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Abstract: The occurrence of fluoride contamination in drinking water has gained substantial concern
owing to its serious threat to human health. Traditional adsorbents have shortcomings such as
low adsorption capacity and poor selectivity, so it is urgent to develop new adsorbents with high
adsorption capacity, renewable and no secondary pollution. In this work, magnetic electrospun La-
Mn-Fe tri-metal oxide nanofibers (LMF NFs) for fluoride recovery were developed via electrospinning
and heat treatment, and its defluoridation property was evaluated in batch trials. Modern analytical
tools (SEM, BET, XRD, FTIR) were adopted to characterize the properties of the optimized adsorbent,
i.e., LMF11 NFs with a La:Mn molar ratio of 1:1. The surface area calculated via BET method and
pHpzc assessed using pH drift method of LMF11 NFs were 55.81 m2 g−1 and 6.47, respectively. The
results indicated that the adsorption amount was highly dependent on the pH of the solution, and
reached the highest value at pH = 3. The kinetic behavior of defluoridation on LMF11 NFs was
dominated by the PSO model with the highest fitted determination coefficients of 0.9999. Compared
with the other three isotherm models, the Langmuir model described defluoridation characteristics
well with larger correlation coefficients of 0.9997, 0.9990, 0.9987 and 0.9976 at 15 ◦C, 25 ◦C, 35 ◦C
and 45 ◦C, respectively. The optimized LMF11 NFs exhibited superior monolayer defluoridation
capacities for 173.30–199.60 mg F−/g at pH 3 at 15–45 ◦C according to the Langmuir isotherm
model. A thermodynamic study proved that the defluoridation by LMF11 NFs is a spontaneous,
endothermic along with entropy increase process. In addition, the LMF11 NFs still showed high
defluoridation performance after three reused cycles. These findings unveil that the synthesized
LMF11 NFs adsorbent is a good adsorbent for fluoride remediation from wastewater owing to its low
cost, high defluoridation performance and easy operation.

Keywords: La-Mn-Fe tri-metal oxides nanofibers; defluoridation; electrospinning; kinetics;
wastewater treatment

1. Introduction

Fluoride contamination in groundwater caused by the processes of natural geochem-
ical and human production activities is a burning issue, which has attracted substantial
attention since it is closely related to the safety and health issue for humans [1–6]. An
appropriate amount of F− can enhance the hardness of teeth and the mineralization of hard
tissues and prevent dental caries. Surplus fluoride in drinking water may lead to irremedi-
able diseases in humans, namely fluorosis. The tolerance level of fluoride in drinking water
recommended by the World Health Organization is no more than 1.5 mg/L [7,8]. However,
endemic levels of fluorosis have been reported in 32 nations worldwide, and more than
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200 million people especially in poor rural areas have been consuming water contaminated
with high fluoride concentration for a long time. Accordingly, it is highly required to estab-
lish the deep treatment of fluoride-rich water. Adsorption is a promising way for fluoride
decontamination since it possesses high adsorption capacity, high selectivity, handy opera-
tion and relative cost-effectiveness [9–14], compared with other defluoridation strategies,
e.g., membrane, precipitation, and electrocoagulation [15]. A variety of defluoridation
materials have been developed to remove excess F−, namely carbon-based materials [16],
activated alumina [17], carbonaceous materials [18], polymer-based materials [19], etc.
Whereas the inherent shortcomings such as poor removal efficiency and low selectivity,
have been encountered in practical applications for most of these adsorbents.

As far as we know, Belcher R. [20,21] in 1959 and Leonard et al. [22] in 1960 discovered
for the first time that the coordination water in the complexes formed by rare earth elements
Ce(III) and La(III) with alizarin complexone could exchange with F− to form colored
complexes with high selectivity, respectively. It provided a new way for scientists to
remove fluoride from wastewater. Since then, various materials, such as compounds
of multivalent metal elements such as La(III), Ce(III) and Ce(IV) in the form of oxides,
hydrous oxides and basic carbonate [23], lanthanum impregnate silica gel [24], La(III) and
Y(III)-impregnated alumina [25], La-chitosan [26], Mn-La metal composite [27], Fe-La-Ce
tri-metallic composite [28], La-MOFs [29], La-MOF@x%PANI [30], had been exploited for
remediation of fluoride. Among them, bi-metallic or tri-metallic oxides based on high valent
lanthanum possessed high fluoride adsorption. However, the cost of La is relatively high. In
order to reduce the cost and keep high defluoridation performance, adsorbents for fluoride
remediation were fabricated by mixing other cheaper multivalent metal elements (i.e., Mg, Al,
Mn, Fe) with La owing to the advantage and synergism of two or three metal oxides [31–34].
Mg-Fe-La tri-metal adsorbent (molar ratio: 25/1/4) developed by Wang et al. [32] via
facile co-precipitation method possessed the highest uptake of 112.17 mg F−/g for fluoride.
Cotton-like Ca-Al-La adsorbent with optimal Ca/Al/La molar ratio of 1/4/2 exhibited the
largest fluoride binding amount of 29.30 mg F−/g [35]. Similarly, Gasparotto et al., stated
that La-Al-Fe trioxide composites synthesized via the co-precipitation method presented a
maximum fluoride uptake of 28.06 mg F−/g at 25 ◦C and pH 8.25 [36]. Although the above
adsorbents possess good defluoridation performance, it is difficult to separate them from
aqueous solution quickly due to their nanoscale size. Additionally, the nano-adsorbents
are easy to agglomerate, resulting in the decline of adsorption capacity.

