Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = trimetal oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3400 KiB  
Review
Engineered Metal Oxide Nanoparticles as Fungicides for Plant Disease Control
by Aida R. Cruz-Luna, Alfonso Vásquez-López, Hugo Rojas-Chávez, Manuel A. Valdés-Madrigal, Heriberto Cruz-Martínez and Dora I. Medina
Plants 2023, 12(13), 2461; https://doi.org/10.3390/plants12132461 - 27 Jun 2023
Cited by 19 | Viewed by 4192
Abstract
Metal oxide nanoparticles are considered to be good alternatives as fungicides for plant disease control. To date, numerous metal oxide nanoparticles have been produced and evaluated as promising antifungal agents. Consequently, a detailed and critical review on the use of mono-, bi-, and [...] Read more.
Metal oxide nanoparticles are considered to be good alternatives as fungicides for plant disease control. To date, numerous metal oxide nanoparticles have been produced and evaluated as promising antifungal agents. Consequently, a detailed and critical review on the use of mono-, bi-, and tri-metal oxide nanoparticles for controlling phytopathogenic fungi is presented. Among the studied metal oxide nanoparticles, mono-metal oxide nanoparticles—particularly ZnO nanoparticles, followed by CuO nanoparticles —are the most investigated for controlling phytopathogenic fungi. Limited studies have investigated the use of bi- and tri-metal oxide nanoparticles for controlling phytopathogenic fungi. Therefore, more studies on these nanoparticles are required. Most of the evaluations have been carried out under in vitro conditions. Thus, it is necessary to develop more detailed studies under in vivo conditions. Interestingly, biological synthesis of nanoparticles has been established as a good alternative to produce metal oxide nanoparticles for controlling phytopathogenic fungi. Although there have been great advances in the use of metal oxide nanoparticles as novel antifungal agents for sustainable agriculture, there are still areas that require further improvement. Full article
(This article belongs to the Special Issue Agricultural Nanotechnology)
Show Figures

Figure 1

19 pages, 5859 KiB  
Article
Template-Free Synthesis of Magnetic La-Mn-Fe Tri-Metal Oxide Nanofibers for Efficient Fluoride Remediation: Kinetics, Isotherms, Thermodynamics and Reusability
by Shaoju Jian, Yuhuang Chen, Fengshuo Shi, Yifei Liu, Wenlong Jiang, Jiapeng Hu, Xiaoshuai Han, Shaohua Jiang and Weisen Yang
Polymers 2022, 14(24), 5417; https://doi.org/10.3390/polym14245417 - 11 Dec 2022
Cited by 42 | Viewed by 2522
Abstract
The occurrence of fluoride contamination in drinking water has gained substantial concern owing to its serious threat to human health. Traditional adsorbents have shortcomings such as low adsorption capacity and poor selectivity, so it is urgent to develop new adsorbents with high adsorption [...] Read more.
The occurrence of fluoride contamination in drinking water has gained substantial concern owing to its serious threat to human health. Traditional adsorbents have shortcomings such as low adsorption capacity and poor selectivity, so it is urgent to develop new adsorbents with high adsorption capacity, renewable and no secondary pollution. In this work, magnetic electrospun La-Mn-Fe tri-metal oxide nanofibers (LMF NFs) for fluoride recovery were developed via electrospinning and heat treatment, and its defluoridation property was evaluated in batch trials. Modern analytical tools (SEM, BET, XRD, FTIR) were adopted to characterize the properties of the optimized adsorbent, i.e., LMF11 NFs with a La:Mn molar ratio of 1:1. The surface area calculated via BET method and pHpzc assessed using pH drift method of LMF11 NFs were 55.81 m2 g−1 and 6.47, respectively. The results indicated that the adsorption amount was highly dependent on the pH of the solution, and reached the highest value at pH = 3. The kinetic behavior of defluoridation on LMF11 NFs was dominated by the PSO model with the highest fitted determination coefficients of 0.9999. Compared with the other three isotherm models, the Langmuir model described defluoridation characteristics well with larger correlation coefficients of 0.9997, 0.9990, 0.9987 and 0.9976 at 15 °C, 25 °C, 35 °C and 45 °C, respectively. The optimized LMF11 NFs exhibited superior monolayer defluoridation capacities for 173.30–199.60 mg F/g at pH 3 at 15–45 °C according to the Langmuir isotherm model. A thermodynamic study proved that the defluoridation by LMF11 NFs is a spontaneous, endothermic along with entropy increase process. In addition, the LMF11 NFs still showed high defluoridation performance after three reused cycles. These findings unveil that the synthesized LMF11 NFs adsorbent is a good adsorbent for fluoride remediation from wastewater owing to its low cost, high defluoridation performance and easy operation. Full article
(This article belongs to the Special Issue Wastewater Treatment Systems: Theory and Operation)
Show Figures

