Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = tripartite motif protein 21 (TRIM21)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4639 KB  
Article
Pulmonary Myeloid Cells in Mild Cases of COVID-19 Upregulate the Intracellular Fc Receptor TRIM21 and Transcribe Proteasome-Associated Molecules
by Andrea Henriques-Pons, Maria Clicia S. Castro, Vanessa S. Silva, Maiana O. C. Costa, Helena S. I. L. Silva, Maria Emilia M. T. Walter, Anna Cristina C. Carvalho, Alba C. M. A. Melo, Kary Ocaña, Marcelo T. dos Santos, Marisa F. Nicolas and Fabrício A. B. Silva
Int. J. Mol. Sci. 2025, 26(6), 2769; https://doi.org/10.3390/ijms26062769 - 19 Mar 2025
Viewed by 1464
Abstract
Much remains to be understood about COVID-19, but the protective role of antibodies (Igs) is widely accepted in SARS-CoV-2 infection. Igs’ functions are mainly carried out by receptors that bind to their Fc portion (FcR), and less attention has been dedicated to the [...] Read more.
Much remains to be understood about COVID-19, but the protective role of antibodies (Igs) is widely accepted in SARS-CoV-2 infection. Igs’ functions are mainly carried out by receptors that bind to their Fc portion (FcR), and less attention has been dedicated to the cytoplasmic members of this family. In this work, we used single-cell RNA sequencing (scRNA-seq) data to discern cell populations in bronchoalveolar lavage fluid obtained from healthy individuals and patients with mild or severe COVID-19. Then, we evaluated the transcription of neonatal FcR (FcRn, FCGRT gene) and tripartite motif-containing protein 21 (TRIM21) and its downstream signaling components. The TRIM21 pathway is vital for virus infections as it has a dual function, leading opsonized viruses to degradation by proteasomes and the activation of innate inflammatory anti-virus response. The transcriptional level of FCGRT showed no statistical differences in any cell population comparing the three groups of patients. On the other hand, TRIM21 transcription was significantly higher in myeloid cells collected from patients with mild COVID-19. When comparing mild with severe cases, there was no statistical difference in TRIM21 transcription in lung adaptive lymphoid cells and innate lymphoid cells (ILC). Yet, we analyzed the transcription of all downstream signaling molecules in myeloid and, as most cells expressed the receptor, in adaptive lymphoid cells. Moreover, ILCs from mild cases and all cell populations from severe cases were missing most downstream components of the pathway. We observed that members of the ubiquitin–proteasome system (UPS) and other components associated with TRIM21 proteasomal degradation were transcribed in mild cases. Despite the transcription of the danger sensors DDX58 and IFIH1, the transcriptional level of inflammatory IL1B and IL18 was generally very low, along with the NLRP3 danger sensor, members of the NF-κB pathway, and TNF. Therefore, our data suggest that TRIM21 may contribute to SARS-CoV-2 protection by reducing the viral load, while the inflammatory branch of the pathway would be silenced, leading to no pathogenic cytokine production. Full article
(This article belongs to the Special Issue New Advances in Inflammation and Repair in Respiratory Diseases)
Show Figures

