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Abstract: As the demand for ore resources increases, the target for mineral exploration gradually
shifts from shallow to deep parts of the Earth (>1 km). However, for the ore-hosting strata, it is
difficult to obtain high-resolution images by using the electromagnetic method. Seismic full waveform
inversion (FWI) is an optimization algorithm which aims at minimizing the prestack seismic data
residual between synthetic and observed data. In this case, FWI provides an effective way to achieve
high-resolution imaging of subsurface structures. However, acquired seismic data usually lack low
frequencies, resulting in severe cycle skipping of FWI, when the initial velocity model is far away
from the true one. Phase information in the seismic data provides the kinematic characteristics of
waves and has a quasi-linearly relationship with subsurface structures. In this article, we propose to
use a phase-amplitude-based full waveform inversion with total-variation regularization (TV-PAFWI)
to invert the deep-seated ores. The ore-hosting velocity model test results demonstrate that the
TV-PAFWI is suitable for high-resolution velocity model building, especially for deep-seated ores.

Keywords: full waveform inversion; total-variation regularization; time-frequency domain; phase-
amplitude; ore bodies inversion

1. Introduction

The seismic reflection method has great potential for deep structure imaging, which
meets the requirements of mineral exploration for deep-seated ore deposits (>1 km) [1–8].
A high-quality velocity model is needed to obtain a high-resolution reverse time migration
(RTM) image of deep-seated ores. However, the structures of ore bodies are usually
irregular, and produce a mass of scattering waves, which result in poor resolution of seismic
inversion and imaging results. Seismic full waveform inversion (FWI) is an optimization
algorithm which aims at minimizing the prestack seismic data residual between synthetic
and observed data [9–13]. In this way, FWI provides an effective way to achieve accurate
velocity inversion and has great potential for subsurface structures imaging.

In recent years, the FWI-based new methods have already been successfully applied
in mineral exploration and obtained effective results. Sun et al. proposed a new energy
compensation strategy for elastic FWI to retrieve the deep-seated ores [14]. Mao et al. used
an adjoint-state method to invert the source function and used a data similarity-based misfit
to build velocity model used for imaging the ore-hosting strata [15]. Xing et al. proposed
an energy spectrum-based FWI misfit to build a better ore-hosting velocity model [16].
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Singh et al. used 3D FWI method to build a velocity model for an iron-oxide mining
model [17]. Zhang et al. used the multisource FWI method to invert the ore bodies [18].
However, low-frequency seismic data below 6 Hz is still extremely important to retrieve
low-wave-number structures and avoid cycle skipping of FWI [19–27].

In seismic exploration, it has been proven that phase components are similar to the
travel time and have a quasi-linearly relationship with the subsurface structures [28–34].
In this way, the phase information has great potential to design a more linear misfit for
initial velocity model building. In recent years, seismic data phase information-based FWI
misfit has developed rapidly [28–31,35]. In addition, correlation-based FWI misfit functions
focus on the phase similarity and relax the requirement for amplitude matching between
synthetic and observed data [36–40]. Furthermore, adaptive matching filter-based FWI
misfit functions are also a kind of phase adjustment approach, which can effectively invert
subsurface structures [41–44].

In this article, to improve the inversion results of ore bodies, we introduce a phase-
amplitude-based full waveform inversion (PAFWI) misfit function to focus on the phase
similarity. In the PAFWI misfit function, the amplitude weights are reduced by an amplitude
factor, making it possible to emphasize measuring the phase similarity between synthetic
and observed data. First, we will review the traditional FWI method, and we show a phase-
amplitude-based full waveform inversion with total-variation regularization (TV-PAFWI)
method and derive its corresponding gradient. After that, we compare TV-PAFWI with
different parameters to prove that the new method is an effective approach to invert the
deep-seated ores. Finally, we test the TV-PAFWI stability in handling strong Gaussian noise.

