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Abstract: We investigate the spin angular momentum (SAM) of double-index cylindrical vector
beams in tight focus. Such a set of beams is a generalization of the conventional cylindrical vector
beams since the polarization order is different for the different transverse field components. Based
on the Richards-Wolf theory, we obtain an expression for the SAM distribution and show that if
the polarization orders are of different parity, then the spin Hall effect occurs in the tight focus,
which is there are alternating areas with positive and negative spin angular momentum, despite
linear polarization of the initial field. We also analyze the orbital angular momentum spectrum of
all the components of the focused light field and determine the overwhelming angular harmonics.
Neglecting the weak harmonics, we predict the SAM distribution and demonstrate the ability to
generate the focal distribution where the areas with the positive and negative spin angular momentum
reside on a ring and are alternating in pairs, or separated in different semicircles. Application areas
of the obtained results are designing micromachines with optically driven elements.

Keywords: cylindrical vector beam; double-index cylindrical vector beam; tight focus; Richards-Wolf theory;
spin angular momentum; optical spin Hall effect; orbital angular momentum spectrum

1. Introduction

In micromachines, elements can be driven by light [1,2]. This requires designing
optical tweezers appropriate for driven elements, depending on their shape, material, and
motion trajectory. The work [3] discusses how to control the mechanical motions of various
particles in optical tweezers under complicated actuation of optical forces and torques by
tightly focused laser beams.

Typically, a light beam comes out from a laser with a Gaussian shape. Then, for certain
applications, not only for optical trapping, but also for optical data transmission and laser
welding, the beam should be converted to attain an on-demand shape. For this purpose, a
huge branch of modern optics, laser beam shaping, is developed [4].

The beam shaping techniques are developed both within a resonator and outside it [5],
by using refractional or diffractional optical elements. External beam shaping can be done
to shape a beam that maintains this shape on propagation [6], or in some specific area, for
instance, in the focal plane [7].

However, in optical trapping, there can also be a need not only to trap a particle at a
certain point, but also to make her do some movements. For instance, the particle can be
forced to travel along some trajectory, or rotate around its own center. Such a rotation occurs
when the light possesses the spin angular momentum (SAM) [8], or nonlinear polarization.
Thus, in addition to the task of shaping the beam intensity distribution, there can be a task
of shaping the SAM distribution. In addition to optical trapping, the SAM can be used as
information in optical data transmission [9].

In paraxial approximation, the intensity shaping can be done for a single transverse
field component of a homogeneously polarized light. However, for shaping the SAM, both
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transverse components should be tailored with a controlled phase delay between them.
The problem becomes more difficult under tight focusing conditions.

Recently, it has been observed that when a linearly polarized light beam is tightly
focused, then, near the focus, areas occur with elliptic polarization [10]. Since the areas with
negative and positive SAM are spatially separated, this phenomenon is a manifestation
of the optical spin Hall effect. Later, the same effect was discovered for tightly focused
high-order cylindrical vector beams [11]. In [11], the SAM is distributed mostly on a ring
and consists of alternating areas with positive and negative values. The cylindrical vector
beams have the Jones vector J = [cos m, sin m@] with ¢ being the angular polar coordinate
and m being the polarization order (for m = 1, radial polarization). A further generalization
is a two-index polarization singularity with the Jones vector J = [cos m, sin n], where
m # n [12], i.e., such a generalized vector field has different orders on the different axes.
Recently, we studied such fields with V-points and for many values m and n we obtained
the Poincare-Hopf index analytically [13].

In this paper, based on the Richards-Wolf theory [14], we study what happens with the
SAM of a light field with the double-index polarization singularity in tight focus. We obtain
an expression for the complex amplitude near the focus. Then, based on this expression, we
derive the formula for the SAM and found that it can be nonzero only for the orders m and
n of different parity. For analytical prediction of the SAM distribution, we decomposed the
in-focus light field into the orbital angular momentum (OAM) spectrum and estimated the
contribution of each angular harmonic. It turns out that if a light field being focused is not
of ring shape and has a homogeneous or decaying Gaussian shape, then the OAM-spectrum
consists mainly of mth and nth angular harmonics which exceed the other harmonics by an
order of magnitude. It allows us to estimate the polar angles with zero SAM and thus to
predict the SAM distribution. As an example, we obtained SAM distributions on a ring
where the areas with positive and negative SAM occur in pairs.