Figure 1

27 pages, 8655 KB  
Article
Interleukin 27, Similar to Interferons, Modulates Gene Expression of Tripartite Motif (TRIM) Family Members and Interferes with Mayaro Virus Replication in Human Macrophages
by Lady Johana Hernández-Sarmiento, Y. S. Tamayo-Molina, Juan Felipe Valdés-López and Silvio Urcuqui-Inchima
Viruses 2024, 16(6), 996; https://doi.org/10.3390/v16060996 - 20 Jun 2024
Cited by 2 | Viewed by 3000
Abstract
Background: The Tripartite motif (TRIM) family includes more than 80 distinct human genes. Their function has been implicated in regulating important cellular processes, including intracellular signaling, transcription, autophagy, and innate immunity. During viral infections, macrophages are key components of innate immunity that produce [...] Read more.
Background: The Tripartite motif (TRIM) family includes more than 80 distinct human genes. Their function has been implicated in regulating important cellular processes, including intracellular signaling, transcription, autophagy, and innate immunity. During viral infections, macrophages are key components of innate immunity that produce interferons (IFNs) and IL27. We recently published that IL27 and IFNs induce transcriptional changes in various genes, including those involved in JAK-STAT signaling. Furthermore, IL27 and IFNs share proinflammatory and antiviral pathways in monocyte-derived macrophages (MDMs), resulting in both common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs) encoding antiviral proteins. Interestingly, many TRIM proteins have been recognized as ISGs in recent years. Although it is already very well described that TRIM expression is induced by IFNs, it is not fully understood whether TRIM genes are induced in macrophages by IL27. Therefore, in this study, we examined the effect of stimulation with IL27 and type I, II, and III IFNs on the mRNA expression profiles of TRIM genes in MDMs. Methods: We used bulk RNA-seq to examine the TRIM expression profile of MDMs treated with IFNs or IL27. Initially, we characterized the expression patterns of different TRIM subfamilies using a heatmap. Subsequently, a volcano plot was employed to identify commonly differentially expressed TRIM genes. Additionally, we conducted gene ontology analysis with ClueGO to explore the biological processes of the regulated TRIMs, created a gene-gene interaction network using GeneMANIA, and examined protein-protein interactions with the STRING database. Finally, RNA-seq data was validated using RT-qPCR. Furthermore, the effect of IL27 on Mayaro virus replication was also evaluated. Results: We found that IL27, similar to IFNs, upregulates several TRIM genes’ expression in human macrophages. Specifically, we identified three common TRIM genes (TRIM19, 21, and 22) induced by IL27 and all types of human IFNs. Additionally, we performed the first report of transcriptional regulation of TRIM19, 21, 22, and 69 genes in response to IL27. The TRIMs involved a broad range of biological processes, including defense response to viruses, viral life cycle regulation, and negative regulation of viral processes. In addition, we observed a decrease in Mayaro virus replication in MDMs previously treated with IL27. Conclusions: Our results show that IL27, like IFNs, modulates the transcriptional expression of different TRIM-family members involved in the induction of innate immunity and an antiviral response. In addition, the functional analysis demonstrated that, like IFN, IL27 reduced Mayaro virus replication in MDMs. This implies that IL27 and IFNs share many similarities at a functional level. Moreover, identifying distinct TRIM groups and their differential expressions in response to IL27 provides new insights into the regulatory mechanisms underlying the antiviral response in human macrophages. Full article
(This article belongs to the Special Issue TRIM Proteins in Antiviral Immunity and Virus Pathogenesis)
Show Figures

Figure 1

17 pages, 4329 KB  
Article
TRIM21 Promotes Oxidative Stress and Ferroptosis through the SQSTM1-NRF2-KEAP1 Axis to Increase the Titers of H5N1 Highly Pathogenic Avian Influenza Virus
by Yifan Wei, Yongxia Gu, Ziwei Zhou, Changrong Wu, Yanwei Liu and Hailiang Sun
Int. J. Mol. Sci. 2024, 25(6), 3315; https://doi.org/10.3390/ijms25063315 - 14 Mar 2024
Cited by 12 | Viewed by 3372
Abstract
Tripartite motif-containing protein 21 (TRIM21) is involved in signal transduction and antiviral responses through the ubiquitination of protein targets. TRIM21 was reported to be related to the imbalance of host cell homeostasis caused by viral infection. Our studies indicated that H5N1 highly pathogenic [...] Read more.
Tripartite motif-containing protein 21 (TRIM21) is involved in signal transduction and antiviral responses through the ubiquitination of protein targets. TRIM21 was reported to be related to the imbalance of host cell homeostasis caused by viral infection. Our studies indicated that H5N1 highly pathogenic avian influenza virus (HPAIV) infection up-regulated TRIM21 expression in A549 cells. Western blot and qPCR results showed that knockdown of TRIM21 alleviated oxidative stress and ferroptosis induced by H5N1 HPAIV and promoted the activation of antioxidant pathways. Co-IP results showed that TRIM21 promoted oxidative stress and ferroptosis by regulating the SQSTM1-NRF2-KEAP1 axis by increasing SQSTM1 K63-linked polyubiquitination under the condition of HPAIV infection. In addition, TRIM21 attenuated the inhibitory effect of antioxidant NAC on HPAIV titers and enhanced the promoting effect of ferroptosis agonist Erastin on HPAIV titers. Our findings provide new insight into the role of TRIM21 in oxidative stress and ferroptosis induced by viral infection. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