Ease in localization and separation can promote the recovery and reuse of materials
for successive treatment cycles. Due to the good magnetic responsiveness of Fe3O4 [37,38],
its use in composite adsorbents for various pollutants removal can enhance their recovery
rate and efficiency by a magnet [39,40]. Whereas, easy agglomeration is the major obstacle
for the large-scale application of Fe3O4 nanoparticles. To overcome the limit of Fe3O4
nanoparticles, numerous magnetic adsorbents were fabricated by coating metal oxides on
Fe3O4 nanoparticles to form core-shell composites or by loading Fe3O4 and other metal
oxides on the carrier [41]. For example, graphene oxide (GO) supported Fe-Al oxide
adsorbent (IAO/GO) fabricated by Liu et al. [42] showed a maximum binding amount
of 64.72 mg F−/g for fluoride. The use of magnetic La2O3-CeO2-Fe3O4 nanofibers for
fluoride removal from aqueous solution has been investigated by our group [43], the
maximum uptakes are 202–230 mg F−/g at 15–35 ◦C, and the adsorbent can be easily and
quickly separated from the solution by an external magnet. The obstacles to the industrial
application of La2O3-CeO2-Fe3O4 nanofibers are the scarcity and relatively high cost of rare
earth elements. There is no literature about the defluoridation by magnetically separable
electrospun La-Mn-Fe tri-metal oxide nanofibers in wastewater. In view of the high affinity
of La towards fluoride ions and the low cost of metals Mn and Fe, this research is to
fabricate a new magnetic tri-metallic adsorbent (i.e., electrospun La-Mn-Fe tri-metal oxide
nanofibers) with less expenditure, which can exhibit structural stability, high defluoridation
efficiency, excellent recyclability and reusability.



Polymers 2022, 14, 5417 3 of 19

In this study, magnetically separable electrospun La-Mn-Fe tri-metal oxide nanofibers
(LMF NFs) were prepared by electrospinning and heat treatment. The LMF NFs were
used as a new type of adsorbent for fluoride remediation. The magnetic Fe3O4 NPs are
evenly dispersed along the nanofiber axis without obvious agglomeration. Moreover, the
magnetic fibrous LMF NFs can effectively prevent the agglomeration of adsorbent during
the defluoridation process and can be quickly separated from the solution using an external
magnet after adsorption. The effects of the molar ratio of La/Mn, initial F− concentration,
pH, LMF11 NFs dosage, shaking time, interfering anions, isotherm models and adsorption
kinetics were investigated in detail.

2. Materials and Methods
2.1. Chemicals

NaF, La(NO3)3·6H2O, Mn(CH3COO)2·4H2O, NaCl, DMF, Na2CO3, NaNO3, Na3PO4,
CH3COOH, Na3C6H5O7·2H2O, Na2SO4, HCl, NaOH, FeCl3·6H2O, HOCH2CH2OH and
CH3COONa were acquired from Aladdin Chemical Reagent Co., Ltd. (Shanghai, China)
and used as received. Polyacrylonitrile (PAN, Mn = 2.5 × 105) was purchased from Sigma-
Aldrich (St. Louis, MO, USA).

2.2. Preparation of La-Mn-Fe Tri-Metal Oxide Nanofibers

La(NO3)3·6H2O and Mn(CH3COO)2·4H2O were mixed in a beaker with La:Mn molar
ratios of 2:1, 1:1 and 1:2, then completely dissolved in a small amount of DMF. After-
ward, 1.8 g PAN powder, 10 mL DMF and 0.075 g Fe3O4 nanoparticles (via a solvother-
mal method [44]) were injected into each sample to form precursor solutions namely
(La(NO3)3/Mn(CH3COO)2/Fe3O4/PAN/DMF). The electrospinning processes were con-
ducted to produce precursor fibers [33,43,45,46]. Briefly, the precursor solution was added
into a 5 mL syringe with a metal needle, then the electrospinning of the precursor solution
was performed with an applied electric field of 150 kV m−1 and a flow rate of 1.2 mL h−1

at room temperature, to generate precursor nanofibers. After electrospinning, the resulting
precursor nanofibers were dehydrated for 8 h and then put into a tube furnace for heat
treatment at 500 ◦C for 2 h to prepare La-Mn-Fe tri-metal oxide nanofibers under an air
atmosphere. La-Mn-Fe tri-metal oxide nanofibers with molar ratios of La/Mn being 2/1,
1/1 and 1/2 were noted as LMF21 NFs, LMF11 NFs and LMF12 NFs, respectively. The
graphic plan of the fabrication process of electrospun LMF NFs and the adsorption of
fluoride is portrayed in Scheme 1.
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2.3. Batch Adsorption Studies

