported in the literature show poor contrast imaging capabilities due to their small size, especially for the in vivo condition. In this study, we isolated the rugby-ball-shaped GVs from Halobacteria NRC-1 and characterized their contrast imaging properties in vitro and in vivo. Our results showed that GVs could produce stable and strong ultrasound contrast signals in murine liver tumors using clinical diagnostic ultrasound equipment at the optimized parameters. Interestingly, we found these GVs, after systemic administration, were able to perfuse the ischemic region of a tumor where conventional lipid MBs failed, producing a 6.84-fold stronger contrast signal intensity than MBs. Immunohistochemistry staining assays revealed that the nanoscale GVs, in contrast to the microscale MBs, could penetrate through blood vessels. Thus, our study proved these biosynthesized GVs from Halobacterium NRC-1 are useful for future molecular imaging and image-guided drug delivery. Full article
(This article belongs to the Special Issue Ultrasound-Assisted Drug Delivery System)
Show Figures

Figure 1

6 pages, 854 KiB  
Communication
Brain Tsunamis in Human High-Grade Glioma: Preliminary Observations
by Kayli Colpitts, Masoom J. Desai, Michael Kogan, C. William Shuttleworth and Andrew P. Carlson
Brain Sci. 2022, 12(6), 710; https://doi.org/10.3390/brainsci12060710 - 30 May 2022
Cited by 5 | Viewed by 2302
Abstract
Gliomas make up nearly 40% of all central nervous system tumors, with over 50% of those being high-grade gliomas. Emerging data suggests that electrophysiologic events in the peri-tumoral region may play a role in the behavior and progression of high-grade gliomas. While seizures [...] Read more.
Gliomas make up nearly 40% of all central nervous system tumors, with over 50% of those being high-grade gliomas. Emerging data suggests that electrophysiologic events in the peri-tumoral region may play a role in the behavior and progression of high-grade gliomas. While seizures in the peri-tumoral zone are well described, much larger and slowly propagating waves of spreading depolarization (SD) may potentially have roles in both non-epileptic transient neurologic deficits and tumor progression. SD has only recently been observed in pre-clinical glioma models and it is not known whether these events occur clinically. We present a case of SD occurring in a human high-grade glioma using gold-standard subdural DC ECoG recordings. This finding could have meaningful implications for both clinical symptomatology and potentially for disease progression in these patients. Our observations and hypotheses are based on analogy with a large body of evidence in stroke and acute neurological injury that have recently established SD as cause of transient neurological deficits as well as a fundamental mechanism of ischemic expansion. Whether SD could represent a mechanistic target in this process to limit such progression is a high priority for further clinical investigations. Full article
(This article belongs to the Special Issue Frontiers in Neurooncology and Neurosurgery)
Show Figures

Figure 1

16 pages, 4582 KiB  
Article
Tat-Endophilin A1 Fusion Protein Protects Neurons from Ischemic Damage in the Gerbil Hippocampus: A Possible Mechanism of Lipid Peroxidation and Neuroinflammation Mitigation as Well as Synaptic Plasticity
by Hyo Young Jung, Hyun Jung Kwon, Woosuk Kim, In Koo Hwang, Goang-Min Choi, In Bok Chang, Dae Won Kim and Seung Myung Moon
Cells 2021, 10(2), 357; https://doi.org/10.3390/cells10020357 - 9 Feb 2021
Cited by 6 | Viewed by 3749
Abstract
The present study explored the effects of endophilin A1 (SH3GL2) against oxidative damage brought about by H2O2 in HT22 cells and ischemic damage induced upon transient forebrain ischemia in gerbils. Tat-SH3GL2 and its control protein (Control-SH3GL2) were synthesized to deliver [...] Read more.
The present study explored the effects of endophilin A1 (SH3GL2) against oxidative damage brought about by H2O2 in HT22 cells and ischemic damage induced upon transient forebrain ischemia in gerbils. Tat-SH3GL2 and its control protein (Control-SH3GL2) were synthesized to deliver it to the cells by penetrating the cell membrane and blood–brain barrier. Tat-SH3GL2, but not Control-SH3GL2, could be delivered into HT22 cells in a concentration- and time-dependent manner and the hippocampus 8 h after treatment in gerbils. Tat-SH3GL2 was stably present in HT22 cells and degraded with time, by 36 h post treatment. Pre-incubation with Tat-SH3GL2, but not Control-SH3GL2, significantly ameliorated H2O2-induced cell death, DNA fragmentation, and reactive oxygen species formation. SH3GL2 immunoreactivity was decreased in the gerbil hippocampal CA1 region with time after ischemia, but it was maintained in the other regions after ischemia. Tat-SH3GL2 treatment in gerbils appreciably improved ischemia-induced hyperactivity 1 day after ischemia and the percentage of NeuN-immunoreactive surviving cells increased 4 days after ischemia. In addition, Tat-SH3GL2 treatment in gerbils alleviated the increase in lipid peroxidation as assessed by the levels of malondialdehyde and 8-iso-prostaglandin F2α and in pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, and interleukin-6; while the reduction of protein levels in markers for synaptic plasticity, such as postsynaptic density 95, synaptophysin, and synaptosome associated protein 25 after transient forebrain ischemia was also observed. These results suggest that Tat-SH3GL2 protects neurons from oxidative and ischemic damage by reducing lipid peroxidation and inflammation and improving synaptic plasticity after ischemia. Full article
(This article belongs to the Section Intracellular and Plasma Membranes)
Show Figures