13 pages, 11110 KB  
Article
The Toll-like Receptor 7-Mediated Ro52 Antigen-Presenting Pathway in the Salivary Gland Epithelial Cells of Sjögren’s Syndrome
by Shin-Ya Nishihata, Toshimasa Shimizu, Masataka Umeda, Kaori Furukawa, Kaname Ohyama, Atsushi Kawakami and Hideki Nakamura
J. Clin. Med. 2023, 12(13), 4423; https://doi.org/10.3390/jcm12134423 - 30 Jun 2023
Cited by 12 | Viewed by 2177
Abstract
Objective: To investigate whether stimulation with toll-like receptor (TLR) 7 leads to pathways that proceed to tripartite motif-containing protein 21 (TRIM21) or Ro52/SS-A antigen presentation through major histocompatibility complex (MHC) class I in salivary gland epithelial cells (SGECs) from Sjögren’s syndrome (SS) patients. [...] Read more.
Objective: To investigate whether stimulation with toll-like receptor (TLR) 7 leads to pathways that proceed to tripartite motif-containing protein 21 (TRIM21) or Ro52/SS-A antigen presentation through major histocompatibility complex (MHC) class I in salivary gland epithelial cells (SGECs) from Sjögren’s syndrome (SS) patients. Design and Methods: Cultured SGECs from SS patients were stimulated with TLR7 agonist, loxoribine, and interferon-β. Cell lysates immunoprecipitated by anti-MHC class I antibody were analyzed by Western blotting. The immunofluorescence of salivary gland tissue from SS and non-SS subjects and cultured TLR7-stimulated SGECs was examined. Results: Significantly increased MHC class I expression was observed in SS patients’ ducts versus non-SS ducts; no significant difference was detected for ubiquitin. Upregulated MHC class I in the cell membrane and cytoplasm and augmented Ro52 expression were observed in SGECs stimulated with TLR7. The formation of peptide-loading complex (PLC), including tapasin, calreticulin, transporter associated with antigen processing 1, and endoplasmic reticulum-resident protein 57 in labial salivary glands (LSGs) from SS patients, was dominantly observed and colocalized with MHC class I, which was confirmed in TLR7-stimulated SGEC samples. Conclusion: These findings suggest that the TLR7 stimulation of SS patients’ SGECs advances the process toward the antigen presentation of TRIM21/Ro52-SS-A via MHC class I. Full article
(This article belongs to the Section Immunology & Rheumatology)
Show Figures

