Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = translocation index (TI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1676 KiB  
Article
Evaluating the Impact of Copper Concentrations on Apple Variety Performance: Insights from a Callus Media System
by Dasom Jeon
Sustainability 2024, 16(22), 9741; https://doi.org/10.3390/su16229741 - 8 Nov 2024
Cited by 1 | Viewed by 1357
Abstract
Copper (Cu)-based fungicides are widely used in agriculture, but excessive Cu accumulation in soils can pose risks to crop performance, particularly in perennial fruit crops like apples. This study evaluated the physiological responses of three apple varieties—Braeburn, Fuji, and Cripps Pink—under Cu concentrations [...] Read more.
Copper (Cu)-based fungicides are widely used in agriculture, but excessive Cu accumulation in soils can pose risks to crop performance, particularly in perennial fruit crops like apples. This study evaluated the physiological responses of three apple varieties—Braeburn, Fuji, and Cripps Pink—under Cu concentrations ranging from 0 to 20 mg Cu kg⁻¹ using a callus media system. Key traits including the callus growth, fresh and dry weight, copper accumulation, tolerance index (TI), and bioaccumulation factor (BCF) were assessed. The results revealed that high Cu concentrations significantly inhibited the callus growth and biomass. Braeburn’s growth was notably reduced to 0.27 times the control at 15 mg Cu kg−1, and Fuji showed no growth at concentrations above 10 mg Cu kg−1. Cripps Pink displayed greater tolerance, maintaining growth even at 20 mg Cu kg−1. Copper accumulation peaked in Fuji at 4200 mg kg−1 at 20 mg Cu kg−1, while Cripps Pink’s BCF peaked at 120 under 15 mg Cu kg−1. The TI for Cripps Pink consistently exceeded 100% across all Cu levels, contrasting with Fuji’s TI, which dropped significantly at 15 mg Cu kg−1. These findings suggest that maintaining soil Cu levels below critical thresholds is essential to preserve varietal performance and inform Cu management practices in apple cultivation. Full article
Show Figures

Figure 1

18 pages, 2908 KiB  
Article
Accumulation and Phytoremediation Potentiality of Trace and Heavy Metals in Some Selected Aquatic Plants from a Highly Urbanized Subtropical Estuary
by Fatema Tanjin, Md. Mofizur Rahman, Yeasmin Nahar Jolly, Khadijatul Kubra Riya, Shirin Akter, Mohammed Fahad Albeshr, Takaomi Arai, Jimmy Yu and Mohammad Belal Hossain
J. Mar. Sci. Eng. 2024, 12(7), 1131; https://doi.org/10.3390/jmse12071131 - 5 Jul 2024
Cited by 4 | Viewed by 2357
Abstract
The global concern over trace and heavy metal contamination in aquatic environments necessitates the development of effective remediation strategies. Using aquatic plants for heavy metal removal is a relatively economical and sustainable technology worldwide. This study involved collecting sediment and aquatic plant samples [...] Read more.
The global concern over trace and heavy metal contamination in aquatic environments necessitates the development of effective remediation strategies. Using aquatic plants for heavy metal removal is a relatively economical and sustainable technology worldwide. This study involved collecting sediment and aquatic plant samples (Acanthus ilicifolius, Typha elephantina, and Cynodon dactylon) from a highly urbanized estuary to analyze metal concentrations in sediment, assess ecological risks, and explore the phytoremediation potential. Trace and heavy metals were detected using Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF). The sediment metal concentrations were found in decreasing order of Fe, Ti, Mn, Rb, Zr, Zn, Sr, Cu, Co, and As. Fe, Sr, and As concentrations were below certified values, whereas Cu, Zn, and Rb exceeded them. Cumulatively, the pollution load index (PLI) values were close to 1 (0.845), indicating that the study area is likely experiencing metal pollution. The Contamination Factor (CF) values, ranging from 1 to 3, indicated a moderate degree of sediment pollution for Ti, Mn, Cu, Zn, and Rb. The Enrichment Factor (EF) values similarly showed moderate enrichment for these metals, with Cu exhibiting the highest degree of enrichment. Ecological risk assessment highlighted the only metal, Cu, as posing the greatest risk among the studied metals. In terms of phytoremediation potential, the bioconcentration factor (BCF) followed the decreasing order of C. dactylon > A. ilicifolius > T. elephantina for most metals, with low BCF values (<1) indicating low accumulator potential. However, the translocation factor (TF) values for Zn (1.464) and Rb (1.299) in A. ilicifolius species were greater than 1, indicating low accumulation potential but hyper-metabolizing capabilities, allowing the plant to accumulate metals in its aerial parts, making it effective for phytostabilization. Full article
Show Figures

