Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = transmission line model (TLM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 8474 KiB  
Article
GITT Limitations and EIS Insights into Kinetics of NMC622
by Intizar Abbas, Huyen Tran Tran, Tran Thi Ngoc Tran, Thuy Linh Pham, Eui-Chol Shin, Chan-Woo Park, Sung-Bong Yu, Oh Jeong Lee, An-Giang Nguyen, Daeho Jeong, Bok Hyun Ka, Hoon-Hwe Cho, Jongwoo Lim, Namsoo Shin, Miran Gaberšček, Su-Mi Hur, Chan-Jin Park, Jaekook Kim and Jong-Sook Lee
Batteries 2025, 11(6), 234; https://doi.org/10.3390/batteries11060234 - 19 Jun 2025
Viewed by 601
Abstract
Conventional applications of the Galvanostatic Intermittent Titration Technique (GITT) and EIS for estimating chemical diffusivity in battery electrodes face issues such as insufficient relaxation time to reach equilibrium, excessively long pulse durations that violate the short-time diffusion assumption, and the assumption of sequential [...] Read more.
Conventional applications of the Galvanostatic Intermittent Titration Technique (GITT) and EIS for estimating chemical diffusivity in battery electrodes face issues such as insufficient relaxation time to reach equilibrium, excessively long pulse durations that violate the short-time diffusion assumption, and the assumption of sequential electrode reaction and diffusion processes. In this work, a quasi-equilibrium criterion of 0.1 mV h−1 was applied to NMC622 electrodes, yielding 8–9 h relaxations below 3.8 V, but above 3.8 V, voltage decayed linearly and indefinitely, even upon discharging titration, showing unusual nonmonotonic relaxation behavior. The initial 36-s transients of a 10-min galvanostatic pulse and diffusion impedance in series with the electrode reaction yielded consistent diffusivity values. However, solid-state diffusion in spherical active particles within porous electrodes, where ambipolar diffusion occurs in the pore electrolyte with t+=0.3, requires a physics-based three-rail transmission line model (TLM). The corrected diffusivity may be three to four times higher. An analytic two-rail TLM approximating the three-rail numerical model was applied to temperature- and frequency-dependent EIS data. This approach mitigates parameter ambiguity and unphysical correlations in EIS. Physics-based EIS enables the identification of multistep energetics and the diagnosis of performance and degradation mechanisms. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

16 pages, 2281 KiB  
Article
Towards the Optimization of Apodized Resonators
by Ana Valenzuela-Pérez, Carlos Collado and Jordi Mateu
Micromachines 2025, 16(5), 511; https://doi.org/10.3390/mi16050511 - 27 Apr 2025
Viewed by 418
Abstract
Bulk Acoustic Wave (BAW) resonators are essential components in modern RF communication systems due to their high selectivity and quality factor. However, spurious resonances caused by Lamb wave mode propagation along the in-plane directions degrade the filter performance. Traditional Finite Element Method (FEM) [...] Read more.
Bulk Acoustic Wave (BAW) resonators are essential components in modern RF communication systems due to their high selectivity and quality factor. However, spurious resonances caused by Lamb wave mode propagation along the in-plane directions degrade the filter performance. Traditional Finite Element Method (FEM) simulations provide accurate modeling but are computationally expensive, especially for arbitrarily shaped resonators and solidly mounted resonators (SMRs), whose stack of materials is composed of many thin layers of different materials. To address this, we extend a previously published model (named the Quasi-3D model), which employs the Transmission Line Matrix (TLM) method, enabling efficient simulations of complex geometries with more precise meshing. The new approach allows us to simulate different geometries, and we will show several apodized geometries with the aim of minimizing the lateral modes. In addition, the proposed approach significantly reduces the computational cost while maintaining high accuracy, as validated by FEM comparisons and experimental measurements. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications, 2nd Edition)
Show Figures