The defluoridation performance of LMF NFs was evaluated using batch experiments
(Scheme 1). Adsorption kinetics were performed in the time range from 1 to 60 min under
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500 mL F− solution with initial F− concentrations of 20 and 50 mg F−/L at 25 ◦C and pH 3.
Adsorption isotherm studies were carried out at varying original F− concentrations of
10–60 mg F−/L at a temperature range of 15–45 ◦C with LMF11 NFs dosage of 0.2 g/L
in 50 mL of respective solution. Various concentrations (10, 30, 50, 80 or 100 mg/L) of
five commonly occurring anions, including nitrate (NO3

−), sulfate (SO4
2−), chloride (Cl−),

carbonate (CO3
2−), phosphate (PO4

3−) were studied under initial F− concentration of
20 mg F−/L with an adsorbent dosage of 0.2 g/L at 25 ◦C and pH 3 for 12 h. The effect of
pH (2–9) along with LMF11 NFs dosage (0.2–0.6 g/L) on adsorption property was assessed
under 50 mL initial F− concentration of 20 mg F−/L at 25 ◦C for 12 h.

2.4. Reusability Test

The reusability of the F− adsorbed magnetic LMF11 NFs was determined to quantify
the cost-effectiveness of the adsorbent for F− remediation in the successive adsorption–
desorption cycles. The original concentration of F− was 20 mg F−/L at pH 3 and 25 ◦C for
8 h for each regeneration cycle. The F− adsorbed magnetic LMF11 NFs were recovered by
an external magnet, and then eluted with 100 mL of 0.1 M NaOH to regeneration [43,47,48],
vacuum-dried and used for a new run.

2.5. Characterization of Adsorbent

The crystal structures of LMF11 NFs before and after adsorption were established by
X-ray diffraction (XRD, D8 ADVANCE X, Bruker, Saarbrucken, Germany), The BET specific
surface area of the LMF11 NFs adsorbent was examined using a Micrometrics ASAP 2020
analyzer (Micromeritics, Norcross, GA, USA). The TEM and SEM images of the magnetic
electrospun LMF11 NFs were acquired from TEM JEM 2100 (JEOL, Tokyo, Japan) and SEM
300U (VEGA, Tescan, Brno, Czech Republic). The point of zero charge of LMF11 NFs was
assessed via a pH drift method [49].

3. Result and Discussion
3.1. Characterization of Adsorbent

The morphological details of La(NO3)3/Mn(CH3COO)2/Fe3O4/PAN and LMF11
NFs were determined by SEM, as portrayed in Figure 1a,b. Obviously, the surfaces of
La(NO3)3/Mn(CH3COO)2/Fe3O4/PAN fibers are continuous and smooth with an average
diameter of 1.28 ± 0.10 µm. Fe3O4 NPs are evenly distributed on the surface of the
La(NO3)3/Mn(CH3COO)2/Fe3O4/PAN and LMF11 NFs. After heat treatment, the volume
and diameter of fibers decline due to the decomposition of Mn(CH3COO)2, La(NO3)3
and PAN. The continuous LMF11 NFs are hollow and rougher compared to that before
calcination, which possess an average diameter of 626± 57 nm. Figure 1d displays the TEM
image of LMF11 NFs, it is obvious that the spherical Fe3O4 NPs are uniformly dispersed
along the fiber axis without obvious agglomeration. The chemical composition of LMF11
NFs is verified by EDS analysis, as shown in Figure 1c. EDS illustrates that the LMF11 NFs
consist of La (14.02%), Mn (13.22%), Fe (4.45%) and O (68.31%) elements. Apparently, the
detected La/Mn molar ratio in the sample is quite consistent with the designed value. The
BET surface area and BJH pore distribution of LMF11 NFs are analyzed by N2 adsorption–
desorption isotherm (Figure 1e). The total pore volume and surface area of LMF11 NFs
are 0.276 cm3 g−1 and 55.81 m2 g−1. The inset of Figure 1e states that the main pore sizes
of LMF11 NFs locate at 3.06 nm and 17.39 nm, indicative of numerous mesopores in the
adsorbent [29]. The isoelectric point (pHpzc) of LMF11 NFs calculated according to the
literature [50] is 6.47 (Figure 1f). This signifies that the surface charge of LMF11 NFs is
positive and protonated at pH < 6.47 while negative at pH > 6.47. Thus, negative ions such
as F− can be could easily absorbed into the positively charged LMF11 NFs owing to their
columbic attractions at a pH range below pHpzc [51].
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Figure 1. SEM images of La(NO3)3/Mn(CH3COO)2/Fe3O4/PAN (a) and LMF11 NFs (b), EDS
analysis (c), TEM image (d), N2 adsorption–desorption isotherm (e) and (f) pHpzc of LMF11 NFs.