Figure 1

13 pages, 2394 KB  
Article
TRIM21 Promotes Rabies Virus Production by Degrading IRF7 through Ubiquitination
by Boyue Zhang, Ting Cai, Hongling He, Xuezhe Huang, Guie Chen, Yanqin Lai, Yongwen Luo, Shile Huang, Jun Luo and Xiaofeng Guo
Int. J. Mol. Sci. 2023, 24(13), 10892; https://doi.org/10.3390/ijms241310892 - 30 Jun 2023
Cited by 12 | Viewed by 3860
Abstract
Rabies, a highly fatal zoonotic disease, is a significant global public health threat. Currently, the pathogenic mechanism of rabies has not been fully elucidated, and no effective treatment for rabies is available. Increasing evidence shows that the tripartite-motif protein (TRIM) family of proteins [...] Read more.
Rabies, a highly fatal zoonotic disease, is a significant global public health threat. Currently, the pathogenic mechanism of rabies has not been fully elucidated, and no effective treatment for rabies is available. Increasing evidence shows that the tripartite-motif protein (TRIM) family of proteins participates in the host’s regulation of viral replication. Studies have demonstrated the upregulated expression of tripartite-motif protein 21 (TRIM21) in the brain tissue of mice infected with the rabies virus. Related studies have shown that TRIM21 knockdown inhibits RABV replication, while overexpression of TRIM21 exerted the opposite effect. Knockdown of interferon-alpha and interferon-beta modulates the inhibition of RABV replication caused by TRIM21 knockdown and promotes the replication of the virus. Furthermore, our previous study revealed that TRIM21 regulates the secretion of type I interferon during RABV infection by targeting interferon regulatory factor 7 (IRF7). IRF7 knockdown reduced the inhibition of RABV replication caused by the knockdown of TRIM21 and promoted viral replication. TRIM21 regulates RABV replication via the IRF7-IFN axis. Our study identified TRIM21 as a novel host factor required by RABV for replication. Thus, TRIM21 is a potential target for rabies treatment or management. Full article
Show Figures

Figure 1

13 pages, 5360 KB  
Article
The E3 Ubiquitin Ligase TRIM21 Regulates Basal Levels of PDGFRβ
by Niki Sarri, Natalia Papadopoulos, Johan Lennartsson and Carl-Henrik Heldin
Int. J. Mol. Sci. 2023, 24(9), 7782; https://doi.org/10.3390/ijms24097782 - 24 Apr 2023
Cited by 4 | Viewed by 3405
Abstract
Activation of platelet-derived growth factor (PDGF) receptors α and β (PDGFRα and PDGFRβ) at the cell surface by binding of PDGF isoforms leads to internalization of receptors, which affects the amplitude and kinetics of signaling. Ubiquitination of PDGF receptors in response to ligand [...] Read more.
Activation of platelet-derived growth factor (PDGF) receptors α and β (PDGFRα and PDGFRβ) at the cell surface by binding of PDGF isoforms leads to internalization of receptors, which affects the amplitude and kinetics of signaling. Ubiquitination of PDGF receptors in response to ligand stimulation is mediated by the Casitas b-lineage lymphoma (Cbl) family of ubiquitin ligases, promoting internalization and serving as a sorting signal for vesicular trafficking of receptors. We report here that another E3 ligase, i.e., tripartite motif-containing protein 21 (TRIM21), contributes to the ubiquitination of PDGFRβ in human primary fibroblasts AG1523 and the osteosarcoma cell line U2OS and regulates basal levels of PDGFRβ. We found that siRNA-mediated depletion of TRIM21 led to decreased ubiquitination of PDGFRβ in response to PDGF-BB stimulation, while internalization from the cell surface and the rate of ligand-induced degradation of the receptor were not affected. Moreover, induction of TRIM21 decreased the levels of PDGFRβ in serum-starved cells, and even more in growing cells, in the absence of PDGF stimulation. Consistently, siRNA knockdown of TRIM21 caused accumulation of the total amount of PDGFRβ, both in the cytoplasm and on the cell surface, without affecting mRNA levels of the receptor. We conclude that TRIM21 acts post-translationally and maintains basal levels of PDGFRβ, thus suggesting that ubiquitination of PDGFRβ by TRIM21 may direct a portion of receptor for degradation in growing cells in a ligand-independent manner. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