Figure 1

16 pages, 8559 KiB  
Article
Transmission Line Modeling-Based Position Sensorless Control for Permanent Magnet Synchronous Machines
by Dianxun Xiao, Kun Hu and Chengrui Li
Electronics 2025, 14(2), 271; https://doi.org/10.3390/electronics14020271 - 10 Jan 2025
Cited by 1 | Viewed by 800
Abstract
Position sensorless control has been widely used in permanent magnet synchronous motor (PMSM) drives in low-cost applications or in the fault-tolerance control of position sensors. Conventional sensorless control methods often adopt a back electromagnetic force (EMF)-based position observer, which results in bandwidth reduction [...] Read more.
Position sensorless control has been widely used in permanent magnet synchronous motor (PMSM) drives in low-cost applications or in the fault-tolerance control of position sensors. Conventional sensorless control methods often adopt a back electromagnetic force (EMF)-based position observer, which results in bandwidth reduction in signal processing and lower estimation accuracy. This paper introduces a numerical solution based on transmission line modeling (TLM) to obtain the back EMF. The TLM method is used for the numerical calculation of electromagnetics due to the clear algorithm structure, robust convergence and stability, and easy implementation in dynamic circuit analyses. This paper first analyzes the 2D TLM method techniques. Then, a new application of TLM theory in position sensorless control of PMSMs is put forward. The proposed TLM-based sensorless control scheme can estimate the back EMF without decreasing the bandwidth, thereby enhancing the dynamic performance of the sensorless control. All numerical results are implemented using the proposed approach, which validates the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Power Electronics Controllers for Power System)
Show Figures

Figure 1

10 pages, 3519 KiB  
Article
Optimization of Non-Alloyed Backside Ohmic Contacts to N-Face GaN for Fully Vertical GaN-on-Silicon-Based Power Devices
by Youssef Hamdaoui, Sofie S. T. Vandenbroucke, Sondre Michler, Katir Ziouche, Matthias M. Minjauw, Christophe Detavernier and Farid Medjdoub
Micromachines 2024, 15(9), 1157; https://doi.org/10.3390/mi15091157 - 15 Sep 2024
Cited by 3 | Viewed by 2448
Abstract
In the framework of fully vertical GaN-on-Silicon device technology development, we report on the optimization of non-alloyed ohmic contacts on the N-polar n+-doped GaN face backside layer. This evaluation is made possible by using patterned TLMs (Transmission Line Model) through direct laser writing [...] Read more.
In the framework of fully vertical GaN-on-Silicon device technology development, we report on the optimization of non-alloyed ohmic contacts on the N-polar n+-doped GaN face backside layer. This evaluation is made possible by using patterned TLMs (Transmission Line Model) through direct laser writing lithography after locally removing the substrate and buffer layers in order to access the n+-doped backside layer. As deposited non-alloyed metal stack on top of N-polar orientation GaN layer after buffer layers removal results in poor ohmic contact quality. To significantly reduce the related specific contact resistance, an HCl treatment is applied prior to metallization under various time and temperature conditions. A 3 min HCl treatment at 70 °C is found to be the optimum condition to achieve thermally stable high ohmic contact quality. To further understand the impact of the wet treatment, SEM (Scanning Electron Microscopy) and XPS (X-ray Photoelectron Spectroscopy) analyses were performed. XPS revealed a decrease in Ga-O concentration after applying the treatment, reflecting the higher oxidation susceptibility of the N-polar face compared to the Ga-polar face, which was used as a reference. SEM images of the treated samples show the formation of pyramids on the N-face after HCl treatment, suggesting specific wet etching planes of the GaN crystal from the N-face. The size of the pyramids is time-dependent; thus, increasing the treatment duration results in larger pyramids, which explains the degradation of ohmic contact quality after prolonged high-temperature HCl treatment. Full article
Show Figures

Figure 1

13 pages, 2816 KiB  
Article
Optimization of Contact Resistance and DC Characteristics for AlGaN/GaN HEMTs Utilizing Sub-10 nm Nanohole Etching
by Hsin-Jung Lee, Cheng-Che Lee, Hong-Ru Pan and Chieh-Hsiung Kuan
Electronics 2024, 13(13), 2490; https://doi.org/10.3390/electronics13132490 - 25 Jun 2024
Cited by 3 | Viewed by 2472
Abstract
In this paper, the contact resistance of AlGaN/GaN high electron mobility transistor (HEMT) was improved by introducing nanoscale hole arrays in ohmic regions, and the DC characteristics of the conventional structure and nanohole etching structure for HEMTs were measured for comparison. Sub-10 nm [...] Read more.
In this paper, the contact resistance of AlGaN/GaN high electron mobility transistor (HEMT) was improved by introducing nanoscale hole arrays in ohmic regions, and the DC characteristics of the conventional structure and nanohole etching structure for HEMTs were measured for comparison. Sub-10 nm nanoholes were patterned on the ohmic area surface of AlGaN using electron beam lithography and a low-temperature short-time development. Various dwell times of e-beam exposure from 5 to 30 μs were investigated and the corresponding contact resistance of the nano hole etching structure and planar structure were compared by the transmission line model (TLM) method. We observed a reduced contact resistance from 1.82 to 0.47 Ω-mm by performing a dwell time of 5 μs of exposure for nanohole formation compared to the conventional structure. Furthermore, the DC characteristics demonstrate that the maximum drain current for HEMTs was enhanced from 319 to 496 mA/mm by utilizing this optimized ohmic contact. These results show that devices with sub-10 nm nanohole ohmic contacts exhibit an improved contact resistance over the conventional structure, optimizing device performance for HEMTs, including a lower on-resistance and higher maximum drain current. Full article
Show Figures