3.2. Preparation Optimization

The capture capacities of F− on as-prepared adsorbents involving La NFs, LMF21
NFs, LMF11 NFs, LMF12 NFs, Mn NFs and Fe3O4 NPs were determined. Then, 0.2 g/L of
adsorbents were placed into 50 mL fluoride solutions with a concentration of 20 mg F−/L
for the adsorption test, the temperature of 25 ◦C, pH of 3 and shaking time for 12 h were
adopted, respectively. The fluoride binding amounts were determined, as portrayed in
Figure 2. The maximum fluoride uptakes of La NFs, Mn NFs and Fe3O4 NPs are 104.12,
30.71 and 15.71 mg F−/g, respectively. While the maximum uptakes of F− on LMF21 NFs,
LMF11 NFs, LMF12 NFs are 147.68, 182.03 and 131.67 mg F−/g, respectively. Evidently, the
LMF NFs possess higher adsorption capacity than those of single metal oxide due to the
synergistic effect of La, Mn and Fe [33,34]. The fluoride uptake of LMF11 adsorbent with
La/Mn molar ratio being 1/1 is the highest. Hence, LMF11 NFs is designed as fluoride
scavenger in the subsequent experiments.
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3.3. Adsorption Study
3.3.1. The Effect of pH

The effect of pH on the defluoridation performance of LMF11 NFs was evaluated at
various pH values from 2 to 9 (Figure 3). The maximum binding amount (47.79 mg F−/g)
and removal efficiency (95.58%) for LMF11 NFs occurs at a pH of 3 owing to the columbic
attractions (Equation (1)). LMF11 NFs show a dramatic decrease in defluoridation property
at pH > 3 and pH < 3. Most fluoride ions exist in the form of electrically neutral HF
(pKaHF = 2.95) [52] when pH < 3, which can reduce the columbic forces between LMF11
NFs and adsorbate [42]. Meanwhile, the diminished binding amount at higher pH condi-
tions is attributed to electrostatic repulsion between F− and negatively charged LMF11 NFs
along with the competition between F− and OH− for active sites [41]. Additionally, the
equilibrium pH of the F− solution changed from 2 to 2.18, 3−5.49, 4–6.59, 5–6.75, 6–6.59,
7–6.34, 8–6.83, 9–7.14 after adsorption, respectively. The improvement of pH after adsorp-
tion in an initial pH range of 2–6 suggests the existence of an ion exchange of hydroxyl
groups bonded on the surface of the adsorbent with fluoride ions (Equations (2) and (3)).
While the decline of pH after adsorption in an initial pH range from 7 to 9 (>pHpzc) is
mainly ascribed to the competitive adsorption between hydroxyl groups and adsorbate
(F−) (Equation (4)). A pH of 3 was chosen to utilize for subsequent studies.

≡M-OH2
+ + F− →≡MOH2

+-F− (s) + H2O (1)

≡M-OH(s) + H2O + F− →≡MOH2
+-F− (s) + OH− (2)

≡M-OH(s) + F− →≡M-F(s) + OH− (3)

≡M-OH + F−+ OH− →M-O− + F−+ H2O (4)

where ≡M indicative of La, Fe and Mn metal ions.
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3.3.2. The Effect of LMF11 NFs Dosage

The effect of LMF11 NFs dosage on the defluoridation was studied. Appropriate mass
(0.01, 0.015, 0.02, 0.025, or 0.03 g) of LMF11 NFs was poured into a 50 mL of 50 mg F−/L
fluoride solution at 25 ◦C. Evidently, the adsorption uptakes at an adsorbent dosage of 0.2,
0.3, 0.4, 0.5 and 0.6 g L−1 are 188.21, 153.44, 123.81, 99.33 and 82.77 mg F−/g, the fluoride
removal percentages are 75.29%, 92.07%, 99.05%, 99.32% and 99.33%, respectively (Figure 4).
It can be concluded that the binding amount descends progressively with ascending LMF11
NFs dosage at a fixed concentration of F−; the removal efficiency shows is an increasing
trend. The number of the binding sites on LMF11 NFs rises with the increase in the LMF11
NFs dosage, the solution, resulting in an obvious increase in fluoride removal percentage.
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However, the initial concentration of F− keeps constant and fails to saturate the binding
sites on LMF11 NFs. It means that the binding sites cannot be fully used. In addition,
the binding sites may be agglomerated together, leading to partial binding sites covering
each other, and then the unit adsorption capacity cuts down [41]. The adsorbent dosage is
selected as 0.2 g/L in the following defluoridation experiments in light of the economy and
practicability of the adsorbent.
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3.3.3. The Effect of Initial F− Concentration (C0)

