Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = true-amplitude imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10264 KB  
Article
Acoustic Seismic Inversion and Migration for Depth Velocity Model Reconstruction
by Maxim Protasov and Danil Dmitrachkov
Geosciences 2025, 15(8), 321; https://doi.org/10.3390/geosciences15080321 - 18 Aug 2025
Viewed by 628
Abstract
This paper investigates the combined application of seismic inversion and migration for processing seismic data in the depth domain. Seismic inversion serves as a widely used practical tool allowing the derivation of detailed subsurface models from seismic data. In this study, we implement [...] Read more.
This paper investigates the combined application of seismic inversion and migration for processing seismic data in the depth domain. Seismic inversion serves as a widely used practical tool allowing the derivation of detailed subsurface models from seismic data. In this study, we implement a constrained total variation inversion algorithm. The inversion input data comprise true-amplitude depth imaging results along with the depth migration velocity model. Furthermore, we develop and examine an iterative algorithm that jointly performs acoustic seismic inversion and depth migration. This approach aims to refine high-frequency and smooth low-frequency components of the depth velocity model. We validate our methods through numerical experiments using both synthetic data and a realistic Marmousi model. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

21 pages, 7459 KB  
Article
A Cross-Estimation Method for Spaceborne Synthetic Aperture Radar Range Antenna Pattern Using Pseudo-Invariant Natural Scenes
by Chuanzeng Xu, Jitong Duan, Yongsheng Zhou, Fei Teng, Fan Zhang and Wen Hong
Remote Sens. 2025, 17(8), 1459; https://doi.org/10.3390/rs17081459 - 19 Apr 2025
Viewed by 551
Abstract
The estimation and correction of antenna patterns are essential for ensuring the relative radiometric quality of SAR images. Traditional methods for antenna pattern estimation rely on artificial calibrators or specific stable natural scenes like the Amazon rainforest, which are limited by cost, complexity, [...] Read more.
The estimation and correction of antenna patterns are essential for ensuring the relative radiometric quality of SAR images. Traditional methods for antenna pattern estimation rely on artificial calibrators or specific stable natural scenes like the Amazon rainforest, which are limited by cost, complexity, and geographic constraints, making them unsuitable for frequent imaging demands. Meanwhile, general natural scenes are imaged frequently using SAR systems, but their true scattering characteristics are unknown, posing a challenge for direct antenna pattern estimation. Therefore, it is considered to use the calibrated SAR to obtain the scattering characteristics of these general scenarios; that is, introducing the concept of cross-calibration. Accordingly, this paper proposes a novel method for estimating the SAR range antenna pattern based on cross-calibration. The method addresses three key challenges: (1) Identifying pseudo-invariant natural scenes suitable as reference targets through spatial uniformity and temporal stability assessments using standard deviation and amplitude correlation analyses; (2) Achieving pixel-level registration of heterogeneous SAR images with an iterative method despite radiometric imbalances; (3) Extracting stable power values by segmenting images and applying differential screening to minimize outlier effects. The proposed method is validated using Gaofen-3 SAR data and shows robust performance in bare soil, grassland, and forest scenarios. Comparing the results of the proposed method with the tropical forest-based calibration method, the maximum shape deviation between the range antenna patterns of the two methods is less than 0.2 dB. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

16 pages, 9421 KB  
Article
Investigation of Type A Aortic Dissection Using Computational Modelling
by Mohammad Al-Rawi, Djelloul Belkacemi, Eric T. A. Lim and Manar Khashram
Biomedicines 2024, 12(9), 1973; https://doi.org/10.3390/biomedicines12091973 - 1 Sep 2024
Cited by 1 | Viewed by 2086
Abstract
Aortic dissection is a catastrophic failure of the endothelial wall that could lead to malperfusion or rupture. Computational modelling tools may help detect arterial damage. Technological advancements have led to more sophisticated forms of modelling being made available to low-grade computers. These devices [...] Read more.
Aortic dissection is a catastrophic failure of the endothelial wall that could lead to malperfusion or rupture. Computational modelling tools may help detect arterial damage. Technological advancements have led to more sophisticated forms of modelling being made available to low-grade computers. These devices can create 3D models with clinical data, where the clinical blood pressure waveforms’ model can be used to form boundary conditions for assessing hemodynamic parameters, modelling blood flow propagation along the aorta to predict the development of cardiovascular disease. This study presents patient-specific data for a rare case of severe Type A aortic dissection. CT scan images were taken nine months apart, consisting of the artery both before and after dissection. The results for the pre-dissection CT showed that the pressure waveform at the ascending aorta was higher, and the systolic pressure was lagging at the descending aorta. For the post-dissection analysis, we observed the same outcome; however, the amplitude for the waveform (systolic pressure) at the ascending aorta increased in the false lumen by 25% compared to the true lumen by 3%. Also, the waveform peak (systolic) was leading by 0.01 s. The hemodynamic parameter of wall shear stress (WSS) predicted the aneurysm’s existence at the ascending aorta, as well as potential aortic dissection. The high WSS contours were located at the tear location at the peak blood flow of 0.14 s, which shows the potential of this tool for earlier diagnosis of aortic dissection. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