2. Review of Full Waveform Inversion

For a 2D constant density acoustic FWI, the wave equation can be defined as:

∂2u
∂x2 +

∂2u
∂z2 −

1
v2

∂2u
∂t2 = f (t)δ(x− xs), (1)

where u is seismic wavefield, f (t) is source signature, xs is the source position, and v
denotes P-wave velocity model. In this case, we can formulate a least-square-based FWI
misfit function, which measures the discrepancy between the synthetic and observed data
as follows [10–12]:

J(v) =
1
2∑

s
∑

r

∫
‖u− d‖2

2dt , (2)

where d, u in the FWI misfit function indicates the observed and synthetic data, respectively;
s, r indicates the number of shots and receivers, respectively. The chain rule—based partial
derivative of the objective function is,

∂J(v)
∂v

= ∑
s

∑
r

∫
(u− d)

∂u
∂v

dt , (3)

Therefore, according to the adjoint-state method [11], the adjoint source of FWI is
denoted as

fs = (u− d), (4)

Therefore, the FWI gradient is denoted as,

∂J(v)
∂v

= − 2
v3 ∑

s

∫ ∂2P f

∂t2 Pbdt, (5)

where the P f and Pb are the forward and back-ward wavefields. We update the velocity
parameter v using the steepest descent method, and it can be written as:

vk+1 = vk − αkgk, (6)
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where gk = ∂J(v)/∂v denotes the gradient direction of TV-PAFWI misfit function. αk is the
step length for kth iteration.

3. PAFWI with Total-Variation Regularization

When the seismic data lack low frequencies, it poses a great challenge for the traditional
FWI to invert the deep-seated ore bodies [19–27]. This is because the reflection wave-based
FWI misfit function shows strong nonlinear characteristics and leads to cycle skipping in
the FWI process [10,11,28,32,38]. In this case, the least-squares-based PAFWI method is
proposed, which helps to boost the deep reflections, and reduce amplitude constraints. In
addition, to suppress imaging artifacts, we incorporated the total-variation regularization
method with the PAFWI misfit function as follows,

J(v) =
1
2∑

s
∑

r

∫
t

∫
ω

∣∣∣∣∣∣∣~u∣∣∣peiϕu −
∣∣∣∣~d∣∣∣∣peiϕd

∣∣∣∣2dtdω + ηλTV‖v‖TV , (7)

where J(v) = Jdata(v) + JTV(v);
~
u,

~
d are the synthetic and observed data in the time–

frequency domain. The amplitude factor p ∈ [0, 1] is used to redistribute the phase and am-
plitude proportions. λTV is used to adjust the weights of data and model constraints. How-
ever, in TV-PAFWI misfit function, we first need to normalize the value of data misfit and
the model constraints. Therefore, another weighting factor η = max(|gdata|)/max(|gTV |)
is introduced, where gdata is the gradient of Jdata(v) and gTV is the gradient of JTV(v).

The chain rule—based partial derivative of TV-PAFWI misfit function is

∂J(v)
∂v = ∑

s

∫
t

∫
ω

Re

{
(∆D)

[
p
(∣∣∣~u∣∣∣p−1

)(
eiϕu

) ∂
∣∣∣~u∣∣∣
∂v +

∣∣∣~u∣∣∣p ∂
∂v
(
eiϕu

)]∗}
dtdω+

∂
∂v

(∫
Ω

√
β + v2

x + v2
zdxdz

) (8)

where ∆D =
∣∣∣~u∣∣∣peiϕu −

∣∣∣∣~d∣∣∣∣peiϕd , and β is a small positive number to avoid dividing over

zero. The gradient of TV-PAFWI misfit function is as follows,

∂J(v)
∂v = ∑

s

∫
t

Re

{
Wh
−1

{
Re
[
(p−1)(∆D)

(~
u
)∗]

p̃ +(∆D)
∣∣∣~u∣∣∣2∣∣∣~u∣∣∣3−p

}}
∂u
∂v dt−

ηλTV

[
vxx(v2

z)+vzz(v2
x)−2vxvzvxz+β(vxx+vzz)

(β+v2
x+v2

z)
3
2

] (9)

where W−1
h [·]means inverse Gabor transform. For more details, please refer to Appendices A–C.

Therefore, according to the adjoint-state method, the TV-PAFWI gradient can also be
obtained by the wave-field correlation.