The fluoride uptake significantly depends on the initial concentration of F−. As shown
in Figure 5, the fluoride uptake of LMF11 NFs elevates gradually with an increase in C0
(10 mg F−/L to 45 mg F−/L). The reason is that with the increase in F− concentration, the
number of fluoride ions near the surface of the LMF11 NFs increases apparently, and the
binding sites on the surface of LMF11 NFs are more fully surrounded by fluoride ions, thus,
more fluoride ions are adsorbed by the adsorbent, resulting in the increasing of fluoride
binding amount [53]. Then it approaches saturation at higher C0 due to the saturation
of active sites. While the fluoride removal efficiency declines with the rise of fluoride
concentration. It is because the LMF11 NFs adsorbent have a limited adsorption uptake.
When LMF11 NFs adsorbent achieve adsorption saturation, the removal percentage will
decline with the rise of the initial fluoride concentration. In addition, at C0 = 60 mg F−/L,
the binding amount leaps from 175.82 mg F−/g at 15 ◦C to 193.53 mg F−/g at 45 ◦C. The
higher the temperature of the adsorption system, the larger the binding amount, validating
the endothermic nature of the defluoridation process [29].
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3.3.4. The Effect of Contact Time

The defluoridation experiments were kinetically conducted towards F− removal on
LMF11 NFs by varying the time intervals in the range of 0–60 min using an adsorbent
dosage of 0.2 g/L with given concentrations (C0 = 20 and 50 mg F−/L) at 25 ◦C and pH = 3.
As depicted in Figure 6, exceeding 70% of F− could be removed within the first 20 min at
C0 = 20 and 50 mg F−/L, showing an excellent defluoridation property. In this stage, numer-
ous binding sites in LMF11 NFs and the high concentration of fluoride ions in the solution
decide the rapid adsorption rate. Hence the larger adsorption rate in the incipient step is
ascribed to the strengthening of the diffusion rate of F− provided by concentration gradi-
ent along with the existence of numerous available binding sites on the LMF11 NFs [54].
The adsorption tends to dynamic equilibrium after 10 min in 20 mg F−/L solution and
30 min in 50 mg F−/L solution. Clearly, at higher C0, it takes longer shaking time to attain
equilibrium. Based on the aforementioned analysis, the effect of pH (A), initial concen-
tration of F− (B) and LMF11 NFs dosage (C) (Supplementary Materials, Tables S1 and S2)
was determined using response surface methodology (RSM) to optimize the adsorption
parameters [55,56]. It is clear that the experimental results of the single factor variable are
very close to the RSM results (Supplementary Materials, Table S3, Figures S1 and S2).
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3.3.5. The Effect of Interfering Anions

One of the major barriers that limit the widespread application of adsorption tech-
nology in practical water treatment is the selectivity of adsorbent. The effects of five
commonly occurring anions including nitrate (NO3

−), sulfate (SO4
2−), chloride (Cl−),

carbonate (CO3
2−) and phosphate (PO4

3−) on defluoridation by LMF11 NFs were investi-
gated. The competitive experiments were conducted by weighing 0.01 g LMF11 NFs into a
binary system that contained 50 mL 10 mg F−/L F− paired with different concentrations
(10, 30, 50, 80 or 100 mg/L) of the interfering anions, respectively. The result is depicted
in Figure 7. Obviously, NO3

−, Cl−, SO4
2− and CO3

2− anions at all concentrations of
10–100 mg/L almost do not prevent the F− removal, illustrating the excellent selectivity
and stability of LMF11 NFs adsorbent. Whereas the binding capacity drops quickly from
98.20 to 52.16 mg F−/g with the rise of PO4

3− concentration from 0 to 100 mg/L, manifest-
ing a remarkable competitive effect of PO4

3− on defluoridation. This may be explained by
the Ksp of LaPO4 (3.7 × 10−23) [54], which favors PO4

3− to displace the adsorbed F− on
LMF11 NFs compared with that of LaF3, thereby deteriorating the fluoride binding capacity.
The same result has also been reported by several studies using rare earth element-based
materials for fluoride remediation [27,57].
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3.3.6. Fluoride Adsorption Isotherm

The equilibrium data generated from the adsorption experiment at temperatures of 15
to 45 ◦C (Figure 5) are fitted by four classical isotherm modes viz., Langmuir, Freundlich, D–
R and Temkin [29]. The as-estimated relevant factors are listed in Table 1. As portrayed in
Figure 8a–d, the order of the fitted determination coefficients (R2) at 15 to 45 ◦C is Langmuir
(0.9997, 0.9990, 0.9987 and 0.9976) > Temkin (0.8708, 0.8358, 0.6854 and 0.6161) > D–R (0.8402,
0.7725, 0.5981 and 0.4976) > Freundlich (0.7863, 0.7252, 0.5627 and 0.4791), illustrating that
the homogeneous and single-layer adsorbed on LMF11 NFs dominates the defluoridation
process [29,58]. The evaluated Qm values range from 173.30–199.60 mg F−/g at 15 to
45 ◦C, exceedingly higher than many reported adsorbents including MOFs such as La–BTC
(105.2 mg/g), La–BPDC (125.9 mg/g), La–BHTA (145.5 mg/g), La–PMA (158.9 mg/g)
and La–BDC (171.7 mg/g) [29], Uio–66 (20 mg/g) [59], Amine functionalized electrospun
cellulose nanofibers (5.31 mg/g) [60], electrospun alumina nanofibers (1.2 mg/g) [61]
and double (Ce–Fe bimetal oxides, 60.97 mg/g [62]) or tri-metal oxide-based materials
(SA–CMAZ, 31.72 mg/g [63]; Mg/Ce/Mn, 12.99 mg/g [64]). Table 2 lists the fluoride
adsorption capacities of the LMF11 NFs and other adsorbents based on rare earth elements
for comparison. It is conspicuously seen that LMF11 NFs show excellent fluoride adsorption
capacity. Additionally, the dimensionless constant (RL) > 1 means unfavorable adsorption,
while RL < 1 indicates favorable adsorption processes [65]. All the attained values of RL at
evaluated temperatures lie between 0 and 1 (Table 1), reflecting favorable adsorption by
LMF11 NFs in this study.