2. A Light Field with a Double-Index Polarization Singularity near the Tight Focus

In [13], we investigated a generalization of cylindrical vector beams, when the po-
larization indices of the Ey and E, field components were different. The amplitude of the
electric vector of such a field is given by

_ cosme
B6,9) = 40) ( Sond ), <1>
where E is the strength vector of the electric field, ¢ is the azimuthal angle in the source
plane, (m, n) is the two-index polarization order, 0 is the polar angle, describing the tilt of
the light rays to the optical axis, A(f) is the amplitude of the source field as a function of
the axis tilt angle. Directions of the electric vectors are illustrated in Figure 1.
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Figure 1. Conventional radial polarization (m = n = 1) (a), third-order radial polarization (m = n = 3)
(b), double-index polarization singularity (m =1, n = 3) (c). For radial polarization (a), there are
two angles (0 and 7t) with a horizontal electric vector and two angles (/2 and 37/2) with a vertical
electric vector. For 3rd-order radial polarization (b), there are six angles with horizontal electric
vectors and six angles with vertical electric vectors. For the field with double-index polarization
singularity of the order (1, 3), there are six angles with horizontal electric vectors and two angles with
vertical electric vectors.
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In our work [15], we have obtained expressions for the Cartesian components of a
linearly polarized optical vortex, focused on an aplanatic system. If an optical vortex with
a topological charge m is linearly polarized along the axis x, then, in the input plane, the
electric field is given by

B(6,) = A(®) expling) ). @

whereas near the tight focus, the complex amplitude reads as
Ex(p,,z) = — %" e (20y 1 + ¥ Dy + € 2V 1 2),
Ey(o,9,2) = "™ (e 2V D _p — 2915 10), 3)
EZ (P, lP, Z) = imeim‘/’ (E_il‘bll/m,1 — eil’bll/erl),

where (p, ¢, z) are the cylindrical coordinates with the origin in the focus.
In Equation (3), the functions I, are defined as follows:

14
Loy = 2kf / sin’ T (2) cos® ™V <z) cos'/2(8) A(8)e™ =<0, (kr sin 0)do, (4)
0

where k = 271/A is the wavenumber of monochromatic light with the wavelength A, f is
the focal length of the focusing lens, « is the maximal tilt angle of rays to the optical axis,
defining the numerical aperture of the aplanatic lens NA = sin(«x), J, is the vth-order Bessel
function of the first kind.

The same way, if such an input field is linearly polarized along the axis v, the field
components near the tight focus are equal to

Ex(p,,2) = —3i"e™ (e Iy yp — €72V D),
Ey(p,9,z) = —3i" L™V (2Ip . — €2 1y 0 — e 2V D 0 5), @)
E.(0,9,z) = i" ™ (VI i1 + e VI 1),

The field with circularly symmetric amplitude distribution A(f) and with polariza-
tion (1) can be decomposed into a superposition of four linearly polarized optical vortices:

= 527 ) =3 s (1)
+2iA(9)ei"‘P< (1) ) + §A(9)e‘i""’< (1) )

Using this decomposition, we get the field components of the field with polarization
(1) near the tight focus:

(6)

Ex(p, ¢, z) = —3i" {21y 1y cos myp + I 2 cos[(m + 2)¢] + Ip o cos[(m — 2)y]}
+31" {42 cos[(n +2) ] — I,u—a cos[(n —2)y]},
Ey(p,¢,z) = —3i" {2l y sinng — L o sin[(n + 2)¢] — I u_p sin[(n — 2)y]}

. : . @)
+3" Dz sin[(m — 2)] — L2 sin[(m +2) ]}
E:(p,,2) = i" {11 cos[(m — 1)ip] — I yy41 cos[(m + 1)¢]}
+i"{I1 11 cos[(n + 1)§] + I p—1 cos[(n — 1)p] }.
The longitudinal component of the spin angular momentum is defined as [16]:
S. = 2Im{E{E, }. ®)