16 pages, 4056 KB  
Review
Multiple Roles of TRIM21 in Virus Infection
by Xue Li, Lin Yang, Si Chen, Jiawei Zheng, Huimin Zhang and Linzhu Ren
Int. J. Mol. Sci. 2023, 24(2), 1683; https://doi.org/10.3390/ijms24021683 - 14 Jan 2023
Cited by 27 | Viewed by 6036
Abstract
The tripartite motif protein 21 (TRIM21) belongs to the TRIM family, possessing an E3 ubiquitin ligase activity. Similar to other TRIMs, TRIM21 also contains three domains (named RBCC), including the Really Interesting New Gene (RING) domain, one or two B-Box domains (B-Box), and [...] Read more.
The tripartite motif protein 21 (TRIM21) belongs to the TRIM family, possessing an E3 ubiquitin ligase activity. Similar to other TRIMs, TRIM21 also contains three domains (named RBCC), including the Really Interesting New Gene (RING) domain, one or two B-Box domains (B-Box), and one PRY/SPRY domain. Notably, we found that the RING and B-Box domains are relatively more conservative than the PRY/SPRY domain, suggesting that TRIM21 of different species had similar functions. Recent results showed that TRIM21 participates in virus infection by directly interacting with viral proteins or modulating immune and inflammatory responses. TRIM21 also acts as a cytosol high-affinity antibody Fc receptor, binding to the antibody–virus complex and triggering an indirect antiviral antibody-dependent intracellular neutralization (ADIN). This paper focuses on the recent progress in the mechanism of TRIM21 during virus infection and the application prospects of TRIM21 on virus infection. Full article
(This article belongs to the Special Issue The Interaction between Cell and Virus)
Show Figures

Figure 1

13 pages, 2939 KB  
Article
Porcine TRIM21 Enhances Porcine Circovirus 2 Infection and Host Immune Responses, But Inhibits Apoptosis of PCV2-Infected Cells
by Lin Yang, Xiaohua Liu, Liying Zhang, Xue Li, Xinwei Zhang, Guyu Niu, Weilong Ji, Si Chen, Hongsheng Ouyang and Linzhu Ren
Viruses 2022, 14(1), 156; https://doi.org/10.3390/v14010156 - 15 Jan 2022
Cited by 10 | Viewed by 3470
Abstract
Tripartite motif protein 21 (TRIM21) is an interferon-inducible E3 ligase, containing one RING finger domain, one B-box motif, one coiled-coil domain at the N-terminal, as well as one PRY domain and one SPRY domain at the C-terminal. TRIM21 is expressed in many tissues [...] Read more.
Tripartite motif protein 21 (TRIM21) is an interferon-inducible E3 ligase, containing one RING finger domain, one B-box motif, one coiled-coil domain at the N-terminal, as well as one PRY domain and one SPRY domain at the C-terminal. TRIM21 is expressed in many tissues and plays an important role in systemic autoimmunity. However, TRIM21 plays different roles in different virus infections. In this study, we evaluate the relationship between porcine TRIM21 and PCV2 infection as well as host immune responses. We found that PCV2 infection modulated the expression of porcine TRIM21. TRIM21 can enhance interferons and proinflammatory factors and decrease cellular apoptosis in PCV2-infected cells. These results indicate that porcine TRIM21 plays a critical role in enhancing PCV2 infection, which is a promising target for controlling and developing the treatment of PCV2 infection. Full article
(This article belongs to the Special Issue State-of-the-Art Porcine Virus Research in China)
Show Figures