Figure 1

19 pages, 6527 KiB  
Article
Correction Factors for the Use of 1D Solution Methods for Dynamic Laminar Liquid Flow through Curved Tubes
by Travis Wiens
Fluids 2024, 9(6), 138; https://doi.org/10.3390/fluids9060138 - 6 Jun 2024
Cited by 4 | Viewed by 1526
Abstract
The modeling of transient flows of liquids through tubes is required for studies in water hammer, switched inertance hydraulic converters, and noise reduction in hydraulic equipment. While 3D gridded computational fluid dynamics (CFD) methods exist for the prediction of dynamic flows and pressures [...] Read more.
The modeling of transient flows of liquids through tubes is required for studies in water hammer, switched inertance hydraulic converters, and noise reduction in hydraulic equipment. While 3D gridded computational fluid dynamics (CFD) methods exist for the prediction of dynamic flows and pressures in these applications, they are computationally costly, and it is more common to use 1D methods such as the method of characteristics (MOC), transmission line method (TLM), or frequency domain methods. These 1D methods give good approximations of results but require many orders of magnitude less computation time. While these tubes are typically curved or coiled in practical applications, existing 1D solution methods assume straight tubes, often with unknown deviation from the curved tube solution. This paper uses CFD simulations to determine the correction factors that can be used for existing 1D methods with curved tubes. The paper also presents information that can be used to help evaluate the expected errors resulting from this approximation. Full article
(This article belongs to the Special Issue Pipe Flow: Research and Applications)
Show Figures

Figure 1

15 pages, 2523 KiB  
Article
Quasi-3D Model for Lateral Resonances on Homogeneous BAW Resonators
by Carlos Udaondo, Carlos Collado and Jordi Mateu
Micromachines 2023, 14(11), 1980; https://doi.org/10.3390/mi14111980 - 25 Oct 2023
Cited by 2 | Viewed by 1510
Abstract
Lateral modes are responsible for the in-band spurious resonances that appear on BAW resonators, degrading the in-band filter response. In this work, a fast computational method based on the transmission line matrix (TLM) method is employed to model the lateral resonances of BAW [...] Read more.
Lateral modes are responsible for the in-band spurious resonances that appear on BAW resonators, degrading the in-band filter response. In this work, a fast computational method based on the transmission line matrix (TLM) method is employed to model the lateral resonances of BAW resonators. Using the precomputed dispersion curves of Lamb waves and an equivalent characteristic impedance for the TE1 mode, a network of transmission lines is used to calculate the magnitude of field distributions on the electrodes. These characteristics are specific to the stack layer configuration. The model’s implementation is based on nodal Y matrices, from which particle displacement profiles are coupled to the electric domain via piezoelectric constitutive relations. Consequently, the input impedance of the resonator is obtained. The model exhibits strong agreement with FEM simulations of FBARs and SMRs, and with measurements of several SMRs. The proposed model can provide accurate predictions of resonator input impedance, which is around 200 times faster than conventional FEM. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications)
Show Figures