4. Numerical Test

A complex ore-hosting velocity model (Figure 1) is modified from a geological model
in the Luzong Basin, China. In the middle of model, it consists of multiple ore bodies,
which is the target region of our FWI method testing. From Figure 1, it shows that the
ore bodies present gently lenticular with dome-like geometry. In the the target region,
there are only 3 large ore bodies, and the rest are small ore bodies. In addition, the center
is dominated by leached poor iron ore, with rich and thick ore surrounding it [14,45].
However, with the poor quality seismic data and complexity of geological structures in ore
areas, it poses a great challenge for the traditional FWI to invert the ore bodies, especially
in the deep regions.
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In this numerical test, the size of the ore-hosting velocity model is km5.20.7 ×  (Fig-
ure 2). There are 20 shots and 280 receivers distributed on the top of the ore-hosting ve-
locity model. The recording time is 3.2 s, with a 2 ms time interval. To better match the 
filed datasets, in this case, a low-cut 6 Hz Ricker wavelet with a dominant frequency of 15 
Hz is used to test the ability of low-frequency dependence (Figure 3). In addition, we con-
sider the frequency-based multiscale strategy, and define the frequency band of 6–12 Hz 
as low-frequency data, and the frequency band of 6–20 Hz is as high-frequency data. In 
this section of numerical test, first, we give a detailed analysis of the adjoint sources. Then, 
a comparison of results TV-FWI and TV-PAFWI is shown in the numerical tests. In addi-
tion, we also show the different TV parameter and amplitude factor test results. Finally, a 
commonly used Gaussian noise was applied to test the anti-noise ability of the PAFWI 
and TV-PAFWI methods.  

 

(a) 

Figure 1. A complex ore-hosting velocity model which is modified from a geological model in the
Luzong Basin, China (Sun et al., 2015 [14]).

In this numerical test, the size of the ore-hosting velocity model is 7.0 × 2.5 km
(Figure 2). There are 20 shots and 280 receivers distributed on the top of the ore-hosting
velocity model. The recording time is 3.2 s, with a 2 ms time interval. To better match
the filed datasets, in this case, a low-cut 6 Hz Ricker wavelet with a dominant frequency
of 15 Hz is used to test the ability of low-frequency dependence (Figure 3). In addition,
we consider the frequency-based multiscale strategy, and define the frequency band of
6–12 Hz as low-frequency data, and the frequency band of 6–20 Hz is as high-frequency
data. In this section of numerical test, first, we give a detailed analysis of the adjoint sources.
Then, a comparison of results TV-FWI and TV-PAFWI is shown in the numerical tests. In
addition, we also show the different TV parameter and amplitude factor test results. Finally,
a commonly used Gaussian noise was applied to test the anti-noise ability of the PAFWI
and TV-PAFWI methods.
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4.1. The PAFWI Adjoint Sources  
To explain the characteristic of the time–frequency phase and amplitude information, 

in Figure 4, we show the adjoint sources with different amplitude factors in the time–space 
domain. In Figure 4a, we see the PAFWI adjoint source with amplitude factor p = 1, which 
is similar to the adjoint source of traditional FWI. The amplitude factor in the PAFWI mis-
fit function was then gradually decreased to reduce the amplitude constraints. Compari-
sons in Figure 4a–c demonstrate that the PAFWI adjoint sources with p = 0.6 and p = 0.3 
show clear reflection signals, especially for the deep parts. However, when the PAFWI 
amplitude factor is set to p = 0, it is a pure phase misfit function which contains too much 
phase artifacts, leading to an unstable inversion algorithm. Therefore, the amplitude in-
formation is also significant for the seismic waveform inversion. In this case, to fully use 
the linear characteristics of the phase information while avoiding the problems of algo-
rithm instability and gradient imbalance, the PAFWI amplitude factor should be set be-
tween 0.3 and 0.6.  

Figure 2. Velocity model consists of multiple ore bodies; (a) Ore-hosting velocity model; (b) Initial
velocity model.
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Figure 3. Seismic source function; (a) A low-cut 6 Hz Ricker wavelet; (b) The spectrum of the low-cut
Ricker wavelet.