For simplicity, we suppose that the functions A(f) are real valued. Thus, all the
integrals I, ;, are also real valued in the focal plane (z = 0). Then, substituting the transverse
field components from Equation (7), we get the following expression:
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S: = SIm{i" "™ }{2I ;y cos mp + Ip o cos[(m + 2) ] + I o cos[(m — 2) ]}
x{2Ipn sinnyp — Ip 4 sinf(n +2)1p] — I o sin[(n — 2)9] }
+3Im (" ") {Ip 42 cos[(n + 2)p] — I u—a cos[(n — 2)9]}

X{Ipm—2sin[(m — 2)p| — Iy 4o sin[(m + 2)1] }.

This expression is cumbersome, but it reveals that the SAM is zero unless the polariza-
tion orders n and m are of different parity. This is in contrast with [13], where we obtain
the polarization singularity index of light fields with polarization from Equation (1). This
index is, vice versa, nonzero only for the orders n and m of the same parity.

When the parity is the same for both orders, then polarization is linear in the focus,
since, according to Equation (7), both Ey and E, are proportional to i+ (or i**+1), multiplied
by some real-valued function. Near the center (r << A), if n > m > 2, the transverse compo-
nents Ey and E, are approximately proportional to the vector J = [cos (m—2) ¢, —sin (m—2)¢].
If m > n > 2, they are proportional to the vector J = [cos (n—2)¢, —sin (n—2)¢]. Thus, a
saddle-type polarization singularity is generated in the center [17].

For n and m of different parity, simplifications yield

)

41y 1,1y, cos mip sinnip
—210;,,1 12,n+2 Ccos Wllp Sll"l[(i’l +2
1 —2IomIp—p cosmpsin[(n — 2
S, = Elm{i”*’”} +210, 12 42 sin nip cos|(m + 2
+2Ip,4112,m—2 sin ny cos [(
+(n+2lomi2 + 12,n7212,m72) sin[(m —n)y]
—(Dyms2lon—2 + Im—2lp n42) sin[(m + n)ip]
This equation is hard to analyze without knowing which terms contribute the most.
Thus, we need to decompose the near-focus field into the angular harmonics and study its
OAM-spectrum.

)
)
) (10)

3. Balance of Light Field Energy near the Tight Focus

At first, we study the OAM-spectrum of linearly polarized light after tight focus-
ing. According to Equation (3), if the input field is polarized along the axis x, then the
x-component of the electric vector near the focus consists of three angular harmonics, whose
topological charges are m, m—2, m + 2. The y-component consists of only two angular
harmonics with the topological charges are m—2 and m + 2, whereas the z-component also
consists of two angular harmonics with the topological charges are m—1 and m + 1. Each
harmonic is proportional to the function IV,], from Equation (4). Therefore, such a harmonic
has the following energy W, ;, (see Appendix A):

o
Wy, = 4nf? / sin?’*! (g) cos® ™% (z) |A(6)[d0. (11)
0

This expression indicates that the energy of the angular harmonic is independent of
the distance z from the focal plane and of the topological charge of the optical vortex that
determines the index y.

The integrals (11) can be evaluated analytically only in simple cases, but, nevertheless,
the contribution of each angular harmonic can be estimated. For example, if the field being
focused is a uniform field with a constant amplitude A(f) = 1, then

Wou = 4nfzisin(z> c035<z>d9 = %nfz [1 — cos6<%)}, (12)
0
Wi, = 47rf2/asin3<z> cos (9>d6 = fnfzsm ( ) {1 + 2 cos? (2)}, (13)
0
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14
60 o 4 o
_ 2 [ 5(? o _F o6
W, = 4nf /sm <2) cos(2>d0 37rf sin (2> (14)
0

According to Equation (3), the x-component E, consists of three angular harmonics
with their amplitude being proportional to the functions Iy, Iom+2/2, Iomo2/2. The
component E, is a superposition of harmonics described by the functions I ;,42/2 and
Iy /2. Finally, the component E; is a superposition of harmonics described by the
functions Iy ;,+1 and I ;,-1. Therefore, the total energy of the focal field is

1 1 1 1
W= (WO,m + =Wo 0 + WZ,m2> + <4W2,m+2 + 4W2,m2> + (Wi mg1 + Wim—1)- (15)

