The Toll-like Receptor 7-Mediated Ro52 Antigen-Presenting Pathway in the Salivary Gland Epithelial Cells of Sjögren’s Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Culture of Salivary Gland Epithelial Cells (SGECs)
2.3. Immunofluorescence
2.4. Deconvolution Technique
2.5. Simple Western Analysis, Coimmunoprecipitation (co-IP)
2.6. Statistical Analysis
3. Results
3.1. Subject Characteristics
3.2. Increased Expression of MHC Class I and Varying Expression of Ubiquitin in the Ducts from SS Patients’ LSGs
3.3. Increased Expression of MHC Class I and Ro52 in TLR7-Stimulated SGECs
3.4. Increased Expression of PLC and Class I in SS Patients’ LSGs
3.5. Increased Expression of PLC and Class I in SS Patients’ TLR7-Stimulated SGECs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramos-Casals, M.; Tzioufas, A.G.; Font, J. Primary Sjogren’s syndrome: New clinical and therapeutic concepts. Ann. Rheum. Dis. 2005, 64, 347–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariette, X.; Criswell, L.A. Primary Sjogren’s Syndrome. N. Engl. J. Med. 2018, 378, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Horai, Y.; Shimizu, T.; Kawakami, A. Modulation of apoptosis by cytotoxic mediators and cell-survival molecules in Sjogren’s syndrome. Int. J. Mol. Sci. 2018, 19, 2369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andre, F.; Bockle, B.C. Sjogren’s syndrome. J. Dtsch. Dermatol. Ges. 2022, 20, 980–1002. [Google Scholar] [CrossRef]
- Imgenberg-Kreuz, J.; Rasmussen, A.; Sivils, K.; Nordmark, G. Genetics and epigenetics in primary Sjogren’s syndrome. Rheumatology 2021, 60, 2085–2098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, H.; Kawakami, A.; Eguchi, K. Mechanisms of autoantibody production and the relationship between autoantibodies and the clinical manifestations in Sjogren’s syndrome. Transl. Res. 2006, 148, 281–288. [Google Scholar] [CrossRef]
- Fayyaz, A.; Kurien, B.T.; Scofield, R.H. Autoantibodies in Sjogren’s syndrome. Rheum. Dis. Clin. N. Am. 2016, 42, 419–434. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Ma, J.F.; Chang, C.; Xu, T.; Gao, C.Y.; Gershwin, M.E.; Lian, Z.X. Immunobiology of T cells in Sjogren’s syndrome. Clin. Rev. Allergy Immunol. 2021, 60, 111–131. [Google Scholar] [CrossRef]
- Kiripolsky, J.; McCabe, L.G.; Kramer, J.M. Innate immunity in Sjogren’s syndrome. Clin. Immunol. 2017, 182, 4–13. [Google Scholar] [CrossRef]
- Szczerba, B.M.; Kaplonek, P.; Wolska, N.; Podsiadlowska, A.; Rybakowska, P.D.; Dey, P.; Rasmussen, A.; Grundahl, K.; Hefner, K.S.; Stone, D.U.; et al. Interaction between innate immunity and Ro52-induced antibody causes Sjogren’s syndrome-like disorder in mice. Ann. Rheum. Dis. 2016, 75, 617–622. [Google Scholar] [CrossRef]
- Karlsen, M.; Jakobsen, K.; Jonsson, R.; Hammenfors, D.; Hansen, T.; Appel, S. Expression of Toll-like receptors in peripheral blood mononuclear cells of patients with primary Sjogren’s syndrome. Scand. J. Immunol. 2017, 85, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Newton, K.; Dixit, V.M. Signaling in innate immunity and inflammation. Cold Spring Harb. Perspect. Biol. 2012, 4, a006049. [Google Scholar] [CrossRef] [Green Version]