4.1. The PAFWI Adjoint Sources

To explain the characteristic of the time–frequency phase and amplitude information,
in Figure 4, we show the adjoint sources with different amplitude factors in the time–space
domain. In Figure 4a, we see the PAFWI adjoint source with amplitude factor p = 1, which
is similar to the adjoint source of traditional FWI. The amplitude factor in the PAFWI misfit
function was then gradually decreased to reduce the amplitude constraints. Comparisons
in Figure 4a–c demonstrate that the PAFWI adjoint sources with p = 0.6 and p = 0.3 show
clear reflection signals, especially for the deep parts. However, when the PAFWI amplitude
factor is set to p = 0, it is a pure phase misfit function which contains too much phase
artifacts, leading to an unstable inversion algorithm. Therefore, the amplitude information
is also significant for the seismic waveform inversion. In this case, to fully use the linear
characteristics of the phase information while avoiding the problems of algorithm instability
and gradient imbalance, the PAFWI amplitude factor should be set between 0.3 and 0.6.

4.2. Ore-Hosting Model Test

Now, the numerical tests of low frequency seismic data-based TV-PAFWI results with
different amplitude factors are shown in Figure 5. Comparisons in Figure 5a–d demonstrate
that the TV-PAFWI with p = 0 shows strong phase artifacts. A comparison of Figure 5d
with Figure 5b,c shows that the ore bodies inverted by the TV-PAFWI method seem better
than the TV-FWI result. This is due to a purely exponential phase misfit function, resulting
in the almost equal weighting of weakly scattered and strongly scattered seismic signals
from direct wave to reflection wave. In addition, the subsurface structure is too complex
to fully understand the propagation of seismic waves, and even the smallest perturbation
of the wave field can cause strong changes in the phase characteristics of the seismic data.
In addition, if the exponential phase information without amplitude weight is used for
seismic inversion, the PAFWI process may be unstable, and even the problem of gradient
imbalance may be encountered. The inversion result shows that the amplitude information
is significant for the TV-PAFWI misfit function.
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method; (b) p = 0.6; (c) p = 0.3; (d) p = 0.

Then, the TV-PAFWI results with low-frequency seismic data are regarded as an
initial velocity model to improve the resolution of the ore bodies, as shown in Figure 6.
Comparison of Figure 6a–d shows that the TV-PAFWI with p = 0.3–0.6 can better recover
the ore bodies. In comparison of Figure 6a with Figure 6b, we see that the quality and
resolution of the ore bodies have been greatly improved, and the deep structures can be
seen clearly. The velocity profiles with different methods are shown in Figure 7. The
velocity comparisons show that the TV-PAFWI with p = 0.3–0.6 can obtain inversion results.
Therefore, in this case, the amplitude factor was chosen as p = 0.3–0.6 for the ore-hosting
velocity model inversion.
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Figure 5. The TV-PAFWI results with different amplitude factors of (a) p = 1 which is the TV-FWI
method; (b) p = 0.6; (c) p = 0.3; (d) p = 0, for the low frequency data and λTV = 0.3.
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(c) p = 0.3; (d) p = 0.
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(a) 

Figure 7. The TV-PAFWI velocity profiles (at 3.5 km in the ore-hosting velocity model in Figure 6a–d,
respectively), with different amplitude factors are (a) p = 1, which is the TV-FWI method; (b) p = 0.6;
(c) p = 0.3; (d) p = 0.

To further compare the inverted velocity values, we show some depth profiles at
3.5 km for TV-PAFWI results with different amplitude factors. From the comparison results
in Figure 6a–d, it can be seen that the TV-PAFWI results with amplitude factors between
0.3 and 0.6 are more similar to the true velocity parameters. In contrast, the other results
are inconsistent with the profiles of the true velocity parameters. As can be seen from the
test results in Figure 7, the phase component can improve the inversion results, but the
amplitude information also needs to be preserved in the TV-PAFWI misfit function.
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4.3. TV Parameter Test

