Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = traveling wave magnetic field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2307 KB  
Article
Navigation and Load Adaptability of a Flatworm-Inspired Soft Robot Actuated by Staggered Magnetization Structure
by Zixu Wang, Miaozhang Shen, Chunying Li, Pengcheng Li, Anran Zheng and Shuxiang Guo
Biomimetics 2026, 11(1), 41; https://doi.org/10.3390/biomimetics11010041 - 6 Jan 2026
Viewed by 151
Abstract
This study presents a magnetically actuated soft robot inspired by the peristaltic locomotion of flatworms, designed to replicate the biological locomotion of worms to achieve robust maneuverability. Fabricated entirely from photocurable soft resin, the robot features a flexible elastomeric body and two webbed [...] Read more.
This study presents a magnetically actuated soft robot inspired by the peristaltic locomotion of flatworms, designed to replicate the biological locomotion of worms to achieve robust maneuverability. Fabricated entirely from photocurable soft resin, the robot features a flexible elastomeric body and two webbed fins with embedded soft magnets. By applying a vertically oscillating magnetic field, the robot achieves forward crawling through the coordinated bending and lifting of fins, converting oscillating magnetic fields into continuous undulatory motion that mimics the gait of flatworms. The experimental results demonstrate that the system maintains consistent bidirectional velocities in the range of 4–7 mm/s on flat surfaces. Beyond linear locomotion, the robot demonstrates effective terrain adaptability, navigating complex topographies, including curved obstacles up to 16 times its body thickness, by autonomously adopting a high-lifting kinematic strategy to overcome gravitational resistance. Furthermore, load-carrying tests reveal that the robot can transport a 6 g payload without velocity degradation. These findings underscore the robot’s efficacy in overcoming mobility constraints, highlighting promising applications in fields requiring non-invasive intervention, such as biomedical capsule endoscopy and industrial pipeline inspection. Full article
Show Figures

Graphical abstract

34 pages, 3066 KB  
Article
Underwater Antenna Technologies with Emphasis on Submarine and Autonomous Underwater Vehicles (AUVs)
by Dimitrios G. Arnaoutoglou, Tzichat M. Empliouk, Dimitrios-Naoum Papamoschou, Yiannis Kyriacou, Andreas Papanastasiou, Theodoros N. F. Kaifas and George A. Kyriacou
Electronics 2026, 15(1), 219; https://doi.org/10.3390/electronics15010219 - 2 Jan 2026
Viewed by 180
Abstract
Following the persistent evolution of terrestrial 5G wireless systems, a new field of underwater communication has emerged for various related applications like environmental monitoring, underwater mining, and marine research. However, establishing reliable high-speed underwater networks remains notoriously difficult due to the severe RF [...] Read more.
Following the persistent evolution of terrestrial 5G wireless systems, a new field of underwater communication has emerged for various related applications like environmental monitoring, underwater mining, and marine research. However, establishing reliable high-speed underwater networks remains notoriously difficult due to the severe RF attenuation in conductive seawater, which strictly limits range coverage. In this article, we focus on a comprehensive review of different antenna types for future underwater communication and sensing systems, evaluating their performance and suitability for Autonomous Underwater Vehicles (AUVs). We critically examine and compare distinct antenna technologies, including Magnetic Induction (MI) coils, electrically short dipoles, wideband traveling wave antennas, printed planar antennas, and novel magnetoelectric (ME) resonators. Specifically, these antennas are compared in terms of physical footprint, operating frequency, bandwidth, and realized gain, revealing the trade-offs between miniaturization and radiation efficiency. Our analysis aims to identify the benefits and weaknesses of the different antenna types while emphasizing the necessity of innovative antenna designs to overcome the fundamental propagation limits of the underwater channel. Full article
Show Figures

Figure 1

13 pages, 9913 KB  
Communication
An Automatic Optimization Approach to the Non-Periodic Folded-Waveguide Slow-Wave Structure for the High Efficiency Traveling Wave Tube
by Zheng Wen and Jun Zhang
Electronics 2025, 14(24), 4797; https://doi.org/10.3390/electronics14244797 - 5 Dec 2025
Viewed by 212
Abstract
An automatic optimization approach to the non-periodic (NP) folded-waveguide slow-wave structure (FW-SWS) is proposed for the high efficiency traveling wave tube (TWT). Considering the beam-wave synchronism condition, the data of the beam velocity distribution are analyzed and utilized for automatic optimization. For concise [...] Read more.
An automatic optimization approach to the non-periodic (NP) folded-waveguide slow-wave structure (FW-SWS) is proposed for the high efficiency traveling wave tube (TWT). Considering the beam-wave synchronism condition, the data of the beam velocity distribution are analyzed and utilized for automatic optimization. For concise expression, a W-band concentric arc NP FW-SWS TWT is automatically optimized as an example, where the beam voltage is set as 6000 V, the beam current is 0.12 A, the magnet field is 0.5 T, and the input power is 0.4 W. Without any training data or previous given datasets, the output power (electronic efficiency) can be optimized to reach 238.7 W (33.1%) at 94 GHz by the automatic optimization approach code within 22.7 h. Full article
Show Figures

Figure 1

14 pages, 4931 KB  
Article
State-of-the-Art VCO with Eight-Shaped Resonator-Type Transmission Line
by Sheng-Lyang Jang, Zi-Jun Lin and Miin-Horng Juang
Electronics 2025, 14(12), 2322; https://doi.org/10.3390/electronics14122322 - 6 Jun 2025
Cited by 4 | Viewed by 1578
Abstract
A closed-loop transmission line (TL) coupled to an LCR resonator is used in this study for a fully-integrated CMOS rotary traveling wave oscillator (RTWO) based on the rotary traveling wave principle. A technique for the suppression of magnetic coupling noise is presented with [...] Read more.
A closed-loop transmission line (TL) coupled to an LCR resonator is used in this study for a fully-integrated CMOS rotary traveling wave oscillator (RTWO) based on the rotary traveling wave principle. A technique for the suppression of magnetic coupling noise is presented with eight-shaped inductors. The design and measurement of an 8.53 GHz oscillator in the TSMC 0.18 μm CMOS technology are discussed. The fully-integrated chip occupies a die area of 1.2 × 1.2 mm2. The oscillator consists of four sub-oscillators and uses four 1:1 symmetric twisted transformers, with the secondary inductors connected to form a twisted closed-loop transmission line for coupling the sub-oscillators. The transformers are configured as eight-shaped structures to minimize the far-field magnetic field radiation from each transformer and the whole transformer. At a supply voltage of 1.7 V, the power consumption is 5.84 mW. The free-running oscillation frequency of the RTWO is tunable from 8.53 GHz to 10.0 GHz. The measured phase noise at a 1 MHz frequency offset is −122.4 dBc/Hz at an oscillation frequency of 8.53 GHz, and the figure of merit (FOM) of the proposed VCO with a specific inductor layout is −193.4 dBc/Hz, surpassing other similar RTWOs. The FOM with a tuning range (FOMT) is −195.96 dBc/Hz. Full article
(This article belongs to the Special Issue Advances in Frontend Electronics for Millimeter-Wave Systems)
Show Figures

Figure 1

17 pages, 1579 KB  
Article
Closed Form Analytic Expressions for the Evanescent and Traveling Components of the Electromagnetic Green Function and for Defocused Hemispherical Focusing of Electromagnetic Waves
by Colin J. R. Sheppard
Photonics 2025, 12(6), 558; https://doi.org/10.3390/photonics12060558 - 2 Jun 2025
Viewed by 910
Abstract
Explicit analytic forms, in terms of Lommel functions of two variables, for the evanescent and traveling components of the electromagnetic Green tensor are presented. The field in the focal region, including defocus, of hemispherically focused electric dipole, magnetic dipole, and mixed-dipole waves are [...] Read more.
Explicit analytic forms, in terms of Lommel functions of two variables, for the evanescent and traveling components of the electromagnetic Green tensor are presented. The field in the focal region, including defocus, of hemispherically focused electric dipole, magnetic dipole, and mixed-dipole waves are expressed analytically in closed form. Full article
Show Figures

Figure 1

17 pages, 7389 KB  
Article
Quadruple-Q Skyrmion Crystal in Centrosymmetric Body-Centered Tetragonal Magnets
by Satoru Hayami
Magnetism 2025, 5(1), 2; https://doi.org/10.3390/magnetism5010002 - 17 Jan 2025
Viewed by 2550
Abstract
We conduct a numerical investigation into the stability of a quadruple-Q skyrmion crystal, a structure generated by the superposition of four spin density waves traveling in distinct directions within three-dimensional space, hosted on a centrosymmetric body-centered tetragonal lattice. Using simulated annealing applied [...] Read more.
We conduct a numerical investigation into the stability of a quadruple-Q skyrmion crystal, a structure generated by the superposition of four spin density waves traveling in distinct directions within three-dimensional space, hosted on a centrosymmetric body-centered tetragonal lattice. Using simulated annealing applied to an effective spin model that includes momentum-resolved bilinear and biquadratic interactions, we construct a magnetic phase diagram spanning a broad range of model parameters. Our study finds that a quadruple-Q skyrmion crystal does not emerge within the phase diagram when varying the biquadratic interaction and external magnetic field. Instead, three distinct quadruple-Q states with topologically trivial spin textures are stabilized. However, we demonstrate that the quadruple-Q skyrmion crystal can become the ground state when an additional high-harmonic wave–vector interaction is considered. Depending on the magnitude of this interaction, we obtain two types of quadruple-Q skyrmion crystals exhibiting the skyrmion numbers of one and two. These findings highlight the emergence of diverse three-dimensional multiple-Q spin states in centrosymmetric body-centered tetragonal magnets. Full article
Show Figures

Figure 1

11 pages, 293 KB  
Article
A Kuramoto Model for the Bound State Aharonov–Bohm Effect
by Alviu Rey Nasir, José Luís Da Silva, Jingle Magallanes, Herry Pribawanto Suryawan and Roshin Marielle Nasir-Britos
Axioms 2024, 13(12), 828; https://doi.org/10.3390/axioms13120828 - 27 Nov 2024
Viewed by 1366
Abstract
The Aharonov–Bohm effect can be described as a phase difference in interfering charged particles that travel through two distinct pathways oppositely surrounding a perpendicularly-positioned solenoid. The magnetic field emanates from the solenoid but does not intersect the pathways. On the other hand, the [...] Read more.
The Aharonov–Bohm effect can be described as a phase difference in interfering charged particles that travel through two distinct pathways oppositely surrounding a perpendicularly-positioned solenoid. The magnetic field emanates from the solenoid but does not intersect the pathways. On the other hand, the Kuramoto model can be used to identify the synchronization conditions that lead to a particular phase difference by treating the phases as coupled oscillators. Starting with the overall wave function expression for the electron in an Aharonov–Bohm potential, we derive a version of the Kuramoto model describing the phase dynamics of the bound state of the quantum mechanical system. We show that the resulting synchronization condition of the model coincides with the allowable values of the flux parameter for our case to achieve an Aharonov–Bohm effect. Full article
(This article belongs to the Special Issue Recent Advances in Quantum Mechanics and Mathematical Physics)
Show Figures

Figure 1

18 pages, 4020 KB  
Article
A Conjugate Linearly Polarized Light Wave Along an Optical Fiber with the Berry Phase Model and Its Magnetic Trajectories According to the Conjugate Frame
by Muhammed Talat Sariaydin
Symmetry 2024, 16(11), 1518; https://doi.org/10.3390/sym16111518 - 13 Nov 2024
Cited by 1 | Viewed by 1341
Abstract
In this article, we study how a linear polarized wave that is going along an optical fiber works, which is known not only as a curve on a Lie group but also as a rotation of the polarization plane. What we are trying [...] Read more.
In this article, we study how a linear polarized wave that is going along an optical fiber works, which is known not only as a curve on a Lie group but also as a rotation of the polarization plane. What we are trying to show in this article is that linear polarized light waves (PLWs) are related to the Berry phase. Moreover, we give magnetic curves created by N traveling in the electromagnetic trajectories and the optical fiber generated by the electric field N of the PLW moving through the optical fiber. With this described method, we present a mathematical model to conveniently generate the relationships between an optical fiber and the optical angular momentum in a three-dimensional Lie group. The conjugate frame we used in this article removes unnecessary bending around the tangent and enables a more dynamic characterization, which can still be applied even when the second derivative of the curve is zero. Full article
Show Figures

Figure 1

1 pages, 139 KB  
Retraction
RETRACTED: Cui et al. Impact of High-Frequency Traveling-Wave Magnetic Fields on Low-Conductivity Liquids: Investigation and Potential Applications in the Chemical Industry. Materials 2024, 17, 944
by Xinyu Cui, Xianzhao Na, Xiaodong Wang, Roland Ernst and Fautrelle Yves
Materials 2024, 17(21), 5270; https://doi.org/10.3390/ma17215270 - 30 Oct 2024
Viewed by 964
Abstract
The journal retracts the article titled “Impact of High-Frequency Traveling-Wave Magnetic Fields on Low-Conductivity Liquids: Investigation and Potential Applications in the Chemical Industry” [...] Full article
40 pages, 16237 KB  
Review
A Comprehensive Review of Piezoelectric Ultrasonic Motors: Classifications, Characterization, Fabrication, Applications, and Future Challenges
by Sidra Naz and Tian-Bing Xu
Micromachines 2024, 15(9), 1170; https://doi.org/10.3390/mi15091170 - 21 Sep 2024
Cited by 22 | Viewed by 8602
Abstract
Piezoelectric ultrasonic motors (USMs) are actuators that use ultrasonic frequency piezoelectric vibration-generated waves to transform electrical energy into rotary or translating motion. USMs receive more attention because they offer distinct qualities over traditional magnet-coil-based motors, such as miniaturization, great accuracy, speed, non-magnetic nature, [...] Read more.
Piezoelectric ultrasonic motors (USMs) are actuators that use ultrasonic frequency piezoelectric vibration-generated waves to transform electrical energy into rotary or translating motion. USMs receive more attention because they offer distinct qualities over traditional magnet-coil-based motors, such as miniaturization, great accuracy, speed, non-magnetic nature, silent operation, straightforward construction, broad temperature operations, and adaptability. This review study focuses on the principle of USMs and their classifications, characterization, fabrication methods, applications, and future challenges. Firstly, the classifications of USMs, especially, standing-wave, traveling-wave, hybrid-mode, and multi-degree-of-freedom USMs, are summarized, and their respective functioning principles are explained. Secondly, finite element modeling analysis for design and performance predictions, conventional and nano/micro-fabrication methods, and various characterization methods are presented. Thirdly, their advantages, such as high accuracy, small size, and silent operation, and their benefits over conventional motors for the different specific applications are examined. Fourthly, the advantages and disadvantages of USMs are highlighted. In addition, their substantial contributions to a variety of technical fields like surgical robots and industrial, aerospace, and biomedical applications are introduced. Finally, their future prospects and challenges, as well as research directions in USM development, are outlined, with an emphasis on downsizing, increasing efficiency, and new materials. Full article
Show Figures

Figure 1

18 pages, 5398 KB  
Article
RETRACTED: Impact of High-Frequency Traveling-Wave Magnetic Fields on Low-Conductivity Liquids: Investigation and Potential Applications in the Chemical Industry
by Xinyu Cui, Xianzhao Na, Xiaodong Wang, Roland Ernst and Fautrelle Yves
Materials 2024, 17(4), 944; https://doi.org/10.3390/ma17040944 - 18 Feb 2024
Cited by 2 | Viewed by 2073 | Retraction
Abstract
High-frequency traveling-wave magnetic fields refer to alternating magnetic fields that propagate through space in a wave-like manner at high frequencies. These magnetic fields are characterized by their ability to generate driving forces and induce currents in conductive materials, such as liquids or metals. [...] Read more.
High-frequency traveling-wave magnetic fields refer to alternating magnetic fields that propagate through space in a wave-like manner at high frequencies. These magnetic fields are characterized by their ability to generate driving forces and induce currents in conductive materials, such as liquids or metals. This article investigates the application and approaches of a unique form of high-frequency traveling-wave magnetic fields to low-conductivity liquids with conductivity ranging from 1 to 102 S/m. Experiments were conducted using four representative electrolytic solutions commonly employed in the chemical industry: sulfuric acid (H2SO4), sodium hydroxide (NaOH), sodium chloride (NaCl), and ionic liquid ([Bmim]BF4). The investigation focuses on the impact of high-frequency magnetic fields on these solutions at the optimal operating point of the system, considering the effects of Joule heating. The findings reveal that the high-frequency traveling magnetic field exerts a significant volumetric force on all four low-conductivity liquids. This technology, characterized by its non-contact and pollution-free nature, high efficiency, large driving volume, and rapid driving speeds (up to several centimeters per second), also provides uniform velocity distribution and notable thermal effects. It holds considerable promise for applications in the chemical industry, metallurgy, and other sectors where enhanced three-phase transfer processes are essential. Full article
(This article belongs to the Special Issue Electrochemical Material Science and Electrode Processes)
Show Figures

Figure 1

13 pages, 1283 KB  
Technical Note
The Turkey Earthquake Induced Equatorial Ionospheric Current Disturbances on 6 February 2023
by Kedeng Zhang, Hui Wang, Hao Xia, Wenbin Wang, Jing Liu, Shunrong Zhang and Yaqi Jin
Remote Sens. 2024, 16(2), 272; https://doi.org/10.3390/rs16020272 - 10 Jan 2024
Cited by 8 | Viewed by 2929
Abstract
An earthquake is a seismic event resulting from a sudden release of energy in the lithosphere, which produces waves that can propagate through the atmosphere into the ionosphere, causing ionospheric disturbances, and excites an additional electric field in the lower ionosphere. Two large-scale [...] Read more.
An earthquake is a seismic event resulting from a sudden release of energy in the lithosphere, which produces waves that can propagate through the atmosphere into the ionosphere, causing ionospheric disturbances, and excites an additional electric field in the lower ionosphere. Two large-scale traveling ionospheric disturbances (LSTIDs) at daytime Turkey longitudes were found, with phase speeds of 534 and 305 m/s, respectively, after the second strong earthquake at 10:24 UT on 6 February 2023. During strong earthquakes, the equatorial ionospheric currents including the E-region equatorial electrojet (EEJ) and F-region ionospheric radial current (IRC) might be perturbed. At the Tatuoca station in Brazil, we observed a stronger-than-usual horizontal magnetic field associated with the EEJ, with a magnitude of ~100 nT. EEJ perturbations are mainly controlled by neutral winds, especially zonal winds. In the equatorial F-region, a wave perturbation of the IRC was caused by a balance of the electric field generated by the zonal winds at ~15° MLat, the F-region local winds driven by atmospheric resonance, and the additional polarization electric field. Our findings better the understanding of the complex interplay between seismic events and ionospheric current disturbances. Full article
Show Figures

Figure 1

13 pages, 9069 KB  
Article
Helical Electron Beam Status Online Evaluation for Magnetron Injection Gun
by Wei Jiang, Chaoxuan Lu, Binyang Han, Boxin Dai, Qiang Zheng, Guo Liu, Jianxun Wang and Yong Luo
Quantum Beam Sci. 2024, 8(1), 3; https://doi.org/10.3390/qubs8010003 - 29 Dec 2023
Cited by 2 | Viewed by 2587
Abstract
The magnetron injection gun (MIG) is an essential component of the gyrotron traveling wave tube (gyro-TWT). Although the electron beam status influences the performance of the device, it cannot be measured directly in the experiment. An online evaluation module (OEM) for the experiment [...] Read more.
The magnetron injection gun (MIG) is an essential component of the gyrotron traveling wave tube (gyro-TWT). Although the electron beam status influences the performance of the device, it cannot be measured directly in the experiment. An online evaluation module (OEM) for the experiment is developed to calculate the instant beam parameters of MIG. The OEM, by reconstructing the geometry of the MIG and related magnetic field distribution, can obtain the electron beam status under the operating parameters through the online simulation. The beam velocity spread of thermal emission with instant temperature and surface roughness are also considered. The validation is done in a W-band gyro-TWT, and the beam performance is evaluated in the experiment. With a pitch factor of 1.06 electron beam, the velocity spread affected by the electric-magnetic mismatch, thermal emission, and roughness is 1.00%, 0.56%, and 0.43%, respectively. The other beam parameters are also presented in the developed module. The OEM could guide and accelerate the testing process and ensure the safe and stable operation of the device. Full article
(This article belongs to the Special Issue New Challenges in Electron Beams)
Show Figures

Figure 1

11 pages, 4646 KB  
Article
Investigation of Spindt Cold Cathode Electron Guns for Terahertz Traveling Wave Tubes
by Yongtao Li, Hanyan Li and Jinjun Feng
Electronics 2023, 12(20), 4197; https://doi.org/10.3390/electronics12204197 - 10 Oct 2023
Cited by 2 | Viewed by 2148
Abstract
In this work, a Spindt cold cathode electron gun with a PPM (periodic permanent magnet) focusing system for a terahertz TWT (traveling wave tube) was designed and simulated based on the Pierce electron gun structure. More specifically, a new 3D (three dimensional) emission [...] Read more.
In this work, a Spindt cold cathode electron gun with a PPM (periodic permanent magnet) focusing system for a terahertz TWT (traveling wave tube) was designed and simulated based on the Pierce electron gun structure. More specifically, a new 3D (three dimensional) emission model was used, where the cathode radius of the electron gun was 1 mm and the cathode current was 30 mA, with an emitting half angle of about 28°. It was demonstrated that the electron beam was well focused with an electron beam radius of 0.3 mm and a filling ratio of 0.5 when the maximum value of the PPM field along with the axis was 0.122T. According to the simulation results, a planar cold cathode electron gun was developed. Measurements demonstrated that the I/V characteristics of the cold cathode gun were consistent with that of a cold cathode, revealing that the electrons emitted from the cathode are not intercepted when passing through the electron gun. Full article
Show Figures

Figure 1

26 pages, 8708 KB  
Article
Design and Development of a Traveling Wave Ferro-Microfluidic Device and System Rig for Potential Magnetophoretic Cell Separation and Sorting in a Water-Based Ferrofluid
by Rodward L. Hewlin, Maegan Edwards and Christopher Schultz
Micromachines 2023, 14(4), 889; https://doi.org/10.3390/mi14040889 - 21 Apr 2023
Cited by 23 | Viewed by 3482
Abstract
The timely detection and diagnosis of diseases and accurate monitoring of specific genetic conditions require rapid and accurate separation, sorting, and direction of target cell types toward a sensor device surface. In that regard, cellular manipulation, separation, and sorting are progressively finding application [...] Read more.
The timely detection and diagnosis of diseases and accurate monitoring of specific genetic conditions require rapid and accurate separation, sorting, and direction of target cell types toward a sensor device surface. In that regard, cellular manipulation, separation, and sorting are progressively finding application potential within various bioassay applications such as medical disease diagnosis, pathogen detection, and medical testing. The aim of this paper is to present the design and development of a simple traveling wave ferro-microfluidic device and system rig purposed for the potential manipulation and magnetophoretic separation of cells in water-based ferrofluids. This paper details in full: (1) a method for tailoring cobalt ferrite nanoparticles for specific diameter size ranges (10–20 nm), (2) the development of a ferro-microfluidic device for potentially separating cells and magnetic nanoparticles, (3) the development of a water-based ferrofluid with magnetic nanoparticles and non-magnetic microparticles, and (4) the design and development of a system rig for producing the electric field within the ferro-microfluidic channel device for magnetizing and manipulating nonmagnetic particles in the ferro-microfluidic channel. The results reported in this work demonstrate a proof of concept for magnetophoretic manipulation and separation of magnetic and non-magnetic particles in a simple ferro-microfluidic device. This work is a design and proof-of-concept study. The design reported in this model is an improvement over existing magnetic excitation microfluidic system designs in that heat is efficiently removed from the circuit board to allow a range of input currents and frequencies to manipulate non-magnetic particles. Although this work did not analyze the separation of cells from magnetic particles, the results demonstrate that non-magnetic (surrogates for cellular materials) and magnetic entities can be separated and, in some cases, continuously pushed through the channel based on amperage, size, frequency, and electrode spacing. The results reported in this work establish that the developed ferro-microfluidic device may potentially be used as an effective platform for microparticle and cellular manipulation and sorting. Full article
(This article belongs to the Special Issue Microfluidic Device Fabrication and Cell Manipulation)
Show Figures

Figure 1

Back to TopTop