15 pages, 16727 KB  
Article
Strain Measurement during Quasi-Static and Cyclic Loads in AL-6XN Material Using Digital Image Correlation Technique
by Donovan Ramírez-Acevedo, Ricardo Rafael Ambriz, Christian Jesús García, Cesar Mendoza and David Jaramillo
Materials 2024, 17(15), 3697; https://doi.org/10.3390/ma17153697 - 26 Jul 2024
Cited by 1 | Viewed by 1435
Abstract
A customized digital image correlation (DIC) system was implemented to monitor the strain produced in a cold-rolled AL-6XN stainless steel plate, 3.0 mm thick, subjected to quasi-static and cyclic loading tests. A comparison of the DIC strain measurements was made against those provided [...] Read more.
A customized digital image correlation (DIC) system was implemented to monitor the strain produced in a cold-rolled AL-6XN stainless steel plate, 3.0 mm thick, subjected to quasi-static and cyclic loading tests. A comparison of the DIC strain measurements was made against those provided by conventional extensometers. Furthermore, the DIC system was used to monitor the fatigue crack initiation in low-cycle fatigue tests. The true stress–strain behavior for the AL-6XN material was properly captured by the DIC measurements. For low-cycle fatigue tests (strain control), the strain mapping generated by DIC allowed for identifying zones with higher strain than the nominal strain amplitude applied (εa) since the first stages of the fatigue life (FL). These zones become potential fatigue crack initiation sites. Full article
Show Figures

Figure 1

17 pages, 2326 KB  
Article
Asymptotic Ray Method for the Double Square Root Equation
by Nikolay N. Shilov and Anton A. Duchkov
J. Mar. Sci. Eng. 2024, 12(4), 636; https://doi.org/10.3390/jmse12040636 - 9 Apr 2024
Cited by 1 | Viewed by 1221
Abstract
The parabolic wave equation describes wave propagation in a preferable direction, which is usually horizontal in underwater acoustics and vertical in seismic applications. For dense receiver arrays (receiver spacing is less than signal wavelength), this equation can be used for propagating the recorded [...] Read more.
The parabolic wave equation describes wave propagation in a preferable direction, which is usually horizontal in underwater acoustics and vertical in seismic applications. For dense receiver arrays (receiver spacing is less than signal wavelength), this equation can be used for propagating the recorded wavefield back into the medium for imaging sources and scattering objects. Similarly, for multiple source and receiver array acquisition, typical for seismic exploration and potentially beneficial for ocean acoustics, one can model data in one run using an extension of the parabolic equation—the pseudo-differential Double Square Root (DSR) equation. This extended equation allows for the modeling and imaging of multi-source data but operates in higher-dimensional space (source, receiver coordinates, and time), which makes its numerical computation time-consuming. In this paper, we apply a faster ray method for solving the DSR equation. We develop algorithms for both kinematic and dynamic ray tracing applicable to either data modeling or true-amplitude recovery. Our results can be used per se or as a basis for the future development of more elaborated asymptotic techniques that provide accurate and computationally feasible results. Full article
Show Figures