In the TV-PAFWI misfit, the coefficient λTV balances the confidence level between the
data misfit function and the regularization term. Therefore, an appropriate regularization
coefficient (λTV) is important to constrain the model inversion. In this case, a simple TV
parameter selection procedure is applied to test the PAFWI methods. For example, in
Figure 8, we set λTV = 0 and λTV = 1, respectively. Figure 8a shows that the TV-PAFWI is
strongly affected by the phase artifacts, when amplitude factor p = 0 and λTV = 0. This
is because the PAFWI misfit function has great potential for enhancing deep reflections
and introducing imaging artifacts. The comparison results of Figures 7b and 8a show that
the TV-PAFWI with amplitude factor p = 0 and results are more similar to the true velocity
value. The phase artifacts have been successfully suppressed in the inversion process.
Therefore, the combination of total-variation regularization and PAFWI misfit function can
resist imaging artifacts caused by the amplitude attenuation. It can effectively recover the
ore bodies, especially in the deep part.
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4.4. Noise Testing

The previous test shows that strong phase artifacts may contaminate the PAFWI
with small amplitude factors. Therefore, we added the total variation regularization to
form a TV-PAFWI method to solve this problem. In this section, we added the commonly
used Gaussian noise into the synthetic seismic data. Figure 9 shows one shot seismic
data with strong Gaussian noise (SNR = −4.31 dB). In this case, the reflected signals are
almost submerged in the noises, which makes it difficult for FWI to retrieve the subsurface
structures and therefore produces incorrect inversion results.
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The inversion results of ore-hosting velocity model of PAFWI and TV-PAFWI with
strong Gaussian noise are shown in Figure 10. The strong Gaussian noise severely influences
the PAFWI result without the TV method. This is because the PAFWI method focuses more
on the phase differences, which produces phase artifacts and leads to poor inversion results.
Comparing Figures 6b and 10b, we can see that the TV-PAFWI method successfully inverts
the ore-hosting velocity model, even in the presence of strong Gaussian noise. The noisy
tests demonstrate that the TV-PAFWI method can successfully resist the Gaussian noise in
the inversion process.
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5. Conclusions

We proposed the use of a phase-amplitude-based full waveform inversion with total-
variation regularization (TV-PAFWI) to invert for ore bodies. In the TV-PAFWI misfit
function, the phase and amplitude information are both considered for inverting the sub-
surface structures by using an amplitude factor to adjust the proportion. Therefore, when
we increase the proportion of phase differences, and simultaneously reduce the amplitude
weight, it can successfully invert the deep-seated ores. In addition, the total-variation
regularization is introduced in the PAFWI misfit function to form a more robust method
for ore-hosting velocity model inversion. Numerical tests show that the combination of
time–frequency PAFWI method and total-variation regularization has strong anti-Gaussian
noise ability and can effectively restore ore bodies, especially for deep structures.
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Appendix A

In Equation (7), the data misfit function of TV-PAFWI is

J(v) =
1
2∑

s
∑

r

∫
t

∫
ω

∣∣∣∣∣∣∣~u∣∣∣peiϕu −
∣∣∣∣~d∣∣∣∣peiϕd

∣∣∣∣2dtdω, (A1)

where v means the velocity parameter;
~
u,

~
d are synthetic and observed data, in the time-

frequency domain. The amplitude factor is p ∈ [0, 1], which is used to redistribute the
phase and amplitude proportions.

The chain rule-based partial derivative of TV-PAFWI misfit function is

∂Jdata(v)
∂v

= ∑
s

∫
t

∫
ω

Re

(∆D)

p
(∣∣∣~u∣∣∣p−1

)(
eiϕu

)∂
∣∣∣~u∣∣∣
∂v

+
∣∣∣~u∣∣∣p ∂

∂v

(
eiϕp

)∗
dtdω, (A2)

where * means the complex conjugation, ∆D =
∣∣∣~u∣∣∣peiϕu −

∣∣∣∣~d∣∣∣∣peiϕd , eiϕu =
~
u/
∣∣∣~u∣∣∣. The

complex absolute derivative is as follows:

∂
∂v

∣∣∣~u∣∣∣ = ∂
∂v

[(~
u
)(~

u
)∗] 1/2

= 1∣∣∣~u∣∣∣
[(~

u
)∗

∂
~
u

∂v +
(~

u
) ∂
(~

u
)∗

∂v

]