4 4

The brackets in Equation (15) illustrate, respectively, the energies of angular harmonics
in the Ey, Ey, and E; field components. Since W5 ;12 = W 52 and Wy 41 = Wy 1, we get

W= WO,m + WZ,erZ + 2W1,m+1' (16)
Substitution of Equations (12)—(14) into Equation (16) yields

W= %nf2 {1 — cos6(%)} + %nfz siné(%) + %ﬂfz sin4(%) {1 +2cosz<%)}. (17)
After simplifications, we get
W =27f%(1 — cosa). (18)

This expression is exactly the size of a part of a sphere bound by the polar angle o.
Thus, if a light field with unit amplitude is converging from a spherical surface with a
numerical aperture sin(x), this field has exactly the energy given by Equation (18). This
means that we found the balance when the energy of the input field is equal to the sum of
energies of all angular harmonics of all three Cartesian components of the electric field in
the focus.

In an extreme case, when the numerical aperture is close to the unit, i.e., x ~ 71/2, we
get Wy, = (7/6)tf%, Wy, = (1/3)7f%, Wy, = (1/6)7f2. The whole energy is coinciding
with the square of a hemisphere: W = Wy ,,, + W 40 + 2W1 41 = 271f 2, Thus, the total
energy W of the input field is distributed in the focal field in the proportions shown in
Figure 2. One third W/3 goes into the longitudinal component E;, and 2W /3 goes into
the transverse components E; (5W/8) and E, (W/24). The energy of the component E,
is distributed into the mth-order angular harmonic (7W/12) and into the harmonics of
the orders m — 2 and m + 2, each of the energy W/48. The energy of the component E,
is distributed equally in the angular harmonics of the orders m — 2 and m + 2, each of
the energy W/48. The energy of the component E; is distributed equally in the angular
harmonics of the orders m — 1 and m + 1, each of the energy W /6.

Obviously, if the input field is linearly polarized along the axis y, the energy distri-
bution is the same, but the main portion (7W/12, or 58%) goes into the mth-order of the
angular harmonic of the y-component E,.

The above energy proportions can change if the field intensity is not homogeneous, i.e.,
if A(f) # 1. However, if the amplitude function A(6) decays from the center to the periphery,
then the contribution of the mth-order angular harmonic becomes even greater. Indeed,
for instance, if the aperture is bounded by an angle , then the energy of the side angular
harmonics of the orders m + 2 and m—2 relative to the energy of the central mth-order

harmonic is
Wo,m sin®(a/2) sin*(a/2)

Wom  1—cosS(a/2) 1+ cos?(a/2) + cost(a/2)’

when o decreases from 7t/2 to 0, the numerator also decreases, while the denominator
increases. Thus, this portion decays.

(19)
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Figure 2. Energy distribution of a tightly focused linearly polarized optical vortex by the field
components and by the angular harmonics.

For instance, if o« = 71/2, then Wy ,,,/ W, = 1/7 ~ 0.143, but even if sin « = 0.95, then
Wom/Wom = 0.057, i.e., almost all energy goes into the central mth-order harmonic.

Now we apply the above introduced technique for obtaining the OAM-spectrum of
a light field with the double-index polarization singularity (1). Actually, the input field
consists of four optical vortices of the orders m, —m, n, and —n. In the tight focus, each
of these vortices splits into the several harmonics with the above derived energies. We
suppose here for simplicity that & = 7t/2 and that these harmonics do not coincide with
each other. Thus, we have the energy distribution (OAM-spectra of the components Ey, E;,
and E,), illustrated in Figure 3.
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Figure 3. Energy distribution of a tightly focused light field with double-index polarization singularity
by the field components and by the angular harmonics. Numbers above each pillar indicate the
fraction of the whole energy of the focused light field that goes to the given angular harmonic of the
given field component (the sum of all numbers is 100%).
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As seen in Figure 3, side angular harmonics of the orders m £ 2 and n £ 2 have
relatively low energy (28 times lower than that of the orders m and n), and this energy
becomes even lower when the aperture angle starts to decrease from o = 7/2.