- Kawai, T.; Akira, S. Toll-like receptor and RIG-I-like receptor signaling. Ann. N. Y. Acad. Sci. 2008, 1143, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Nakamura, H.; Takatani, A.; Umeda, M.; Horai, Y.; Kurushima, S.; Michitsuji, T.; Nakashima, Y.; Kawakami, A. Activation of Toll-like receptor 7 signaling in labial salivary glands of primary Sjogren’s syndrome patients. Clin. Exp. Immunol. 2019, 196, 39–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, T.; Nakamura, H.; Kawakami, A. Role of the innate immunity signaling pathway in the pathogenesis of Sjögren’s syndrome. Int. J. Mol. Sci. 2021, 22, 3090. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.L.; Laidlaw, S.M.; Dustin, L.B. TRIM21/Ro52—Roles in innate immunity and autoimmune disease. Front. Immunol. 2021, 12, 738473. [Google Scholar] [CrossRef]
- Rhodes, D.A.; Trowsdale, J. TRIM21 is a trimeric protein that binds IgG Fc via the B30.2 domain. Mol. Immunol. 2007, 44, 2406–2414. [Google Scholar] [CrossRef]
- Chan, E.K.L. Anti-Ro52 autoantibody is common in systemic autoimmune rheumatic diseases and correlating with worse outcome when associated with interstitial lung disease in systemic sclerosis and autoimmune myositis. Clin. Rev. Allergy Immunol. 2022, 63, 178–193. [Google Scholar] [CrossRef]
- Aqrawi, L.A.; Kvarnstrom, M.; Brokstad, K.A.; Jonsson, R.; Skarstein, K.; Wahren-Herlenius, M. Ductal epithelial expression of Ro52 correlates with inflammation in salivary glands of patients with primary Sjogren’s syndrome. Clin. Exp. Immunol. 2014, 177, 244–252. [Google Scholar] [CrossRef]
- Long, E.O.; Jacobson, S. Pathways of viral antigen processing and presentation to CTL: Defined by the mode of virus entry? Immunol. Today 1989, 10, 45–48. [Google Scholar] [CrossRef]
- Pishesha, N.; Harmand, T.J.; Ploegh, H.L. A guide to antigen processing and presentation. Nat. Rev. Immunol. 2022, 22, 751–764. [Google Scholar] [CrossRef]
- Domnick, A.; Winter, C.; Susac, L.; Hennecke, L.; Hensen, M.; Zitzmann, N.; Trowitzsch, S.; Thomas, C.; Tampe, R. Molecular basis of MHC I quality control in the peptide loading complex. Nat. Commun. 2022, 13, 4701. [Google Scholar] [CrossRef] [PubMed]
- Zaitoua, A.J.; Kaur, A.; Raghavan, M. Variations in MHC class I antigen presentation and immunopeptidome selection pathways. F1000Research 2020, 9, 1177. [Google Scholar] [CrossRef] [PubMed]
- Shiboski, C.H.; Shiboski, S.C.; Seror, R.; Criswell, L.A.; Labetoulle, M.; Lietman, T.M.; Rasmussen, A.; Scofield, H.; Vitali, C.; Bowman, S.J.; et al. 2016 American College of Rheumatology/European League Against Rheumatism Classification Criteria for Primary Sjogren’s Syndrome: A Consensus and Data-Driven Methodology Involving Three International Patient Cohorts. Arthritis Rheumatol. 2017, 69, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Kawakami, A.; Ida, H.; Koji, T.; Eguchi, K. EGF activates PI3K-Akt and NF-kappaB via distinct pathways in salivary epithelial cells in Sjogren’s syndrome. Rheumatol. Int. 2007, 28, 127–136. [Google Scholar] [CrossRef]
- Li, W.; Sasse, K.C.; Bayguinov, Y.; Ward, S.M.; Perrino, B.A. Contractile protein expression and phosphorylation and contractility of gastric smooth muscles from obese patients and patients with obesity and diabetes. J. Diabetes Res. 2018, 2018, 8743874. [Google Scholar] [CrossRef] [Green Version]
- Higgs, R.; Lazzari, E.; Wynne, C.; Ni Gabhann, J.; Espinosa, A.; Wahren-Herlenius, M.; Jefferies, C.A. Self protection from anti-viral responses—Ro52 promotes degradation of the transcription factor IRF7 downstream of the viral Toll-Like receptors. PLoS ONE 2010, 5, e11776. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.X.; Hong, X.; Liao, B.B.; Shi, S.Z.; Lai, X.F.; Zheng, H.Y.; Xie, L.; Wang, Y.; Wang, X.L.; Xin, H.B.; et al. Expression profiling of TRIM protein family in THP1-derived macrophages following TLR stimulation. Sci. Rep. 2017, 7, 42781. [Google Scholar] [CrossRef] [Green Version]