Figure 1

13 pages, 1179 KB  
Review
Severity, Pathogenicity and Transmissibility of Delta and Lambda Variants of SARS-CoV-2, Toxicity of Spike Protein and Possibilities for Future Prevention of COVID-19
by Mehrnoosh Moghaddar, Ramtin Radman and Ian Macreadie
Microorganisms 2021, 9(10), 2167; https://doi.org/10.3390/microorganisms9102167 - 18 Oct 2021
Cited by 42 | Viewed by 8600
Abstract
The World Health Organization reports that SARS-CoV-2 has infected over 220 million people and claimed over 4.7 million lives globally. While there are new effective vaccines, the differences in behavior of variants are causing challenges in vaccine development or treatment. Here, we discuss [...] Read more.
The World Health Organization reports that SARS-CoV-2 has infected over 220 million people and claimed over 4.7 million lives globally. While there are new effective vaccines, the differences in behavior of variants are causing challenges in vaccine development or treatment. Here, we discuss Delta, a variant of concern, and Lambda, a variant of interest. They demonstrate high infectivity and are less responsive to the immune response in vaccinated individuals. In this review, we briefly summarize the reason for infectivity and the severity of the novel variants. Delta and Lambda variants exhibit more changes in NSPs proteins and the S protein, compared to the original Wuhan strain. Lambda also has numerous amino acid substitutions in NSPs and S proteins, plus a deletion in the NTD of S protein, leading to partial escape from neutralizing antibodies (NAbs) in vaccinated individuals. We discuss the role of furin protease and the ACE2 receptor in virus infection, hotspot mutations in the S protein, the toxicity of the S protein and the increased pathogenicity of Delta and Lambda variants. We discuss future therapeutic strategies, including those based on high stability of epitopes, conservation of the N protein and the novel intracellular antibody receptor, tripartite-motif protein 21 (TRIM21) recognized by antibodies against the N protein. Full article
(This article belongs to the Special Issue SARS-CoV-2: Epidemiology and Pathogenesis)
Show Figures

Figure 1

15 pages, 4219 KB  
Article
A Promising Intracellular Protein-Degradation Strategy: TRIMbody-Away Technique Based on Nanobody Fragment
by Gang Chen, Yu Kong, You Li, Ailing Huang, Chunyu Wang, Shanshan Zhou, Zhenlin Yang, Yanling Wu, Jianke Ren and Tianlei Ying
Biomolecules 2021, 11(10), 1512; https://doi.org/10.3390/biom11101512 - 14 Oct 2021
Cited by 21 | Viewed by 5967
Abstract
Most recently, a technology termed TRIM-Away has allowed acute and rapid destruction of endogenous target proteins in cultured cells using specific antibodies and endogenous/exogenous tripartite motif 21 (TRIM21). However, the relatively large size of the full-size mAbs (150 kDa) results in correspondingly low [...] Read more.
Most recently, a technology termed TRIM-Away has allowed acute and rapid destruction of endogenous target proteins in cultured cells using specific antibodies and endogenous/exogenous tripartite motif 21 (TRIM21). However, the relatively large size of the full-size mAbs (150 kDa) results in correspondingly low tissue penetration and inaccessibility of some sterically hindered epitopes, which limits the target protein degradation. In addition, exogenous introduction of TRIM21 may cause side effects for treated cells. To tackle these limitations, we sought to replace full-size mAbs with the smaller format of antibodies, a nanobody (VHH, 15 kDa), and construct a new type of fusion protein named TRIMbody by fusing the nanobody and RBCC motif of TRIM21. Next, we introduced enhanced green fluorescent protein (EGFP) as a model substrate and generated αEGFP TRIMbody using a bispecific anti-EGFP (αEGFP) nanobody. Remarkably, inducible expression of αEGFP TRIMbody could specifically degrade intracellular EGFP in HEK293T cells in a time-dependent manner. By treating cells with inhibitors, we found that intracellular EGFP degradation by αEGFP TRIMbody relies on both ubiquitin–proteasome and autophagy–lysosome pathways. Taken together, these results suggested that TRIMbody-Away technology could be utilized to specifically degrade intracellular protein and could expand the potential applications of degrader technologies. Full article
Show Figures