Figure 1

16 pages, 2606 KB  
Article
Flipping the World Upside Down: Using Eye Tracking in Virtual Reality to Study Visual Search in Inverted Scenes
by Julia Beitner, Jason Helbing, Dejan Draschkow, Erwan J. David and Melissa L.-H. Võ
J. Eye Mov. Res. 2022, 15(3), 1-16; https://doi.org/10.16910/jemr.15.3.5 - 31 Mar 2023
Cited by 6 | Viewed by 405
Abstract
Image inversion is a powerful tool for investigating cognitive mechanisms of visual perception. However, studies have mainly used inversion in paradigms presented on twodimensional computer screens. It remains open whether disruptive effects of inversion also hold true in more naturalistic scenarios. In our [...] Read more.
Image inversion is a powerful tool for investigating cognitive mechanisms of visual perception. However, studies have mainly used inversion in paradigms presented on twodimensional computer screens. It remains open whether disruptive effects of inversion also hold true in more naturalistic scenarios. In our study, we used scene inversion in virtual reality in combination with eye tracking to investigate the mechanisms of repeated visual search through three-dimensional immersive indoor scenes. Scene inversion affected all gaze and head measures except fixation durations and saccade amplitudes. Our behavioral results, surprisingly, did not entirely follow as hypothesized: While search efficiency dropped significantly in inverted scenes, participants did not utilize more memory as measured by search time slopes. This indicates that despite the disruption, participants did not try to compensate the increased difficulty by using more memory. Our study highlights the importance of investigating classical experimental paradigms in more naturalistic scenarios to advance research on daily human behavior. Full article
Show Figures

Figure 1

14 pages, 7770 KB  
Article
Application of Seismic Waveform Indicator Inversion in the Depth Domain: A Case Study of Pre-Salt Thin Carbonate Reservoir Prediction
by Jinjin Hao, Shiguo Wu, Jinxiu Yang, Yajun Zhang and Xuemei Sha
Energies 2023, 16(7), 3073; https://doi.org/10.3390/en16073073 - 28 Mar 2023
Cited by 7 | Viewed by 2257
Abstract
Prestack depth-migrated seismic data, having more accurate imaging position and amplitude fidelity than prestack time-migrated seismic data, are supposed to produce a higher quality reservoir prediction result by using depth-domain inversion. Some researchers have developed different methods of depth-domain seismic inversion. However, it [...] Read more.
Prestack depth-migrated seismic data, having more accurate imaging position and amplitude fidelity than prestack time-migrated seismic data, are supposed to produce a higher quality reservoir prediction result by using depth-domain inversion. Some researchers have developed different methods of depth-domain seismic inversion. However, it has not been widely used in the industry probably because of two reasons: (1) it is a complex process to conduct depth-domain seismic inversion due to the nonstationary depth-domain seismic wavelet; and (2) time-domain seismic inversion is considered capable of solving the problem with less cost, both in regard to time and the economy. In this paper, we try to use the seismic waveform indicator inversion method in the depth domain. First, a forward model was built to demonstrate that seismic waveforms both in the time domain and the depth domain are highly correlated with lithologic associations. Second, a quantitative evaluation method of seismic data for reservoir prediction was proposed, which can help geophysicists estimate time-domain and depth-domain inversion effects before inversion. Finally, the seismic waveform indicator inversion method was implemented for presalt thin carbonate reservoir prediction in the Central Block at the eastern margin of the Pre-Caspian Basin. The depth-domain inversion result shows a relatively true structure and higher resolution validated by wells. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

14 pages, 3940 KB  
Article
Theoretical Analysis of the Time Transient of the THz Self-Mixing Rectification Voltage in a Semiconductor Barrier
by Fabrizio Palma
Electronics 2023, 12(6), 1264; https://doi.org/10.3390/electronics12061264 - 7 Mar 2023
Cited by 2 | Viewed by 1689
Abstract
THz detection in a silicon structure can be an effective instrument not only for image detection, and material and gas sensing, but also for communications. Next-generation 6G communications assume the possibility of achieving a large-band transmission, using free space propagation with THz carriers. [...] Read more.
THz detection in a silicon structure can be an effective instrument not only for image detection, and material and gas sensing, but also for communications. Next-generation 6G communications assume the possibility of achieving a large-band transmission, using free space propagation with THz carriers. This possibility relies on the availability of an effective, low-cost detector technology. THz detection by self-mixing can provide an effective amplitude demodulation of the incoming carrier, with antennas directly fabricated on the chip. In this case, the speed of the detectors represents a crucial point in the definition of the bandwidth whereby several GHz are indeed required by the communication systems. The self-mixing process is intrinsically very fast, since it depends on the non-linear interaction of the radiation with the majority carriers inside the semiconductor structure. In this paper, we evaluate analytically the time dependence of the onset of the rectified voltage. A potential propagation along the detector channel follows the self-mixing rectification, accompanied by the charging of the parasitic capacitances of the structure. A numerical simulator can easily evaluate the delay due to this propagation along the structure, but the transient of the true origin of the signal, i.e., the establishment of the self-mixing voltage, at the current time, can be only inferred by analytical approach. In this work, we use the model developed for the THz rectification in the depletion region of an MOS capacitance to develop a transient model of the formation of the characteristic self-mixing charge dipole, and of the generation of the rectified potential. Subsequently, we show by TCAD simulations the propagation of the effect on the semiconductor structure, which surrounds the rectifying barrier, and evaluate the overall time response of a detector. Full article
(This article belongs to the Special Issue Advances in Nanophotonic Sensors, Devices and Functional Applications)
Show Figures