Figure 1

15 pages, 3282 KiB  
Article
Research on the Magnetostrictive Characteristics of Transformers under DC Bias
by Xiaoli Yan, Xia Dong, Guozheng Han, Xiaodong Yu and Fengying Ma
Energies 2023, 16(11), 4457; https://doi.org/10.3390/en16114457 - 31 May 2023
Cited by 4 | Viewed by 2075
Abstract
Direct current (DC) bias leads to increased vibration and noise in transformers. One of the main causes is the magnetostrictive effect of the transformer core. To address this phenomenon of magnetostriction, firstly, a transmission line model (TLM) of a single-phase transformer under DC [...] Read more.
Direct current (DC) bias leads to increased vibration and noise in transformers. One of the main causes is the magnetostrictive effect of the transformer core. To address this phenomenon of magnetostriction, firstly, a transmission line model (TLM) of a single-phase transformer under DC bias is developed using transmission line theory and Jiles–Atherton (J–A) ferromagnetic hysteresis theory, taking into account the winding copper loss, core eddy current loss, and leakage effect. Secondly, the time-domain simulation of the single-phase transformer based on the Newton–Raphson iterative method is carried out, and the magnetostriction characteristics of the transformer under different DC and its variation law are analyzed. Finally, the results show that the DC bias results in magnetostrictive distortion and vibration acceleration curve distortion, the left and right wings of the magnetostrictive butterfly curve are no longer symmetrical, the slope of the vibration acceleration image increases significantly, and the degree of distortion is positively correlated with the magnitude of the DC. In addition, the peak values of the magnetostrictive deformation and vibration acceleration become larger under DC bias, leading to an increase in the vibration and noise of the transformer. The research object of this paper is the single-phase transformer, and the research method can also be applied to the study of three-phase transformers. Full article
(This article belongs to the Special Issue Data-Driven Large-Scale Power System Operations)
Show Figures

Figure 1

11 pages, 2272 KiB  
Article
A Modified Wet Transfer Method for Eliminating Interfacial Impurities in Graphene
by Dong Jin Jang, Mohd Musaib Haidari, Jin Hong Kim, Jin-Yong Ko, Yoonsik Yi and Jin Sik Choi
Nanomaterials 2023, 13(9), 1494; https://doi.org/10.3390/nano13091494 - 27 Apr 2023
Cited by 5 | Viewed by 2841
Abstract
Graphene has immense potential as a material for electronic devices owing to its unique electrical properties. However, large-area graphene produced by chemical vapor deposition (CVD) must be transferred from the as-grown copper substrate to an arbitrary substrate for device fabrication. The conventional wet [...] Read more.
Graphene has immense potential as a material for electronic devices owing to its unique electrical properties. However, large-area graphene produced by chemical vapor deposition (CVD) must be transferred from the as-grown copper substrate to an arbitrary substrate for device fabrication. The conventional wet transfer technique, which uses FeCl3 as a Cu etchant, leaves microscale impurities from the substrate, and the etchant adheres to graphene, thereby degrading its electrical performance. To address this limitation, this study introduces a modified transfer process that utilizes a temporary UV-treated SiO2 substrate to adsorb impurities from graphene before transferring it onto the final substrate. Optical microscopy and Raman mapping confirmed the adhesion of impurities to the temporary substrate, leading to a clean graphene/substrate interface. The retransferred graphene shows a reduction in electron–hole asymmetry and sheet resistance compared to conventionally transferred graphene, as confirmed by the transmission line model (TLM) and Hall effect measurements (HEMs). These results indicate that only the substrate effects remain in action in the retransferred graphene, and most of the effects of the impurities are eliminated. Overall, the modified transfer process is a promising method for obtaining high-quality graphene suitable for industrial-scale utilization in electronic devices. Full article
(This article belongs to the Special Issue Graphene and Related 2D Materials)
Show Figures

Figure 1

13 pages, 3806 KiB  
Article
Analysis of the Terminal Response Characteristics of the Twisted Three-Wire Cable Excited by a Plane Wave Field
by Yaning Nie, Yazhou Chen, Xing Zhou, Min Zhao and Yan Wang
Electronics 2023, 12(9), 2018; https://doi.org/10.3390/electronics12092018 - 26 Apr 2023
Viewed by 1712
Abstract
A twisted three-wire cable model with uniform twisting characteristics is proposed in this paper, and its terminal response under external electromagnetic wave irradiation is calculated using the TLM method based on Taylor model. The triple-stranded triple-helix structure is determined in the method and [...] Read more.
A twisted three-wire cable model with uniform twisting characteristics is proposed in this paper, and its terminal response under external electromagnetic wave irradiation is calculated using the TLM method based on Taylor model. The triple-stranded triple-helix structure is determined in the method and the parametric equations of the twisted wire bundle in the Cartesian coordinate system are provided. Then, the frequency domain equations for the voltage and current of the twisted three-wire cable under field-to-wire coupling are derived and extended to apply to scenarios with arbitrary polarization and irradiation in the incident direction based on the transmission-line theory. Finally, the response laws of the twisted three-wire wire with different cable lengths, termination loads, and pitches coupling under external electromagnetic wave irradiation are studied. A uniform twisted three-wire cable can suppress the increased induced current on the cable. In addition, the excellent characteristics of the twisted three-wire cable in terms of immunity to electromagnetic interference are also verified by comparing the frequency domain response with that of a parallel three-wire cable. Full article
Show Figures