= 1∣∣∣~u∣∣∣Re

[(~
u
) ∂
(~

u
)∗

∂v

] (A3)

Substitute Equation (A3) into (A2), and we have
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∂Jdata(v)
∂v

= ∑
s

∑
r

∫
t

∫
ω

Re




Re
[
(p− 1)(∆D)

(~
u
)∗]

p̃ + (∆D)
∣∣∣~u∣∣∣2∣∣∣~u∣∣∣3−p


∂
(~

u
)∗

∂v

dtdω, (A4)

According to the equation of forward and inverse Gabor transform, the gradient of
data misfit function is as follows:

∂Jdata(v)
∂v

= ∑
s

∫
t

Re

Wh
−1


Re
[
(p− 1)(∆D)

(~
u
)∗]

p̃ + (∆D)
∣∣∣~u∣∣∣2∣∣∣~u∣∣∣3−p


 ∂u

∂v
dt, (A5)

where W−1
h [·] means inverse Gabor transform.

Appendix B

In Equation (5), the model constraints of TV-PAFWI are as follows:

JTV(v) =
∫

Ω
L
(

x, v(x), v′(x)
)
dx, (A6)

The derivative of variational calculus in the TV-PAFWI misfit function can be defined
as follows [44]:

∂JTV(v)
∂v

=
∂L
∂v
− ∂

∂x
∂L
∂v′

, (A7)

If L does not depend explicitly on parameter f, the variational gradient becomes

∂JTV(v)
∂v

= − ∂

∂x
∂L
∂v′

, (A8)

Appendix C

The model constraints in TV-PAFWI misfit function can be explicitly expressed as follows:

JTV(v) = ‖v‖TV =
∫

Ω

√
β + v2

x + v2
zdxdz, (A9)

where vx = ∂v/∂x, vz = ∂v/∂z, and β is a small positive number to avoid dividing over
zero. According to Equation (A8), the gradient of variational calculus with respect to
velocity is as follows [44]:

∂JTV(v)
∂v = − ∂
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(
∂
√
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z
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∂
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z
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= −
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+

[
vzz

√
β+v2

x+v2
z−

vz(2vxvxz+2vzvzz)

2
√

β+v2
x+v2

z

]
(β+v2

x+v2
z)
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3
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, (A10)
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where vxx = ∂2v/∂x2, vzz = ∂2v/∂z2, vxz = (∂/∂x)(∂v/∂z), and it has

vi,j
x = vi+1,j−vi,j

∆x

vi,j
z = vi,j+1−vi,j

∆z

vi,j
xx = vi+1,j−2vi,j+vi−1,j

(∆x)2

vi,j
zz =

vi,j+1−2vi,j+vi,j−1

(∆z)2

vi,j
xz =

vi+1,j+1+vi−1,j−1−vi+1,j−1+vi−1,j+1

4∆x∆z

(A11)
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29. Bozdağ, E.J.; Trampert, T.J. Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements.

Geophys. J. Int. 2011, 185, 845–870. [CrossRef]
30. Choi, Y.; Alkhalifah, T. Unwrapped phase inversion with an exponential damping. Geophysics 2015, 80, 251–264. [CrossRef]
31. Luo, J.; Wu, R.-S.; Gao, F. Time-domain full waveform inversion using instantaneous phase information with damping. J. Geophys.

Eng. 2018, 15, 1032. [CrossRef]
32. Hu, Y.; Wu, R.-S.; Han, L.-G.; Zhang, P. Joint Multiscale Direct Envelope Inversion of Phase and Amplitude in the Time–Frequency

Domain. IEEE Trans. Geosci. Rem. Sen. 2019, 57, 5108–5120. [CrossRef]
33. Hu, Y.; Han, L.; Wu, R.; Xu, Y. Multi-scale time-frequency domain full waveform inversion with a weighted local correlation-phase

misfit function. J. Geophys. Eng. 2019, 16, 1017–1031. [CrossRef]
34. Hu, Y.; Wu, R.S.; Huang, X.; Long, Y.; Xu, Y.; Han, L.G. Phase-amplitude-based polarized direct envelope inversion in the

time-frequency domain. Geophysics 2022, 87, R245–R260. [CrossRef]
35. Bednar, J.B.; Shin, C.; Pyun, S. Comparison of waveform inversion, part 2: Phase approach. Geophys. Prosp. 2007, 55, 465–475.