- Kyriakidis, N.C.; Kapsogeorgou, E.K.; Gourzi, V.C.; Konsta, O.D.; Baltatzis, G.E.; Tzioufas, A.G. Toll-like receptor 3 stimulation promotes Ro52/TRIM21 synthesis and nuclear redistribution in salivary gland epithelial cells, partially via type I interferon pathway. Clin. Exp. Immunol. 2014, 178, 548–560. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.C.; Liu, S.J.; Chen, H.W.; Shen, K.Y.; Leng, C.H. A Toll-like receptor 2 agonist-fused antigen enhanced antitumor immunity by increasing antigen presentation and the CD8 memory T cells population. Oncotarget 2016, 7, 30804–30819. [Google Scholar] [CrossRef] [Green Version]
- Sciorati, C.; Monno, A.; Doglio, M.G.; Rigamonti, E.; Ascherman, D.P.; Manfredi, A.A.; Rovere-Querini, P. Exacerbation of murine experimental autoimmune myositis by Toll-like receptor 7/8. Arthritis Rheumatol. 2018, 70, 1276–1287. [Google Scholar] [CrossRef] [PubMed]
- Michalek, M.T.; Grant, E.P.; Gramm, C.; Goldberg, A.L.; Rock, K.L. A role for the ubiquitin-dependent proteolytic pathway in MHC class I-restricted antigen presentation. Nature 1993, 363, 552–554. [Google Scholar] [CrossRef] [PubMed]
Variables | pSS (n = 10) | Controls (n = 5) | p-Value |
---|---|---|---|
Age, year, median (IQR) | 46.5 (16–60) | 52 (43–60) | 0.67 a |
Female, n | 10 | 5 | 1 b |
Xerostomia, n | 6 (60%) | 4 (80%) | 0.6 b |
Xerophthalmia, n | 7 (70%) | 4 (80%) | 1 b |
Schirmer test positivity, n | 7/9 (77.8%) | 2 (40%) | 0.27 b |
Saxon test positivity, n | 7/9 (77.8%) | 2 (40%) | 0.27 b |
Anti-SS-A/Ro antibody positivity, n | 10 (100%) | 0 (0%) | <0.001 b |
Anti-SS-B/La antibody positivity, n | 5 (50%) | 0 (0%) | 0.1 b |
ANA positivity, n | 10 (100%) | 1 (20%) | 0.004 b |
RF positivity, n | 8/8 (100%) | 1 (20%) | 0.007 b |
Serum IgG, mg/dl, median (IQR) | 2071 (1550–2550) | 1037 (568–1498) n = 3 | 0.014 a |
LSG biopsy, focus score | 4 (3–11) | 0 | 0.002 a |
ESSDAI score, median (IQR) | 4/9 (0–12) | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishihata, S.-Y.; Shimizu, T.; Umeda, M.; Furukawa, K.; Ohyama, K.; Kawakami, A.; Nakamura, H. The Toll-like Receptor 7-Mediated Ro52 Antigen-Presenting Pathway in the Salivary Gland Epithelial Cells of Sjögren’s Syndrome. J. Clin. Med. 2023, 12, 4423. https://doi.org/10.3390/jcm12134423
Nishihata S-Y, Shimizu T, Umeda M, Furukawa K, Ohyama K, Kawakami A, Nakamura H. The Toll-like Receptor 7-Mediated Ro52 Antigen-Presenting Pathway in the Salivary Gland Epithelial Cells of Sjögren’s Syndrome. Journal of Clinical Medicine. 2023; 12(13):4423. https://doi.org/10.3390/jcm12134423
Chicago/Turabian StyleNishihata, Shin-Ya, Toshimasa Shimizu, Masataka Umeda, Kaori Furukawa, Kaname Ohyama, Atsushi Kawakami, and Hideki Nakamura. 2023. "The Toll-like Receptor 7-Mediated Ro52 Antigen-Presenting Pathway in the Salivary Gland Epithelial Cells of Sjögren’s Syndrome" Journal of Clinical Medicine 12, no. 13: 4423. https://doi.org/10.3390/jcm12134423
APA StyleNishihata, S.-Y., Shimizu, T., Umeda, M., Furukawa, K., Ohyama, K., Kawakami, A., & Nakamura, H. (2023). The Toll-like Receptor 7-Mediated Ro52 Antigen-Presenting Pathway in the Salivary Gland Epithelial Cells of Sjögren’s Syndrome. Journal of Clinical Medicine, 12(13), 4423. https://doi.org/10.3390/jcm12134423