Figure 1

16 pages, 3277 KiB  
Article
Optical Modelling of Planar and Fibre Perovskite Solar Cells
by Nikolaos Moshonas, Nikolaos A. Stathopoulos and Gerasimos Pagiatakis
Electronics 2022, 11(13), 2041; https://doi.org/10.3390/electronics11132041 - 29 Jun 2022
Cited by 4 | Viewed by 2287
Abstract
We present the optical modelling of a mesoporous fibre perovskite solar cell (PSC). It was conducted by means of the transmission line method (TLM), which was used to calculate the efficiency and short-circuit photo-current density of the cell. The TLM was first applied [...] Read more.
We present the optical modelling of a mesoporous fibre perovskite solar cell (PSC). It was conducted by means of the transmission line method (TLM), which was used to calculate the efficiency and short-circuit photo-current density of the cell. The TLM was first applied for a planar mesoporous PSC and verified with the experimental results from the literature. Numerical calculations for both planar and fibre PSC were conducted and analysed regarding their efficiency in terms of optical simulation. The importance of choosing the thin-film layers’ materials and thickness was demonstrated, and a potential improvement using anti-reflection coatings was also examined. Full article
(This article belongs to the Section Optoelectronics)
Show Figures

Figure 1

12 pages, 6165 KiB  
Article
Investigation on the Effect of Annealing Temperature on the Side Ohmic Contact Characteristics for Double Channel GaN/AlGaN Epitaxial Layer
by Qingzhi Meng, Qijing Lin, Weixuan Jing, Na Zhao, Ping Yang and Dejiang Lu
Micromachines 2022, 13(5), 791; https://doi.org/10.3390/mi13050791 - 19 May 2022
Cited by 7 | Viewed by 2999
Abstract
A side ohmic contact mode for the double channel GaN/AlGaN epitaxial layer is proposed in this paper. Rectangle transmission line model (TLM) electrodes are prepared, and the specific contact resistance is tested at the annealing temperatures from 700 °C to 850 °C. The [...] Read more.
A side ohmic contact mode for the double channel GaN/AlGaN epitaxial layer is proposed in this paper. Rectangle transmission line model (TLM) electrodes are prepared, and the specific contact resistance is tested at the annealing temperatures from 700 °C to 850 °C. The results show that the minimum specific contact resistance is 2.58 × 10−7 Ω·cm2 at the annealing temperature of 750 °C, which is three to four times lower than the surface contact mode. Scanning electron microscope (SEM), energy dispersive spectrometer (EDS), and atomic force microscope (AFM) were carried out for the analysis of the morphology, element composition, and the height fluctuation at the contact edge. With the increase in the annealing temperature, the specific contact resistance decreases due to the alloying of electrodes and the raised number of N vacancies. However, when the annealing temperature exceeds 800 °C, the state of the stress in the electrode films transforms from compressive stress to tensile stress. Besides, the volume expansion of metal electrode film and the increase in the roughness at the contact edge leads to the degradation of the side ohmic contact characteristics. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technology and Systems)
Show Figures

Figure 1

15 pages, 7083 KiB  
Article
Love Wave Sensor with High Penetration Depth for Potential Application in Cell Monitoring
by Pedro A. Segura Chávez, Jérémy Bonhomme, Mohamed Lamine Fayçal Bellaredj, Lucile Olive, Denis Beyssen, Mourad Oudich, Paul G. Charette and Frédéric Sarry
Biosensors 2022, 12(2), 61; https://doi.org/10.3390/bios12020061 - 24 Jan 2022
Cited by 8 | Viewed by 4877
Abstract
Love wave (L-SAW) sensors have been used to probe cell monolayers, but their application to detect changes beyond the focal adhesion points on cell monolayers, as viscosity changes on the cytoskeleton, has not been explored. In this work we present for the first [...] Read more.
Love wave (L-SAW) sensors have been used to probe cell monolayers, but their application to detect changes beyond the focal adhesion points on cell monolayers, as viscosity changes on the cytoskeleton, has not been explored. In this work we present for the first time a Love wave sensor with tuned penetration depth and sensitivity to potentially detect mechanical changes beyond focal adhesion points of cell monolayers. We designed and fabricated a Love wave sensor operating at 30 MHz with sensitivity to detect viscous changes between 0.89 and 3.3 cP. The Love wave sensor was modeled using an acoustic transmission line model, whereas the response of interdigital transducers (IDTs) was modeled with the Campbell’s cross-field circuit model. Our design uses a substrate with a high electromechanical coupling coefficient (LiNbO3 36Y-X), and an 8-µm polymeric guiding layer (SU-8). The design aims to overcome the high insertion losses of viscous liquid environments, and the loss of sensitivity due to the low frequency. The fabricated sensor was tested in a fluidic chamber glued directly to the SU-8 guiding layer. Our experiments with liquids of viscosity similar to those expected in cell monolayers showed a measurable sensor response. In addition, experimentation with SaOs-2 cells within a culture medium showed measurable responses. These results can be of interest for the development of novel cell-based biosensors, and novel characterization tools for cell monolayers. Full article
(This article belongs to the Section Biosensor Materials)
Show Figures