Figure 1

15 pages, 4492 KB  
Article
Potential of Phase-Amplitude-Based Multi-Scale Full Waveform Inversion with Total-Variation Regularization for Seismic Imaging of Deep-Seated Ores
by Yongzhong Xu, Yong Hu, Zhou Xie, Liguo Han, Yintao Zhang, Jingyi Yuan, Xiaoguo Wan and Xingliang Deng
Minerals 2022, 12(7), 877; https://doi.org/10.3390/min12070877 - 12 Jul 2022
Viewed by 2212
Abstract
As the demand for ore resources increases, the target for mineral exploration gradually shifts from shallow to deep parts of the Earth (>1 km). However, for the ore-hosting strata, it is difficult to obtain high-resolution images by using the electromagnetic method. Seismic full [...] Read more.
As the demand for ore resources increases, the target for mineral exploration gradually shifts from shallow to deep parts of the Earth (>1 km). However, for the ore-hosting strata, it is difficult to obtain high-resolution images by using the electromagnetic method. Seismic full waveform inversion (FWI) is an optimization algorithm which aims at minimizing the prestack seismic data residual between synthetic and observed data. In this case, FWI provides an effective way to achieve high-resolution imaging of subsurface structures. However, acquired seismic data usually lack low frequencies, resulting in severe cycle skipping of FWI, when the initial velocity model is far away from the true one. Phase information in the seismic data provides the kinematic characteristics of waves and has a quasi-linearly relationship with subsurface structures. In this article, we propose to use a phase-amplitude-based full waveform inversion with total-variation regularization (TV-PAFWI) to invert the deep-seated ores. The ore-hosting velocity model test results demonstrate that the TV-PAFWI is suitable for high-resolution velocity model building, especially for deep-seated ores. Full article
Show Figures

Figure 1

8 pages, 598 KB  
Article
Photonic Crystals with a Defect Fabricated by Two-Photon Polymerization for the Infrared Spectral Range
by Victoria Paige Stinson, Serang Park, Micheal McLamb, Glenn Boreman and Tino Hofmann
Optics 2021, 2(4), 284-291; https://doi.org/10.3390/opt2040027 - 6 Dec 2021
Cited by 19 | Viewed by 4758
Abstract
One-dimensional photonic crystals composed of alternating layers with high- and low-density were fabricated using two-photon polymerization from a single photosensitive polymer for the infrared spectral range. By introducing single high-density layers to break the periodicity of the photonic crystals, a narrow-band defect mode [...] Read more.
One-dimensional photonic crystals composed of alternating layers with high- and low-density were fabricated using two-photon polymerization from a single photosensitive polymer for the infrared spectral range. By introducing single high-density layers to break the periodicity of the photonic crystals, a narrow-band defect mode is induced. The defect mode is located in the center of the photonic bandgap of the one-dimensional photonic crystal. The fabricated photonic crystals were investigated using infrared reflection measurements. Stratified-layer optical models were employed in the design and characterization of the spectral response of the photonic crystals. A very good agreement was found between the model-calculated and measured reflection spectra. The geometric parameters of the photonic crystals obtained as a result of the optical model analysis were found to be in good agreement with the nominal dimensions of the photonic crystal constituents. This is supported by complimentary scanning electron microscope imaging, which verified the model-calculated, nominal layer thicknesses. Conventionally, the accurate fabrication of such structures would require layer-independent print parameters, which are difficult to obtain with high precision. In this study an alternative approach is employed, using density-dependent scaling factors, introduced here for the first time. Using these scaling factors a fast and true-to-design method for the fabrication of layers with significantly different surface-to-volume ratios. The reported observations furthermore demonstrate that the location and amplitude of defect modes is extremely sensitive to any layer thickness non-uniformities in the photonic crystal structure. Considering these capabilities, one-dimensional photonic crystals engineered with defect modes can be employed as narrow band filters, for instance, while also providing a method to quantify important fabrication parameters. Full article
Show Figures