Figure 1

20 pages, 4450 KB  
Article
Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners
by Eunate Gallardo-Vara, Lidia Ruiz-Llorente, Juan Casado-Vela, María J. Ruiz-Rodríguez, Natalia López-Andrés, Asit K. Pattnaik, Miguel Quintanilla and Carmelo Bernabeu
Cells 2019, 8(9), 1082; https://doi.org/10.3390/cells8091082 - 13 Sep 2019
Cited by 27 | Viewed by 6968
Abstract
Endoglin is a 180-kDa glycoprotein receptor primarily expressed by the vascular endothelium and involved in cardiovascular disease and cancer. Heterozygous mutations in the endoglin gene (ENG) cause hereditary hemorrhagic telangiectasia type 1, a vascular disease that presents with nasal and gastrointestinal bleeding, skin [...] Read more.
Endoglin is a 180-kDa glycoprotein receptor primarily expressed by the vascular endothelium and involved in cardiovascular disease and cancer. Heterozygous mutations in the endoglin gene (ENG) cause hereditary hemorrhagic telangiectasia type 1, a vascular disease that presents with nasal and gastrointestinal bleeding, skin and mucosa telangiectases, and arteriovenous malformations in internal organs. A circulating form of endoglin (alias soluble endoglin, sEng), proteolytically released from the membrane-bound protein, has been observed in several inflammation-related pathological conditions and appears to contribute to endothelial dysfunction and cancer development through unknown mechanisms. Membrane-bound endoglin is an auxiliary component of the TGF-β receptor complex and the extracellular region of endoglin has been shown to interact with types I and II TGF-β receptors, as well as with BMP9 and BMP10 ligands, both members of the TGF-β family. To search for novel protein interactors, we screened a microarray containing over 9000 unique human proteins using recombinant sEng as bait. We find that sEng binds with high affinity, at least, to 22 new proteins. Among these, we validated the interaction of endoglin with galectin-3, a secreted member of the lectin family with capacity to bind membrane glycoproteins, and with tripartite motif-containing protein 21 (TRIM21), an E3 ubiquitin-protein ligase. Using human endothelial cells and Chinese hamster ovary cells, we showed that endoglin co-immunoprecipitates and co-localizes with galectin-3 or TRIM21. These results open new research avenues on endoglin function and regulation. Full article
(This article belongs to the Special Issue TGF-beta/BMP Signaling Pathway)
Show Figures

Figure 1

18 pages, 1149 KB  
Review
The Ligands for Human IgG and Their Effector Functions
by Steven W. de Taeye, Theo Rispens and Gestur Vidarsson
Antibodies 2019, 8(2), 30; https://doi.org/10.3390/antib8020030 - 25 Apr 2019
Cited by 139 | Viewed by 29546
Abstract
Activation of the humoral immune system is initiated when antibodies recognize an antigen and trigger effector functions through the interaction with Fc engaging molecules. The most abundant immunoglobulin isotype in serum is Immunoglobulin G (IgG), which is involved in many humoral immune responses, [...] Read more.
Activation of the humoral immune system is initiated when antibodies recognize an antigen and trigger effector functions through the interaction with Fc engaging molecules. The most abundant immunoglobulin isotype in serum is Immunoglobulin G (IgG), which is involved in many humoral immune responses, strongly interacting with effector molecules. The IgG subclass, allotype, and glycosylation pattern, among other factors, determine the interaction strength of the IgG-Fc domain with these Fc engaging molecules, and thereby the potential strength of their effector potential. The molecules responsible for the effector phase include the classical IgG-Fc receptors (FcγR), the neonatal Fc-receptor (FcRn), the Tripartite motif-containing protein 21 (TRIM21), the first component of the classical complement cascade (C1), and possibly, the Fc-receptor-like receptors (FcRL4/5). Here we provide an overview of the interactions of IgG with effector molecules and discuss how natural variation on the antibody and effector molecule side shapes the biological activities of antibodies. The increasing knowledge on the Fc-mediated effector functions of antibodies drives the development of better therapeutic antibodies for cancer immunotherapy or treatment of autoimmune diseases. Full article
(This article belongs to the Special Issue Structure and Function of Antibodies)
Show Figures

Figure 1

Back to TopTop