Figure 1

17 pages, 3306 KiB  
Article
Novel Copper-Zinc-Manganese Ternary Metal Oxide Nanocomposite as Heterogeneous Catalyst for Glucose Sensor and Antibacterial Activity
by Mir Waqas Alam, Hassan S. Al Qahtani, Basma Souayeh, Waqar Ahmed, Hind Albalawi, Mohd Farhan, Alaaedeen Abuzir and Sumaira Naeem
Antioxidants 2022, 11(6), 1064; https://doi.org/10.3390/antiox11061064 - 27 May 2022
Cited by 62 | Viewed by 5012
Abstract
A novel copper-zinc-manganese trimetal oxide nanocomposite was synthesized by the simple co-precipitation method for sensing glucose and methylene blue degradation. The absorption maximum was found by ultraviolet–visible spectroscopy (UV-Vis) analysis, and the bandgap was 4.32 eV. The formation of a bond between metal [...] Read more.
A novel copper-zinc-manganese trimetal oxide nanocomposite was synthesized by the simple co-precipitation method for sensing glucose and methylene blue degradation. The absorption maximum was found by ultraviolet–visible spectroscopy (UV-Vis) analysis, and the bandgap was 4.32 eV. The formation of a bond between metal and oxygen was confirmed by Fourier Transform Infrared Spectroscopy (FT-IR) analysis. The average crystallite size was calculated as 17.31 nm by X-ray powder diffraction (XRD) analysis. The morphology was observed as spherical by scanning electron microscope (SEM) and high-resolution transmission electron microscopy (HR-TEM) analysis. The elemental composition was determined by Energy Dispersive X-ray Analysis (EDAX) analysis. The oxidation state of the metals present in the nanocomposites was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis. The hydrodynamic diameter and zeta potential of the nanocomposite were 218 nm and −46.8 eV, respectively. The thermal stability of the nanocomposite was analyzed by thermogravimetry-differential scanning calorimetry (TG-DSC) analysis. The synthesized nanocomposite was evaluated for the electrochemical glucose sensor. The nanocomposite shows 87.47% of degradation ability against methylene blue dye at a 50 µM concentration. The trimetal oxide nanocomposite shows potent activity against Escherichia coli. In addition to that, the prepared nanocomposite shows strong antioxidant application where scavenging activity was observed to be 76.58 ± 0.30, 76.89 ± 0.44, 81.41 ± 30, 82.58 ± 0.32, and 84.36 ± 0.09 % at 31, 62, 125, 250, and 500 µg/mL, respectively. The results confirm the antioxidant potency of nanoparticles (NPs) was concentration dependent. Full article
(This article belongs to the Special Issue Applications of Antioxidant Nanoparticles)
Show Figures

Figure 1

18 pages, 3110 KiB  
Article
A Novel and Efficient Metal Oxide Fluoride Absorbent for Drinking Water Safety and Sustainable Development
by Changjuan Dong, Xiaomei Wu, Zhanyi Gao, Peiling Yang and Mohd Yawar Ali Khan
Sustainability 2021, 13(2), 883; https://doi.org/10.3390/su13020883 - 17 Jan 2021
Cited by 18 | Viewed by 2741
Abstract
Inefficient and non-environmentally friendly absorbent production can lead to much resource waste and go against low carbon and sustainable development. A novel and efficient Mg-Fe-Ce (MFC) complex metal oxide absorbent of fluoride ion (F) removal was proposed for safe, environmentally friendly, [...] Read more.
Inefficient and non-environmentally friendly absorbent production can lead to much resource waste and go against low carbon and sustainable development. A novel and efficient Mg-Fe-Ce (MFC) complex metal oxide absorbent of fluoride ion (F) removal was proposed for safe, environmentally friendly, and sustainable drinking water management. A series of optimization and preparation processes for the adsorbent and batch experiments (e.g., effects of solution pH, adsorption kinetics, adsorption isotherms, effects of coexisting anions, as well as surface properties tests) were carried out to analyze the characteristics of the adsorbent. The results indicated that optimum removal of F occurred in a pH range of 4–5.5, and higher adsorption performances also happened under neutral pH conditions. The kinetic data under 10 and 50 mg·g−1 were found to be suitable for the pseudo-second-order adsorption rate model, and the two-site Langmuir model was ideal for adsorption isotherm data as compared to the one-site Langmuir model. According to the two-site Langmuir model, the maximum adsorption capacity calculated at pH 7.0 ± 0.2 was 204 mg·g−1. The adsorption of F was not affected by the presence of sulfate (SO42−), nitrate (NO3), and chloride (Cl), which was suitable for practical applications in drinking water with high F concentration. The MFC adsorbent has an amorphous structure, and there was an exchange reaction between OH and F. The novel MFC adsorbent was proven to have higher efficiency, better economy, and environmental sustainability, and be more environmentally friendly. Full article
(This article belongs to the Special Issue Environmental and Economic Analysis of Low-Carbon Energy Technologies)
Show Figures