Figure 1

20 pages, 1699 KB  
Article
A Method to Downscale Satellite Microwave Land-Surface Temperature
by Samuel Favrichon, Catherine Prigent and Carlos Jiménez
Remote Sens. 2021, 13(7), 1325; https://doi.org/10.3390/rs13071325 - 31 Mar 2021
Cited by 7 | Viewed by 3276
Abstract
High-spatial-resolution land-surface temperature is required for several applications such as hydrological or climate studies. Global estimates of surface temperature are available from sensors observing in the infrared (IR), but without ‘all-weather’ observing capability. Passive microwave (MW) instruments can also be used to provide [...] Read more.
High-spatial-resolution land-surface temperature is required for several applications such as hydrological or climate studies. Global estimates of surface temperature are available from sensors observing in the infrared (IR), but without ‘all-weather’ observing capability. Passive microwave (MW) instruments can also be used to provide surface-temperature measurements but suffer from coarser spatial resolutions. To increase their resolution, a downscaling methodology applicable over different land environments and at any time of the day is proposed. The method uses a statistical relationship between clear sky-predicting variables and clear-sky temperatures to estimate temperature patterns that can be used in conjunction with coarse measurements to create high-resolution products. Different predicting variables are tested showing the need to use IR-derived information on vegetation, temperature diurnal evolution, and a temporal information. To build a true ‘all-weather’ methodology, the effect of clouds on surface temperatures is accounted for by correcting the clear-sky diurnal cycle amplitude, using cloud parameters from meteorological reanalysis. Testing the method on a coarse IR synthetic data at ∼25 km resolution yields a Root Mean Square Deviations (RMSD) between the ∼5 km high-resolution and downscaled temperatures smaller than 1 C. When applied to observations by the Special Sensor Microwave Imager Sounder (SSMIS) at ∼25 km resolution, the downscaling to ∼5 km yields a smaller RMSD compared to IR observations. These results demonstrate the relevance of the methodology to downscale MW land-surface temperature and its potential to spatially enhanced the current ‘all-weather’ satellite monitoring of surface temperatures. Full article
Show Figures

Graphical abstract

13 pages, 4763 KB  
Article
Depth-Extrapolation-Based True-Amplitude Full-Wave-Equation Migration from Topography
by Hao Liu and Xuewei Liu
Appl. Sci. 2021, 11(7), 3010; https://doi.org/10.3390/app11073010 - 27 Mar 2021
Cited by 3 | Viewed by 2085
Abstract
The lack of an initial condition is one of the major challenges in full-wave-equation depth extrapolation. This initial condition is the vertical partial derivative of the surface wavefield and cannot be provided by the conventional seismic acquisition system. The traditional solution is to [...] Read more.
The lack of an initial condition is one of the major challenges in full-wave-equation depth extrapolation. This initial condition is the vertical partial derivative of the surface wavefield and cannot be provided by the conventional seismic acquisition system. The traditional solution is to use the wavefield value of the surface to calculate the vertical partial derivative by assuming that the surface velocity is constant. However, for seismic exploration on land, the surface velocity is often not uniform. To solve this problem, we propose a new method for calculating the vertical partial derivative from the surface wavefield without making any assumptions about the surface conditions. Based on the calculated derivative, we implemented a depth-extrapolation-based full-wave-equation migration from topography using the direct downward continuation. We tested the imaging performance of our proposed method with several experiments. The results of the Marmousi model experiment show that our proposed method is superior to the conventional reverse time migration (RTM) algorithm in terms of imaging accuracy and amplitude-preserving performance at medium and deep depths. In the Canadian Foothills model experiment, we proved that our method can still accurately image complex structures and maintain amplitude under topographic scenario. Full article
(This article belongs to the Special Issue Digital Technologies in the Petroleum Industry)
Show Figures