4. Spin Angular Momentum of Double-Index Polarization Vortices in a Tight Focus

Since it was found that almost all of the energy of the transverse field components
goes into the mth-order and nth-order angular harmonics, we can suppose approximately
that the SAM from Equation (10) reduces simply to

S, & 2Im{i" ™" } Iy I, cos(mp) sin(nip). (20)
Thus, it is seen that the SAM is equal to zero at the following polar angles:
prp =20, p=0,....2n—1,

21
Yoy =524, g =0,...,2m — 1. @1)

At certain conditions, these angles can coincide. For example, if n = 2m, we get
S, ~ AIm{i" } Iy, I, Sin(m1) cos® (myp). (22)

This indicates that there are 4m lines with zero SAM, starting from the origin and tilted
with the polar angles
v=730 23)
2m
withp =0, 4m — 1.

However, at odd p, the cosine in Equation (22) is zero, but it is squared. This means
that the SAM does not change its sign at these angles. Instead, due to the square, there is
a second-order edge dislocation. At even p, the edge dislocation has the first order, and
the SAM changes its sign. In comparison with the first-order dislocations, the dislocations
of the second order looks like wider dark areas between the maxima. Thus, the SAM
distribution should look like a set of pairs of the spots with positive and negative SAM.

Another case occurs when m = 1. For the SAM to be nonzero, n should be even. Thus,
the angles o« = +71/2 are again the lines of second-order edge dislocation, where the SAM
does not change sign. At other angles, the SAM changes the sign.

If m and n are relatively large and close to each other, the roots of the sine and cosine
do not coincide but are close to each other. Therefore, the SAM changes its sign at each
such angle, but, due to the pairs of close zeros, the SAM between them is insignificant.

5. Simulation

Numerical simulation was done by the Richards-Wolf equations. At first, we studied
the case when n = 2m. Figure 4 illustrates the intensity |E,|% + |E, | + |E;|? and the
longitudinal SAM density of a tightly focused light field with double-index polarization
singularity of three different orders (m, n): (1, 2) (Figure 4a,d,g), (3, 6) (Figure 4b,e/h), (7, 14)
(Figure 4c¢,f,i) at the following parameters: wavelength A = 532 nm, focal length of the lens
f =10 um, numerical aperture sin « = 0.95, amplitude apodization function is homogeneous,
ie., A(9) = 1. The SAM density distribution was computed directly by Equation (8) and then
it was compared with the one computed by Equation (10). The distributions were visually
the same, relative error was computed as max | 5;(10)=Sz(g) | /max|S;(g | (where S;g) and
Sz(10) are, respectively, SAM densities computed by Equation (8) and by Equation (10)).
Maximal relative error was at (m, n) = (7, 14) and equal = 1.9 x 10712, The third row of
Figure 4 illustrates the approximate SAM distributions obtained by Equation (20). Formally,
the relative error from the distributions obtained directly by Equation (8) is large (14-32%),
but it is seen in Figure 4 that it almost does not affect the shape of the distribution. This is
because the error was caused by neglecting the side angular harmonics of the order m =+ 2
and n £ 2, and since, according to Figure 3, there are 16 such harmonics, each of them
separately is weak and cannot reshape the SAM distribution significantly.
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Figure 4. Distributions of intensity |Ex|% + |E, 12 + | E; |? (a—) and of longitudinal SAM density
2Im{E,*Ey} (d-i) of tightly focused light field with double-index polarization singularity of the
orders (m, n) = (1, 2) (a,d,g), (m, n) = (3, 6) (b,e,h), (m, n) = (7, 14) (¢ £,i) at the following parameters:
wavelength A = 532 nm, focal length of the lens f = 10 pm, numerical aperture sin « = 0.95, amplitude
apodization function is homogeneous, i.e., A(f) = 1. SAM distributions were computed directly by
Equation (8) (d—f) and by an approximate Equation (20) (g—i). All the figures have the size 4 x 4 pm?
(scale mark shows 1 um). Light and dark colors in the intensity distribution mean maximum and
zero. Red and blue colors (d-i) mean, respectively, positive and negative SAM.