Figure 1

12 pages, 4640 KiB  
Review
Comparison of the Values of Solar Cell Contact Resistivity Measured with the Transmission Line Method (TLM) and the Potential Difference (PD)
by Małgorzata Musztyfaga-Staszuk
Materials 2021, 14(19), 5590; https://doi.org/10.3390/ma14195590 - 26 Sep 2021
Cited by 4 | Viewed by 2953
Abstract
This work presents a comparison of values of the contact resistivity of silicon solar cells obtained using the following methods: the transmission line model method (TLM) and the potential difference method (PD). Investigations were performed with two independent scientific units. The samples were [...] Read more.
This work presents a comparison of values of the contact resistivity of silicon solar cells obtained using the following methods: the transmission line model method (TLM) and the potential difference method (PD). Investigations were performed with two independent scientific units. The samples were manufactured with silver front electrodes. The co-firing process was performed in an infrared belt furnace in a temperature range of 840 to 960 °C. The electrical properties of a batch of solar cells fabricated in two cycles were investigated. This work focuses on the different metallisation temperatures of co-firing solar cells and measurements were carried out using the methods mentioned. In the TLM and PD methods, the same calculation formulae were used. Moreover, solar cell parameters measured with these methods had the same, similar, or sometimes different but strongly correlated values. Based on an analysis of the selected databases, this article diagnoses the recent and current state of knowledge regarding the employment of the TLM and PD methods and the available hardware base. These methods are of interest to various research centres, groups of specialists dealing with the optimisation of the electrical properties of silicon photovoltaic cells, and designers of measuring instruments. Full article
Show Figures

Figure 1

22 pages, 3818 KiB  
Article
A New Approach to the Modeling of Anisotropic Media with the Transmission Line Matrix Method
by Jorge A. Portí, Alfonso Salinas, Enrique A. Navarro, Jesús Rodríguez-Camacho, Jesús Fornieles and Sergio Toledo-Redondo
Electronics 2021, 10(17), 2071; https://doi.org/10.3390/electronics10172071 - 27 Aug 2021
Cited by 2 | Viewed by 2360
Abstract
A reformulation of the Transmission Line Matrix (TLM) method is presented to model non-dispersive anisotropic media. Two TLM-based solutions to solve this problem can already be found in the literature, each one with an interesting feature. One can be considered a more conceptual [...] Read more.
A reformulation of the Transmission Line Matrix (TLM) method is presented to model non-dispersive anisotropic media. Two TLM-based solutions to solve this problem can already be found in the literature, each one with an interesting feature. One can be considered a more conceptual approach, close to the TLM fundamentals, which identifies each TLM in Maxwell’s equations with a specific line. But this simplicity is achieved at the expense of an increase in the memory storage requirements of a general situation. The second existing solution is a more powerful and general formulation that avoids this increase in memory storage. However, it is based on signal processing techniques and considerably deviates from the original TLM method, which may complicate its dissemination in the scientific community. The reformulation presented in this work exploits the benefits of both methods. On the one hand, it maintains the direct and conceptual approach of the original TLM, which may help to better understand it, allowing for its future use and improvement by other authors. On the other hand, the proposal includes an optimized treatment of the signals stored at the stub lines in order to limit the requirement of memory storage to only one accumulative term per field component, as in the original TLM versions used for isotropic media. The good behavior of the proposed algorithm when applied to anisotropic media is shown by its application to different situations involving diagonal and off-diagonal tensor properties. Full article
(This article belongs to the Special Issue Numerical Methods and Measurements in Antennas and Propagation)
Show Figures

Figure 1

Back to TopTop