Figure 1

16 pages, 5864 KB  
Article
True Amplitude Angle Gathers from Reverse Time Migration by Wavefield Decomposition at Excitation Amplitude Time
by Zhe Yan, Yonglong Yang and Shaoyong Liu
Energies 2020, 13(23), 6204; https://doi.org/10.3390/en13236204 - 25 Nov 2020
Cited by 2 | Viewed by 2254
Abstract
Reservoir parameter estimation is one of the goals of amplitude-versus-angle (AVA) inversion and angle-domain common image gathers are the basis of AVA inversion. Therefore, the accuracy of kinematic and kinetic information on angle gathers is very important for reservoir characterization. Reverse time migration [...] Read more.
Reservoir parameter estimation is one of the goals of amplitude-versus-angle (AVA) inversion and angle-domain common image gathers are the basis of AVA inversion. Therefore, the accuracy of kinematic and kinetic information on angle gathers is very important for reservoir characterization. Reverse time migration is one of the most physically accurate migration method. Generating angle gathers from reverse time migration with the Poynting vector method is very efficient. However, due to inaccurate angle measurement and uneven illumination, angle gathers calculated by the Poynting vector method are often not suitable for AVA inversion. In this paper, we propose an efficient method of angle gathers with accurate angular information and amplitude from reverse time migration. We firstly decompose source and receiver wavefield to their up-going and down-going parts by using analytic wavefield. We calculate propagation directions for source down-going wavefield and receiver up-going wavefield by the Poynting vector method and form the angle gathers with these angle information and decomposed wavefield. To reduce memory storage and improve computational efficiency, we decompose wavefield at excitation amplitude time by using a local spatial Fourier transform. We also use a spatial smoothed Poynting vector to improve the stability of angle measurement. We apply an illumination compensation image condition to recover the true amplitude. Numerical examples on Marmousi model and the SEAM two-dimensional (2D) model demonstrate the advantages of our proposed method. The angle gathers based on our method are cleaner with more focus on events energy and better continuity, suffering from less low-frequency noise in the shallow parts and with a distinct cutoff at large angle where reflection terminates. At last, we demonstrate the effectiveness of proposed method on a 2D marine field data example. Full article
Show Figures

Figure 1

20 pages, 8816 KB  
Article
Thermodynamic Approach for the Identification of Instability in the Wood Using Acoustic Emission Technology
by Qi Zhao, Dong Zhao and Jian Zhao
Forests 2020, 11(5), 534; https://doi.org/10.3390/f11050534 - 10 May 2020
Cited by 13 | Viewed by 2753
Abstract
In order to monitor the crack growth of the wood material better and reduce failure risks, this paper studied the attenuation characteristics of acoustic emission signals in wood through pencil lead breaking (PLB) tests, in the aim of estimating the true amplitude value [...] Read more.
In order to monitor the crack growth of the wood material better and reduce failure risks, this paper studied the attenuation characteristics of acoustic emission signals in wood through pencil lead breaking (PLB) tests, in the aim of estimating the true amplitude value of the acoustic emission source signal. The tensile test of the double cantilever beam (DCB) specimens was used to simulate the crack tip growth within wood material, monitoring acoustic activity and location of crack tips within wood material using acoustic emission technology and digital image correlation (DIC). Results showed that the attenuation degree of acoustic emission signals increased exponentially as the propagation distance increased, and the relationship between relative amplitude attenuation rate and the propagation distance of the acoustic emission signal was established by the regression method, which provides the input parameters for the establishment of the crack instability prediction model in the next step. Based on a thermodynamic approach, a theoretical model for predicting crack instability was established, and the model was verified by DCB tests. The model uses acoustic emission parameters as the basis for judging whether the crack is instable. It provides theoretical support for the application of acoustic emission technology in wood health monitoring. Full article
Show Figures

Figure 1

9 pages, 2915 KB  
Article
Analysis of Paint Flow Pulsations during High-Speed Rotary Bell Atomization
by Walter Oswald, Jan Lauk, Lutz Gödeke, Peter Ehrhard and Norbert Willenbacher
Coatings 2019, 9(10), 674; https://doi.org/10.3390/coatings9100674 - 17 Oct 2019
Cited by 4 | Viewed by 3707
Abstract
High-speed rotary bell atomization is the preeminent coating technique in the automotive industry. It is widely accepted that a narrow droplet size distribution and constant spray are necessary in order to guarantee uniform film thickness and high-quality appearance. This may be deteriorated by [...] Read more.
High-speed rotary bell atomization is the preeminent coating technique in the automotive industry. It is widely accepted that a narrow droplet size distribution and constant spray are necessary in order to guarantee uniform film thickness and high-quality appearance. This may be deteriorated by paint flow pulsations. So far, however, no studies exist regarding such fluctuations quantitatively for this type of atomizers. We fill this gap using image analysis of high-speed recordings close to the bell edge. We could show that the fundamental pulsation frequency increases linearly with rotational speed. A ratio of pulsation frequency and true rotational speed of about 3 was found, indicating that pulsations were initiated mainly by the three struts of the distributor disc. The coefficient of variation, i.e., the amplitude of fluctuation increased with decreasing liquid volume rate and rotational speed. Beyond that, we could show that the formation of droplets larger than 100 μm, which are assumed to cause paint defects, is promoted by the degree of fluctuation. These findings may stimulate development of bell cups showing less paint flow pulsations. Full article
Show Figures

Figure 1

Back to TopTop