The values of 1/n (0.1961–0.2543) established from the Freundlich model lie in the
range of 0 < 1/n < 1 at 15 to 45 ◦C, signifying beneficial adsorption by LMF11 NFs under
studied conditions [52]. The E value derived from the D-R model represents free energy. E
values in ranges of 1–8 kJ mol−1, 8–16 kJ mol−1 and greater than 16 kJ mol−1 are indicative
of electrostatic physical adsorption, electrostatic interaction or synergy and chemical ad-
sorption, respectively [65]. The E value calculated from the D-R model gradually elevates
from 14.06 to 17.96 kJ/mol with ascending the temperature from 15 to 45 ◦C, which denotes
that the defluoridation on LMF11 NFs proceeds from ion exchange to chemisorption [66].
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Table 1. Four classical isotherms constants for defluoridation on LMF11 NFs at 15 to 45 ◦C.

Models Parameters
T (◦C)

15 25 35 45

Langmuir

Qm (mg g−1) 173.30 189.03 193.05 199.60
KL (L mg−1) 1.7445 2.2383 2.4904 2.5825

R2 0.9997 0.9990 0.9987 0.9976
RL 0.0095–0.0542 0.0073–0.0427 0.0066–0.0386 0.0064–0.0373

Freundlich
KF (L g−1) 93.54 104.01 114.66 123.20

1/n 0.2543 0.2460 0.2117 0.1961
R2 0.7863 0.7252 0.5627 0.4791

D–R

kad’ × 102 (mol2

kJ−2)
0.2530 0.2250 0.1820 0.1550

E (kJ mol−1) 14.06 14.91 16.58 17.96
R2 0.8402 0.7725 0.5981 0.4976

Temkin
KT (L g−1) 44.39 61.11 158.11 261.92

BT (J mol−1) 89.64 90.26 104.64 110.95
R2 0.8708 0.8358 0.6854 0.6161
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Table 2. Comparison of various adsorbents based on rare earth elements for defluoridation.

Adsorbents pH C0 (mg L−1) Equilibrium Time/(h) Qm (mg g−1) References

Ce-AlOOH 3 10–1000 2 62.8 [67]
Fe-Mg-La tri-metal nanocomposite 7 10–300 4 47.20 [66]

Fe-Al-Ce tri-metal oxide 5.8 2–110 24 195 [68]
Mg-Fe-La tri-metal composite neutral pH 10–150 6 112.17 [32]

Bx-Ce-La@500 3 10–50 3 88.13 [69]
Fe-La-Ce tri-metallic

composite 4 10–100 2 303.03 [28]

Zr-La/PP 3 2–50 8.3 32.5 [70]
Layered Zr-Al-La tri-metal composite 3 20–200 6.6 90.48 [71]

Granular TiO2-La 3–9 0.5–2830 – 78.4 [72]
La/Mg/Si-loaded palm

shell-based activated carbon 7 100 2 285.7 [73]

La-Mn bimetal oxide
nanofibers 3 10–55 1.5 189.39 [33]

Powdered Ce-Mn oxide 6 10–100 3 137.5 [74]
La-Mn-Fe NFs 3 10–60 1 199.60 This study

3.3.7. Adsorption Kinetic

Figure 9 depicts four linear adsorption kinetic curves namely PFO, PSO, Elovich and
Weber and Morris models [53] of LMF11 NFs for fluoride at C0 = 20 and 50 mg F−/L and
pH = 3. Correlative parameters are listed in Table 3. The highest regression coefficients
(i.e., 0.9999 at 20 mg F−/L and 0.9999 at 50 mg F−/L) derived from the PSO model are larger
than those of PFO (0.7212 and 0.9019) and Elovich (0.8714 and 0.9698) models, elucidating the
chemisorption behavior plays a critical role in defluoridation process, which is consistent with
the reported results of fluoride removal on other La-based adsorbents [32,75]. The theoretical
fluoride capture capacities (Qe, cal, 98.23 and 184.50 mg F−/g at 20 and 50 mg F−/L) derived
from the PSO model are in agreement with measured adsorption amounts (Qe, exp, 97.76
and 181.49 mg F−/g at 20 and 50 mg F−/L). The second-order rate constants (k2) are
3.7012 × 10−2 and 0.5236 × 10−2 g mg−1 min−1 at C0 = 20 and 50 mg F−/L and 25 ◦C,
respectively. This indicates that LMF11 NFs exhibit a higher fluoride removal rate at
a lower F− concentration, resulting in a shorter time needed to attain the adsorption
equilibrium. Similar results were observed in other La-modified adsorbents [54]. In
addition, on the basis of the three-segment linear fitting Weber and Morris model, the
intercepts (C) are not zero (Figure 9d), reflecting that the defluoridation mechanism of
LMF11 NFs is complex and composed of surface adsorption, intraparticle diffusion along
with external liquid film diffusion [48]. The order of kint is kint1 > kint2 > kint3 at C0 = 20
and 50 mg F−/L, revealing that the surface or film diffusion is a rate-controlling step. The
fluoride ions adsorb quickly on the external surface of LMF11 NFs at beginning. Pore
diffusion or intraparticle is a rate-limiting step at the second stage and the diffusion into
mesopores/micropores is dominant and then achieves equilibrium on the exterior surface
at the third stage, where intraparticle diffusion decreases owing to the extremely low F−