Figure 1

12 pages, 1926 KiB  
Article
Gynura procumbens Root Extract Ameliorates Ischemia-Induced Neuronal Damage in the Hippocampal CA1 Region by Reducing Neuroinflammation
by Woosuk Kim, Hyo Young Jung, Dae Young Yoo, Hyun Jung Kwon, Kyu Ri Hahn, Dae Won Kim, Yeo Sung Yoon, Soo Young Choi and In Koo Hwang
Nutrients 2021, 13(1), 181; https://doi.org/10.3390/nu13010181 - 8 Jan 2021
Cited by 1 | Viewed by 3277
Abstract
Gynura procumbens has been used in Southeast Asia for the treatment of hypertension, hyperglycemia, and skin problems induced by ultraviolet irradiation. Although considerable studies have reported the biological properties of Gynura procumbens root extract (GPE-R), there are no studies on the effects of [...] Read more.
Gynura procumbens has been used in Southeast Asia for the treatment of hypertension, hyperglycemia, and skin problems induced by ultraviolet irradiation. Although considerable studies have reported the biological properties of Gynura procumbens root extract (GPE-R), there are no studies on the effects of GPE-R in brain damages, for example following brain ischemia. In the present study, we screened the neuroprotective effects of GPE-R against ischemic damage and neuroinflammation in the hippocampus based on behavioral, morphological, and biological approaches. Gerbils received oral administration of GPE-R (30 and 300 mg/kg) every day for three weeks and 2 h after the last administration, ischemic surgery was done by occlusion of both common carotid arteries for 5 min. Administration of 300 mg/kg GPE-R significantly reduced ischemia-induced locomotor hyperactivity 1 day after ischemia. Significantly more NeuN-positive neurons were observed in the hippocampal CA1 regions of 300 mg/kg GPE-R-treated animals compared to those in the vehicle-treated group 4 days after ischemia. Administration of GPE-R significantly reduced levels of pro-inflammatory cytokines such as interleukin-1β, -6, and tumor necrosis factor-α 6 h after ischemia/reperfusion. In addition, activated microglia were significantly decreased in the 300 mg/kg GPE-R-treated group four days after ischemia/reperfusion compared to the vehicle-treated group. These results suggest that GPE-R may be one of the possible agents to protect neurons from ischemic damage by reducing inflammatory responses. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

15 pages, 3127 KiB  
Article
Neuroprotective Effects of Ginsenosides against Cerebral Ischemia
by Zhekang Cheng, Meng Zhang, Chengli Ling, Ying Zhu, Hongwei Ren, Chao Hong, Jing Qin, Tongxiang Liu and Jianxin Wang
Molecules 2019, 24(6), 1102; https://doi.org/10.3390/molecules24061102 - 20 Mar 2019
Cited by 95 | Viewed by 7021
Abstract
Ginseng has been used worldwide as traditional medicine for thousands of years, and ginsenosides have been proved to be the main active components for their various pharmacological activities. Based on their structures, ginsenosides can be divided into ginseng diol-type A and ginseng triol-type [...] Read more.
Ginseng has been used worldwide as traditional medicine for thousands of years, and ginsenosides have been proved to be the main active components for their various pharmacological activities. Based on their structures, ginsenosides can be divided into ginseng diol-type A and ginseng triol-type B with different pharmacological effects. In this study, six ginsenosides, namely ginsenoside Rb1, Rh2, Rg3, Rg5 as diol-type ginseng saponins, and Rg1 and Re as triol-type ginseng saponins, which were reported to be effective for ischemia-reperfusion (I/R) treatment, were chosen to compare their protective effects on cerebral I/R injury, and their mechanisms were studied by in vitro and in vivo experiments. It was found that all ginsenosides could reduce reactive oxygen species (ROS), inhibit apoptosis and increase mitochondrial membrane potential in cobalt chloride-induced (CoCl2-induced) PC12 cells injury model, and they could reduce cerebral infarction volume, brain neurological dysfunction of I/R rats in vivo. The results of immunohistochemistry and western blot showed that the expression of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), silencing information regulator (SIRT1) and nuclear transcription factor P65 (NF-κB) in hippocampal CA1 region of some ginsenoside groups were also reduced. In general, the effect on cerebral ischemia of Rb1 and Rg3 was significantly improved compared with the control group, and was the strongest among all the ginsenosides. The effect on SIRT1 activation of ginsenoside Rb1 and the inhibition effect of TLR4/MyD88 protein expression of ginsenoside Rb1 and Rg3 were significantly stronger than that of other groups. The results indicated that ginsenoside Rg1, Rb1, Rh2, Rg3, Rg5 and Re were effective in protecting the brain against ischemic injury, and ginsenoside Rb1 and Rg3 have the strongest therapeutic activities in all the tested ginsenosides. Their neuroprotective mechanism is associated with TLR4/MyD88 and SIRT1 activation signaling pathways, and they can reduce cerebral ischemic injury by inhibiting NF-κB transcriptional activity and the expression of proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop