Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = transverse momentum spectrum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 442 KB  
Article
The Spectrum of Low-pT J/ψ in Heavy-Ion Collisions in a Statistical Two-Body Fractal Model
by Huiqiang Ding, Luan Cheng, Tingting Dai, Enke Wang and Wei-Ning Zhang
Entropy 2023, 25(12), 1655; https://doi.org/10.3390/e25121655 - 13 Dec 2023
Cited by 2 | Viewed by 1693
Abstract
We establish a statistical two-body fractal (STF) model to study the spectrum of J/ψ. J/ψ serves as a reliable probe in heavy-ion collisions. The distribution of J/ψ in hadron gas is influenced by flow, quantum and [...] Read more.
We establish a statistical two-body fractal (STF) model to study the spectrum of J/ψ. J/ψ serves as a reliable probe in heavy-ion collisions. The distribution of J/ψ in hadron gas is influenced by flow, quantum and strong interaction effects. Previous models have predominantly focused on one or two of these effects while neglecting the others, resulting in the inclusion of unconsidered effects in the fitted parameters. Here, we study the issue from a new point of view by analyzing the fact that all three effects induce a self-similarity structure, involving a J/ψ-π two-meson state and a J/ψ, π two-quark state, respectively. We introduce modification factor qTBS and q2 into the probability and entropy of charmonium. qTBS denotes the modification of self-similarity on J/ψ, q2 denotes that of self-similarity and strong interaction between c and c¯ on quarks. By solving the probability and entropy equations, we derive the values of qTBS and q2 at various collision energies and centralities. Substituting the value of qTBS into distribution function, we successfully obtain the transverse momentum spectrum of low-pT J/ψ, which demonstrates good agreement with experimental data. The STF model can be employed to investigate other mesons and resonance states. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

13 pages, 4403 KB  
Article
Spin Hall Effect of Double-Index Cylindrical Vector Beams in a Tight Focus
by Alexey A. Kovalev and Victor V. Kotlyar
Micromachines 2023, 14(2), 494; https://doi.org/10.3390/mi14020494 - 20 Feb 2023
Cited by 39 | Viewed by 2363
Abstract
We investigate the spin angular momentum (SAM) of double-index cylindrical vector beams in tight focus. Such a set of beams is a generalization of the conventional cylindrical vector beams since the polarization order is different for the different transverse field components. Based on [...] Read more.
We investigate the spin angular momentum (SAM) of double-index cylindrical vector beams in tight focus. Such a set of beams is a generalization of the conventional cylindrical vector beams since the polarization order is different for the different transverse field components. Based on the Richards-Wolf theory, we obtain an expression for the SAM distribution and show that if the polarization orders are of different parity, then the spin Hall effect occurs in the tight focus, which is there are alternating areas with positive and negative spin angular momentum, despite linear polarization of the initial field. We also analyze the orbital angular momentum spectrum of all the components of the focused light field and determine the overwhelming angular harmonics. Neglecting the weak harmonics, we predict the SAM distribution and demonstrate the ability to generate the focal distribution where the areas with the positive and negative spin angular momentum reside on a ring and are alternating in pairs, or separated in different semicircles. Application areas of the obtained results are designing micromachines with optically driven elements. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in Physics 2023)
Show Figures

Figure 1

11 pages, 1925 KB  
Article
The Novel Scaling of Tsallis Parameters from the Transverse Momentum Spectra of Charged Particles in Heavy-Ion Collisions
by Junqi Tao, Weihao Wu, Meng Wang, Hua Zheng, Wenchao Zhang, Lilin Zhu and Aldo Bonasera
Particles 2022, 5(2), 146-156; https://doi.org/10.3390/particles5020013 - 9 May 2022
Cited by 8 | Viewed by 3661
Abstract
The transverse momentum (pT) spectra of charged particles measured in Au + Au collisions from the beam energy scan (BES) program, Cu + Cu collisions at sNN=62.4, 200 GeV at the RHIC and Pb + [...] Read more.
The transverse momentum (pT) spectra of charged particles measured in Au + Au collisions from the beam energy scan (BES) program, Cu + Cu collisions at sNN=62.4, 200 GeV at the RHIC and Pb + Pb, Xe + Xe collisions at the LHC are investigated in the framework of Tsallis thermodynamics. The theory can describe the experimental data well for all the collision systems, energies and centralities investigated. The collision energy and centrality dependence of the Tsallis distribution parameters, i.e., the temperature T and the nonextensive parameter q, for the A + A collisions are also studied and discussed. A novel scaling between the temperature divided by the natural logarithm of collision energy (T/lns) and the nonextensive parameter q is presented. Full article
(This article belongs to the Collection High Energy Physics)
Show Figures

Figure 1

22 pages, 11980 KB  
Review
Laser Transverse Modes with Ray-Wave Duality: A Review
by Yung-Fu Chen, Ching-Hsuan Wang, Xin-Liang Zheng and Min-Xiang Hsieh
Appl. Sci. 2021, 11(19), 8913; https://doi.org/10.3390/app11198913 - 24 Sep 2021
Cited by 21 | Viewed by 3768
Abstract
We present a systematic overview on laser transverse modes with ray-wave duality. We start from the spectrum of eigenfrequencies in ideal spherical cavities to display the critical role of degeneracy for unifying the Hermite–Gaussian eigenmodes and planar geometric modes. We subsequently review the [...] Read more.
We present a systematic overview on laser transverse modes with ray-wave duality. We start from the spectrum of eigenfrequencies in ideal spherical cavities to display the critical role of degeneracy for unifying the Hermite–Gaussian eigenmodes and planar geometric modes. We subsequently review the wave representation for the elliptical modes that generally carry the orbital angular momentum. Next, we manifest the fine structures of eigenfrequencies in a spherical cavity with astigmatism to derive the wave-packet representation for Lissajous geometric modes. Finally, the damping effect on the formation of transverse modes is generally reviewed. The present overview is believed to provide important insights into the ray-wave correspondence in mesoscopic optics and laser physics. Full article
(This article belongs to the Special Issue Optoelectronics for Lasers: Latest Advances and Prospects)
Show Figures

Figure 1

19 pages, 10325 KB  
Article
Searching for Supersymmetry at LHC Using the Complex-Network-Based Method of the Three-Dimensional Visibility-Graph
by Susmita Bhaduri and Anirban Bhaduri
Physics 2020, 2(3), 436-454; https://doi.org/10.3390/physics2030025 - 10 Sep 2020
Cited by 2 | Viewed by 3304
Abstract
For the last several decades, there has been tremendous interest in search for Supersymmetry (SUSY) in the area of high energy physics. At Large Hadron Collider (LHC), there have been continuous searches for SUSY for prompt and non-prompt, for particle R-parity conserving [...] Read more.
For the last several decades, there has been tremendous interest in search for Supersymmetry (SUSY) in the area of high energy physics. At Large Hadron Collider (LHC), there have been continuous searches for SUSY for prompt and non-prompt, for particle R-parity conserving and R-parity violating generation and decays. The limits obtained from these experiments and analyses for detection of the signatures of supersymmetric particles (LSP), revealed greater possibilities of such experiments in the collider. However, these signatures are usually derived under the assumption of bit optimistic conditions of the decaying process of sparticles to the final states. Moreover, SUSY might have been in a disguised state at lower mass-scales as a result of difficult and challenging mass spectra and mixed modes of decays. In this investigation, a novel method of 3-dimensional (3D) Visibility-Graph Analysis is proposed. This is an extension of Visibility Graph analysis of data series to perform the scaling analysis for 3D space. The experimental data spaces analyzed are made up of the component-space (in the X,Y and Z coordinates) of transverse momentum (pT) values taken out from 4-momenta of the signatures of the final state of the pair of mega-jets extracted from the multiJet primary pp collision data from Run B of 2010 at 7 TeV which was used for the search of SUSY using razor filter. The symmetry scaling and the inherent scaling behavior, scale-freeness of multi-particle production process is studied in terms of 3D Power-of-Scale-freeness-of-Visibility-Graph (3D-PSVG) extracted from the 3D Visibility Graphs constructed out of the experimental data spaces. The signature of SUSY may be identified by analyzing the scaling behavior and long-range correlation inherent in the 3D space made up of signatures of final state of multi-particles produced in the pp collision at 7 TeV, for the analysis of SUSY, which the conventional method of analyzing the spectrum of invariant mass or pT may miss. Full article
(This article belongs to the Special Issue Statistical Approaches in High Energy Physics)
Show Figures

Figure 1

9 pages, 1220 KB  
Article
Three-Dimensional Optical Spin Angular Momentum Flux of a Vector Beam with Radially-Variant Polarization in Near Field
by Ying Guan, Li-Xin Zhong, Chaoyang Qian and Rui-Pin Chen
Appl. Sci. 2019, 9(5), 960; https://doi.org/10.3390/app9050960 - 7 Mar 2019
Cited by 3 | Viewed by 3178
Abstract
The near-field characteristics of a radially-variant vector beam (RVVB) are analyzed by using the vectorial angular spectrum method. The non-paraxial RVVB can be decomposed into the propagating wave and the evanescent wave in near field. The coherent superposition of the longitudinal and transverse [...] Read more.
The near-field characteristics of a radially-variant vector beam (RVVB) are analyzed by using the vectorial angular spectrum method. The non-paraxial RVVB can be decomposed into the propagating wave and the evanescent wave in near field. The coherent superposition of the longitudinal and transverse components of the RVVB results in a three-dimensional (3D) profile of the spin angular momentum flux density (SAM-FD). The evanescent wave part dominates the near field of a highly non-paraxial RVVB. The longitudinal component has a large impact on the 3D shape of the optical SAM-FD. Therefore, the 3D SAM-FD configuration of the RVVB can be manipulated by choosing the initial states of polarization arrangement. In particular, the transverse SAM-FD with a spin axis orthogonal to the propagation direction offers a promising range of applications spanning from nanophotonics and plasmonics to biophotonics. Full article
(This article belongs to the Special Issue Recent Advances in Statistical Optics and Plasmonics)
Show Figures

Graphical abstract

13 pages, 1588 KB  
Article
Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy
by Ashim Dhakal, Pieter Wuytens, Ali Raza, Nicolas Le Thomas and Roel Baets
Materials 2017, 10(2), 140; https://doi.org/10.3390/ma10020140 - 8 Feb 2017
Cited by 46 | Viewed by 10760
Abstract
Recent studies have shown that evanescent Raman spectroscopy using a silicon nitride (SiN) nanophotonic waveguide platform has higher signal enhancement when compared to free-space systems. However, signal-to-noise ratio from the waveguide at a low analyte concentration is constrained by the shot-noise from the [...] Read more.
Recent studies have shown that evanescent Raman spectroscopy using a silicon nitride (SiN) nanophotonic waveguide platform has higher signal enhancement when compared to free-space systems. However, signal-to-noise ratio from the waveguide at a low analyte concentration is constrained by the shot-noise from the background light originating from the waveguide itself. Hence, understanding the origin and properties of this waveguide background luminescence (WGBL) is essential to developing mitigation strategies. Here, we identify the dominating component of the WGBL spectrum composed of a broad Raman scattering due to momentum selection-rule breaking in amorphous materials, and several peaks specific to molecules embedded in the core. We determine the maximum of the Raman scattering efficiency of the WGBL at room temperature for 785 nm excitation to be 4.5 ± 1 × 10−9 cm−1·sr−1, at a Stokes shift of 200 cm−1. This efficiency decreases monotonically for higher Stokes shifts. Additionally, we also demonstrate the use of slotted waveguides and quasi-transverse magnetic polarization as some mitigation strategies. Full article
(This article belongs to the Special Issue Silicon Nanophotonics)
Show Figures

Figure 1

Back to TopTop