concentration in the adsorption system [43,48].
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Table 3. Kinetic constants for defluoridation on LMF11 NFs.

Models Parameters
C0 (mg/L)

20 50

PFO
k1 × 102 (min−1) 4.2040 5.3240

Qe (mg g−1) 7.04 38.03
R2 0.7212 0.9019

PSO

k2 × 102 (g mg−1 min−1) 3.7012 0.5236
Qe, cal (mg g−1) 98.23 184.50
Qe, exp (mg g−1) 97.76 181.49

R2 0.9999 0.9999

Elovich
α (mg g−1 min−1) 1.8793 × 1010 1.6323 × 105

β (g mg−1) 0.2642 0.0725
R2 0.8714 0.9698

Weber–Morris

kint1 (mg g−1 min−0.5) 9.4357 14.4288
R2 0.9974 0.9954
C 71.97 116.48

kint2 (mg g−1 min−0.5) 1.1282 11.77
R2 0.9207 0.9988
C 92.02 112.98

kint3 (mg g−1 min−0.5) 0.2503 1.4632
R2 0.5567 0.8091
C 95.94 170.48
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3.3.8. Thermodynamic Study

The thermodynamic factors (namely ∆G0, ∆H0 and ∆S0) derived from the plot of lnKD
versus 103/T (Figure 10) are tabulated in Table 4. The ∆G0 values at 15–45 ◦C are assessed
at −5.89, −6.69, −7.08 and −7.64 kJ mol−1, respectively. The values of ∆G0 are negative,
signifying the defluoridation process by LMF11 NFs is feasible and spontaneous [75]. The
positive ∆H0 (10.45 kJ mol−1) and ∆S0 (69.12 J mol−1 k−1) confirm the defluoridation by
LMF11 NFs is endothermic along with an entropy increase process [76].
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Table 4. Thermodynamic factors of defluoridation by LMF11 NFs.

T (◦C) ∆G0 (kJ mol−1) lnKD ∆H0 (kJ mol−1) ∆S0 (J mol−1 K−1)

15 −5.89 2.46

10.45 69.12
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3.3.9. Reusability

For an ideal adsorbent, it is vital to possess high reusability without a significant loss
of removal efficiency. Figure 11 shows the renewability of LMF11 NFs. Notably, the F−

uptakes of LMF11 NFs are 97.50, 96.46, 95.73 and 94.76 mg F−/g at the original, first, second
and third cycles, respectively. It can be concluded that the defluoridation performance is
still effective for up to three consecutive reuse–regeneration cycles. The result states that
LMF11 adsorbent exhibits sufficient chemical stability and reusability, thereby it is suitable
for F− removal from wastewater.
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3.4. Adsorption Mechanism

The defluoridation mechanism of LMF11 NFs was analyzed by PXRD and FTIR.
Figure 12a shows the PXRD spectra of the LMF11 NFs and F− adsorbed LMF11 NFs.
Seven characteristic peaks appearing at 2θ = 23.0◦, 32.8◦, 40.5◦, 47.1◦, 58.2◦, 68.6◦ and 77.8◦,
assigned to peak indices of (100), (110), (111), (200), (211), (220) and (310), respectively,
portray the cubic perovskite phase of LaMnO3 (JCPDS NO. 74-0440) [33,77]. The detected
characteristic peaks occur at 2θ = 30.7◦ (220), 35.8◦ (311) and 62.9◦ (440), signifying that
the cubic phase of Fe3O4 has been generated [44]. Meanwhile, the wide peak located
at 2θ = 29.5◦ (220) [78] assigns to La2O3. In summary, the LMF11 NFs are composed of
La2O3, LaMnO3 and Fe3O4. After defluoridation, the disappearance of the diffraction peak
ascribed to La2O3 and the presence of new reflections belonged to the hexagonal structure
of LaF3 (PDF No.32-0483) [43] state that the ion exchange between -OH on the surface
of LMF11 NFs and F− is the dominating defluoridation mechanism of hydrous La2O3 in
adsorption system. Moreover, the reflection intensity of Fe3O4 and LaMnO3 turns slightly
weak after fluoride uptake owing to the decrease in crystallinity caused by the entry of F−

into the crystal lattice.
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As seen from the FTIR spectrum of the neat LMF11 NFs (Figure 12b), the bands at
3434, 1630, 1485, 851 and 590 cm−1 assign to the surface hydroxyl groups stretching mode,
chemisorbed water bending mode, CO3