[CrossRef]
36. Van Leeuwen, T.; Mulder, W.A. A correlation-based misfit criterion for wave-equation traveltime tomography. Geophys. J. Int.

2010, 182, 1383–1394. [CrossRef]
37. Liu, Y.; Teng, J.; Xu, T.; Wang, Y.; Liu, Q.; Badal, J. Robust time-domain full waveform inversion with normalized zero-lag

cross-correlation objective function. Geophys. J. Int. 2016, 209, 106–122. [CrossRef]
38. Oh, J.-W.; Alkhalifah, T. Full waveform inversion using envelope-based global correlation norm. Geophys. J. Int. 2018, 213,

815–823. [CrossRef]
39. Zhang, Z.; Alkhalifah, T.; Wu, Z.; Liu, Y.; He, B.; Oh, J. Normalized nonzero-lag crosscorrelation elastic full-waveform inversion.

Geophysics 2018, 84, R15–R24.
40. Hu, Y.; Chen, T.; Fu, L.-Y.; Wu, R.-S.; Xu, Y.; Han, L.; Huang, X. A 2-D Local Correlative Misfit for Least-Squares Reverse Time

Migration With Sparsity Promotion. IEEE Trans. Geosci. Rem. Sens. 2022, 60, 5911913. [CrossRef]
41. Zhu, H.; Fomel, S. Building good starting models for full-waveform inversion using adaptive matching filtering misfit. Geophysics

2016, 81, U61–U72. [CrossRef]
42. Sun, B.; Alkhalifah, T. Adaptive Traveltime Inversion. Geophysics 2019, 84, U13–U29. [CrossRef]
43. Sun, B.; Alkhalifah, T.A. Joint Minimization of the Mean and Information Entropy of the Matching Filter Distribution for a Robust

Misfit Function in Full-Waveform Inversion. IEEE Trans. Geosci. Rem. Sens. 2020, 58, 4704–4720. [CrossRef]
44. Kalita, M.; Kazei, V.; Choi, Y.; Alkhalifah, T. Regularized full-waveform inversion with automated salt-flooding. Geophysics 2019,

84, R569–R582. [CrossRef]
45. Lian, Y.; Lv, Q.; Han, L.; Zhao, J. The Research of Seismic Modeling in Complex Metal Ore Region-Take Luzong Luohe-

NiheDabaozhuang Deposits for an Example. Acta Geol. Sin. 2011, 85, 887–899.

http://doi.org/10.1190/geo2015-0387.1
http://doi.org/10.1016/j.jappgeo.2014.07.010
http://doi.org/10.1190/geo2013-0294.1
http://doi.org/10.3390/min11090919
http://doi.org/10.1111/j.1365-246X.2008.03923.x
http://doi.org/10.1111/j.1365-246X.2011.04970.x
http://doi.org/10.1190/geo2014-0498.1
http://doi.org/10.1088/1742-2140/aaa984
http://doi.org/10.1109/TGRS.2019.2896936
http://doi.org/10.1093/jge/gxz062
http://doi.org/10.1190/geo2020-0956.1
http://doi.org/10.1111/j.1365-2478.2007.00618.x
http://doi.org/10.1111/j.1365-246X.2010.04681.x
http://doi.org/10.1093/gji/ggw485
http://doi.org/10.1093/gji/ggy031
http://doi.org/10.1109/TGRS.2022.3150783
http://doi.org/10.1190/geo2015-0596.1
http://doi.org/10.1190/geo2018-0595.1
http://doi.org/10.1109/TGRS.2020.2966115
http://doi.org/10.1190/geo2018-0146.1

	Introduction 
	Review of Full Waveform Inversion 
	PAFWI with Total-Variation Regularization 
	Numerical Test 
	The PAFWI Adjoint Sources 
	Ore-Hosting Model Test 
	TV Parameter Test 
	Noise Testing 

	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	References