As seen in Figure 4, indeed, the SAM distribution consists of alternating pairs of spots
with positive or negative SAM. This is different from the patterns we obtained earlier near
the focus when the spots with positive and negative SAM were alternating in singles rather
than in pairs [11].

Figure 5 illustrates the intensity and the longitudinal SAM density of tightly fo-
cused light field with double-index polarization singularity of two different orders (m, n):
(6, 7) (Figure 5a,c,e) and (16, 17) (Figure 5b,d,f) at the following parameters: wavelength
A =532 nm, focal length of the lens f = 10 yum, numerical aperture sin « = 0.95, amplitude
apodization function is homogeneous, i.e., A(f) = 1. For comparison, the SAM distributions
were also computed directly by Equation (8) and approximately by Equation (20). The
relative error is again large (14% for both fields), but the shape of the SAM distribution is
almost undistorted.
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Figure 5. Distributions of intensity | Ey 12 + | Eyl 2 + 1E;1? (a,b) and of longitudinal SAM density
2Im{Ex*Ey} (c—f) of tightly focused light field with double-index polarization singularity of the orders
(m,n) =(6,7) (a,c,e) and (m, n) = (16, 17) (b,d £) at the following parameters: wavelength A = 532 nm,
focal length of the lens f = 10 um, numerical aperture sin & = 0.95, amplitude apodization function is
homogeneous, i.e., A(f) = 1. SAM distributions were computed directly by Equation (8) (c,d) and
by an approximate Equation (20) (e,f). Figures have the size 4 x 4 um? (a,c,e) and 6 x 6 um? (b,d,f)
(scale mark shows 1 um). Light and dark colors in the intensity distribution mean maximum and
zero. Red and blue colors (¢—f) mean, respectively, positive and negative SAM.

According to theoretical predictions, polar angles with zero SAM should occur by
pairs of close angles. Figure 5 confirms it. It is seen that the positive SAM is mostly in
the upper side while the negative SAM is mostly in the bottom side. Actually, the SAM is
alternating, but between each spot with the positive or negative SAM, there is a weak spot
of the opposite SAM, which is almost invisible in Figure 5.

The above theory predicts that the SAM is zero for the orders m and n of the same
parity. Computation confirms this and polarization of the focal field is thus linear. Figure 6
depicts the intensity distributions and the polarization directions of tightly focused light
fields with double-index polarization singularity of the orders (m, n) = (3, 7) (Figure 6a)
and (m, n) = (5, 3) (Figure 6b) with the rest parameters being the same as in Figures 4 and 5:
wavelength A = 532 nm, focal length of the lens f = 10 pm, numerical aperture sin o = 0.95,
radial apodization function A(f) = 1.
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Figure 6. Intensity distribution and polarization directions of a tightly focused light field with
double-index polarization singularity of the orders (m, n) = (3, 7) (a) and (m, n) = (5, 3) (b) at the
following parameters: wavelength A = 532 nm, focal length of the lens f = 10 um, numerical aperture
sin « = 0.95, radial apodization function is A(f) = 1. Scale mark shows 1 pm.

It is seen in Figure 6 that E, = 0 on the horizontal axis (¢ =0 and ¢ = 7) and E; =0
on the vertical axis (¢ = £7/2), which is consistent with Equation (7) for the complex
amplitudes of the light field. It is also seen that in both cases a saddle-type polarization [17]
singularity is generated in the center.

6. Conclusions

Based on the Richards-Wolf theory, we have investigated here the spin angular mo-
mentum of double-index cylindrical vector beams in tight focus. Such a set of beams is a
generalization of the conventional cylindrical vector beams since the polarization order
is different for the different transverse field components. Thus, in the beam periphery,
the number of areas with horizontal polarization is not equal to the number of areas with
vertical polarization.

It turns out that if the polarization orders are of different parity, then the spin Hall
effect occurs in the tight focus, which is there are alternating areas with positive and
negative spin angular momentum, despite linear polarization of the initial light field.

On the contrary, if the polarization orders are of same parity, then polarization in the
tight focus remains linear (but inhomogeneous).