2− stretching mode, La-O stretching mode, and
Mn-O along with Fe-O stretching mode [44,77,79]. Meanwhile, the two peaks ascribed
to the metal hydroxyl bond (M-OH) [67,80] at 1121 and 1067 cm−1 are detected. After
fluoride uptake, the bands at 3430 and 1632 cm−1 turn obviously weak and two peaks
at 1127 and 1067 cm−1 are not detected, validating that the bonding of fluoride through
electrostatic interaction as well as the replacement of -OH by F− via ion exchange [81].
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Moreover, the La-O band vanishes and the M-O bands (i.e., Mn-O and Fe-O) significantly
change, revealing that metal-oxygen bands (La-O, Mn-O and Fe-O) are participated in
defluoridation process [82].

F− loaded LMF11 adsorbent was further verified by SEM and EDS (Figure 12c,d).
The used LMF11 NFs have preserved fibrous morphology. However, the morphological
surface of the used LMF11 NFs acquires modified, since there are lots of nanoparticles on
the surface of F− loaded LMF11 NFs after fluoride adsorption, indicating that fluoride
ions have covered the LMF11 NFs surface and LaF3 nanoparticles have been yielded via
ion exchange during the defluoridation process, which is consistent with PXRD analysis.
Apparently, the EDS spectrum of F− loaded LMF11 NFs portrayed in Figure 12d suggests
the presence of La (13.32%), Mn (12.11%), F (15.05%), Fe (3.74%) and O (55.78%) in the used
LCF11 NFs.

The pH and pHpzc investigation of LMF11 NFs on F− removal reveal that it is more
prone to higher removal efficiency in the acidic condition, owing to opposite charges on
LMF11 NFs surface and F− which is responsible for columbic attractions. The values of
EDR calculated by D-R isotherm are 14.06, 14.91, 16.58 and 17.96 kJ mol−1, respectively,
at 15, 25, 35 and 45 ◦C, confirming that the F− adsorption is owing to both ion exchange
and chemisorption [29,83]. In a word, the defluoridation process onto LMF11 NFs is
significantly governed by hydrogen bond, columbic interaction, as well as ion exchange.
The plausible defluoridation mechanism by LMF11 NFs is depicted in Figure 13.
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4. Conclusions

In this study, magnetic electrospun La-Mn-Fe tri-metal oxide nanofibers (LMF NFs)
were developed through electrospinning and heat treatment and used for fluoride recovery.
The prepared LMF11 NFs with a La:Mn molar ratio of 1:1 gained the highest fluoride
adsorption amount. The results of the investigation were summarized as follows:

(1) The LMF11 NFs presented fiber morphology with an average diameter of 626 ± 57 nm.
The results showed that the spherical Fe3O4 NPs were uniformly dispersed along
the fiber axis without obvious agglomeration, and the total pore volume and surface
area of LMF11 NFs were 0.276 cm3 g−1 and 55.81 m2 g−1, respectively. The isoelectric
point (pHpzc) of LMF11 NFs was 6.47.

(2) The responsible factors such as initial pH values, shaking time, interfering ions,
temperature, initial concentration of adsorbate and adsorbent for fluoride retention
on LMF11 NFs were systematically conducted. The maximum adsorption amount of
LMF11 NFs achieved at a pH of 3. With ascending LMF11 NFs dosage, the adsorption
uptake descended from 188.21 to 82.77 mg F−/g, and the adsorption amount of
LMF11 NFs increased with the ascend of initial fluoride and then reached equilibrium.
The fluoride adsorption by the LMF11 NFs does not affect by the interfering anions,
such as NO3

−, Cl−, SO4
2− and CO3

2−, with the exception of PO4
3− anions.
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(3) The Langmuir isotherm and PSO model were favored divulging that the F− ad-
sorption on LMF11 NFs was seen as a single-layer chemisorption. The maximum
binding amount calculated from the Langmuir isotherm model was as high as
173.30–199.60 mg F−/g at pH = 3 at 15–45 ◦C. A thermodynamic study proved that
the defluoridation by LMF11 NFs is a spontaneous, endothermic as well as entropy
increase process. The regeneration of the F− loaded LMF11 NFs exhibited a high
defluoridation efficiency of 94.76 mg F−/g at C0 = 20 mg F−/L up to three repetitions.

(4) On the basis of the isoelectric point, FTIR and PXRD analysis, it was confirmed that
LMF11 NFs worked with the defluoridation mechanisms including hydrogen bonding,
electrostatic attraction and ion exchange.

In summary, the fabricated LMF11 NFs possessed good defluoridation performance
and high selective adsorption ability, indicating that the material has great potential as a
promising adsorbent for fluoride decontamination. Further study will be conducted on the
removal of phosphate, arsenate and other pollutants in the future.
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