Figure 1

13 pages, 469 KiB  
Article
Anode Effect Prediction in Hall-Héroult Cells Using Time Series Characteristics
by Ron Kremser, Niclas Grabowski, Roman Düssel, Albert Mulder and Dietmar Tutsch
Appl. Sci. 2020, 10(24), 9050; https://doi.org/10.3390/app10249050 - 18 Dec 2020
Cited by 4 | Viewed by 6417
Abstract
In aluminium production, anode effects occur when the alumina content in the bath is so low that normal fused salt electrolysis cannot be maintained. This is followed by a rapid increase of pot voltage from about 4.3 V to values in the range [...] Read more.
In aluminium production, anode effects occur when the alumina content in the bath is so low that normal fused salt electrolysis cannot be maintained. This is followed by a rapid increase of pot voltage from about 4.3 V to values in the range from 10 to 80 V. As a result of a local depletion of oxide ions, the cryolite decomposes and forms climate-relevant perfluorocarbon (PFC) gases. The high pot voltage also causes a high energy input, which dissipates as heat. In order to ensure energy-efficient and climate-friendly operation, it is important to predict anode effects in advance so that they can be prevented by prophylactic actions like alumina feeding or beam downward movements. In this paper a classification model is trained with aggregated time series data from TRIMET Aluminium SE Essen (TAE) that is able to predict anode effects at least 1 min in advance. Due to a high imbalance in the class distribution of normal state and labeled anode effect state as well as possible model’s weaknesses the final F1 score of 32.4% is comparatively low. Nevertheless, the prediction provides an indication of possible anode effects and the process control system may react on it. Consequent practical implications will be discussed. Full article
(This article belongs to the Special Issue Industry 4.0 Based Smart Manufacturing Systems)
Show Figures

Figure 1

10 pages, 2198 KiB  
Article
Selective Oxidation of Glycerol Using 3% H2O2 Catalyzed by Supported Nano-Au Catalysts
by Xiaoli Wang, Gongde Wu, Tongfa Jin, Jie Xu and Shihao Song
Catalysts 2018, 8(11), 505; https://doi.org/10.3390/catal8110505 - 29 Oct 2018
Cited by 11 | Viewed by 3434
Abstract
A series of transition metal oxides or mixed oxides supported nano-Au catalysts were prepared for the selective oxidation of glycerol to glyceric acid using 3% H2O2. It was found that the composition and structure of supports significantly influenced the [...] Read more.
A series of transition metal oxides or mixed oxides supported nano-Au catalysts were prepared for the selective oxidation of glycerol to glyceric acid using 3% H2O2. It was found that the composition and structure of supports significantly influenced the catalytic performance of catalysts. The mesoporous trimetal mixed oxide (CuNiAlO) supported nano-Au catalysts were more active in comparison with the others. In the present catalytic system, the highest glycerol conversion was 90.5%, while the selectivity of glyceric acid could reach 72%. Moreover, the catalytic performance remained after 11 times of reaction. Full article
(This article belongs to the Special Issue Supported Metal Catalysts and Their Applications in Fine Chemicals)
Show Figures

Graphical abstract

50 pages, 919 KiB  
Review
A Review on Adsorption of Fluoride from Aqueous Solution
by Mirna Habuda-Stanić, Maja Ergović Ravančić and Andrew Flanagan
Materials 2014, 7(9), 6317-6366; https://doi.org/10.3390/ma7096317 - 5 Sep 2014
Cited by 237 | Viewed by 19308
Abstract
Fluoride is one of the anionic contaminants which is found in excess in surface or groundwater because of geochemical reactions or anthropogenic activities such as the disposal of industrial wastewaters. Among various methods used for defluoridation of water such as coagulation, precipitation, membrane [...] Read more.
Fluoride is one of the anionic contaminants which is found in excess in surface or groundwater because of geochemical reactions or anthropogenic activities such as the disposal of industrial wastewaters. Among various methods used for defluoridation of water such as coagulation, precipitation, membrane processes, electrolytic treatment, ion-exchange, the adsorption process is widely used. It offers satisfactory results and seems to be a more attractive method for the removal of fluoride in terms of cost, simplicity of design and operation. Various conventional and non-conventional adsorbents have been assessed for the removal of fluoride from water. In this review, a list of various adsorbents (oxides and hydroxides, biosorbents, geomaterials, carbonaceous materials and industrial products and by-products) and its modifications from literature are surveyed and their adsorption capacities under various conditions are compared. The effect of other impurities on fluoride removal has also been discussed. This survey showed that various adsorbents, especially binary and trimetal oxides and hydroxides, have good potential for the fluoride removal from aquatic environments. Full article
Show Figures

Graphical abstract

Back to TopTop