For analytical description of the spin angular momentum distribution, we also ana-
lyzed the orbital angular momentum (OAM) spectrum of a linearly polarized mth-order
vortex field in tight focus. It turns out that if the initial light field is not of ring shape and
has a homogeneous or decaying Gaussian shape, then the energy of the angular harmonics
with the orders m = 2 in the transverse field components are at least 28 times lower than
the energy of the mth-order angular harmonic.

This decomposition of the focused field into the OAM spectrum allowed us to predict
the spin angular momentum distribution and, as an example, we demonstrated the ability to
generate the focal distribution where the areas with the positive and negative spin angular
momentum reside on a ring and are alternating in pairs or separated in different semicircles.

We limited our considerations by a homogeneous initial light field with constant
amplitude and zero phase. Only polarization was supposed to be inhomogeneous. As a
future work, light fields can be studied with the double-index polarization singularity, but
with an inhomogeneous amplitude or/and phase distribution, like, for instance, circular
Airy beams with vortices [18-20] or quadratic-power-exponent-phase vortex beams [21,22].
These beams were studied in homogeneous medium [18], uniaxial crystals [19,21], or in
tight focusing conditions [20,22], but their tight focusing with double-index polarization
singularities and the possibility of the optical spin Hall effect in the tight focus were not
yet investigated.
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Application areas of the results obtained are designing micromachines for optical
driving biological objects [23,24] or microtools in a lab-on-a-chip [25]. In contrast to the
orbital angular momentum, which causes microscopic particles to rotate along a ring,
the spin angular momentum causes articles to rotate around their centers of mass [8]
and tailoring the SAM density distribution can allow simultaneous manipulation by an
ensemble of particles. For this purpose, the particles should be non-metallic, but absorbing,
since the intensity maximums attract dielectric particles. The particles should be of a
size comparable with the areas of positive or negative SAM density, e.g., 0.2 um in the
distributions from Figure 4. Such sizes can have, for instance, polystyrene beads [26].
Another application is optical information transmission where the SAM density distribution
can be used for encoding the data.
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Appendix A. Derivation of the Energy of a Single Angular Harmonic Near the
Tight Focus

As seen from the above expressions for the field near the tight focus, each angular
harmonic is proportional to the function I, from Equation (4). Below we derive the energy
Wiy, of such a separate angular harmonic:

o0 27T )
Wy = // \IV,;,(r,z)frdrd(p = 27'(/ ‘Ivly(r,z)‘zrdr. (A1)
00 0

Substituting here the function I, , from Equation (4), we get

oo « .
Wy, = 87tk> f2 [ [f sinV+1 (g) cos3~V (g) cos!/2(0) A* ()e~=cosb ] (krsin G)d()]
010
) (A2)
X [f sin?*1 (%/) cos®~V (%/) cos'/2(0") A(0")ekzcos Gljy(kr sin 9’)d9’1 rdr.
0

Changing the integration variables 77 = sin 6, ' = sin 6’ and changing the integration
order, we obtain
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. v+1 3—v
sina = 7
Woy = 8k2f2 [ (1 21'72> <1+ 21172)
0
x(1— ;72)1/4A*(arcsin 1) exp(—ikz\/l — 172> ‘1177 >
-1

. v+1 3—v
SMEM T2\ 7 (14192 2
<T(2FE) 7 () "
2\1/4 s . 7 dy’
x(1—n"?)"""A(arcesiny )exp(zkz\/l -7 )\/17—7
X lf ]”(kriy)]y(krry’)rdr].
0

Due to the orthogonality of the Bessel functions [27], the inner integral over r reduces
to the Dirac delta function (if p > -1):

a , Stkn —ky'y  16(n—1'
O/Jﬂ(km)]” (kn'r)rdr = Ok — ki) Ukn ) _ 1(2(’717 T ), (A4)

Thus, Equation (A3) is simplified and only one integral remains:

sina v+1 3—v
1—+/1—7y2 1++/1—1752 . d
Wy, = 87 f? / (217> (217> |A(arcsm17)|27172. (A5)
0 UAY, 1- i
Now we return back to the trigonometric functions # = sin 6 and get

L3 v+1 3—v
WV,]A — Snfzbf (1—c2050) (l—i—czose) |A<9)|zsid%

= 47'cf2flx sin?V+1 (%) cos® % (%) |A(6)]d6.
0

(A6)
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