Figure 1

18 pages, 1055 KiB  
Article
Evaluation and Assessment of Trivalent and Hexavalent Chromium on Avena sativa and Soil Enzymes
by Edyta Boros-Lajszner, Jadwiga Wyszkowska and Jan Kucharski
Molecules 2023, 28(12), 4693; https://doi.org/10.3390/molecules28124693 - 10 Jun 2023
Cited by 6 | Viewed by 2277
Abstract
Chromium (Cr) can exist in several oxidation states, but the two most stable forms—Cr(III) and Cr(VI)—have completely different biochemical characteristics. The aim of the present study was to evaluate how soil contamination with Cr(III) and Cr(VI) in the presence of Na2EDTA [...] Read more.
Chromium (Cr) can exist in several oxidation states, but the two most stable forms—Cr(III) and Cr(VI)—have completely different biochemical characteristics. The aim of the present study was to evaluate how soil contamination with Cr(III) and Cr(VI) in the presence of Na2EDTA affects Avena sativa L. biomass; assess the remediation capacity of Avena sativa L. based on its tolerance index, translocation factor, and chromium accumulation; and investigate how these chromium species affect the soil enzyme activity and physicochemical properties of soil. This study consisted of a pot experiment divided into two groups: non-amended and amended with Na2EDTA. The Cr(III)- and Cr(VI)-contaminated soil samples were prepared in doses of 0, 5, 10, 20, and 40 mg Cr kg−1 d.m. soil. The negative effect of chromium manifested as a decreased biomass of Avena sativa L. (aboveground parts and roots). Cr(VI) proved to be more toxic than Cr(III). The tolerance indices (TI) showed that Avena sativa L. tolerates Cr(III) contamination better than Cr(VI) contamination. The translocation values for Cr(III) were much lower than for Cr(VI). Avena sativa L. proved to be of little use for the phytoextraction of chromium from soil. Dehydrogenases were the enzymes which were the most sensitive to soil contamination with Cr(III) and Cr(VI). Conversely, the catalase level was observed to be the least sensitive. Na2EDTA exacerbated the negative effects of Cr(III) and Cr(VI) on the growth and development of Avena sativa L. and soil enzyme activity. Full article
(This article belongs to the Special Issue Environmental Analytical Chemistry)
Show Figures

Figure 1

16 pages, 2368 KiB  
Article
Phytoremediation Potential of Sorghum as a Bioenergy Crop in Pb-Amendment Soil
by Hanan E. Osman, Ruwaydah S. Fadhlallah, Wael M. Alamoudi, Ebrahem M. Eid and Ahmed A. Abdelhafez
Sustainability 2023, 15(3), 2178; https://doi.org/10.3390/su15032178 - 24 Jan 2023
Cited by 5 | Viewed by 2908
Abstract
Lead contamination is among the most significant threats to the environment. The phytoextraction approach uses plants that can tolerate and accumulate metals in their tissues. Lately, biofuel plants have been recommended to be suitable for remediation and implementation of potentially toxic elements (PTEs)-polluted [...] Read more.
Lead contamination is among the most significant threats to the environment. The phytoextraction approach uses plants that can tolerate and accumulate metals in their tissues. Lately, biofuel plants have been recommended to be suitable for remediation and implementation of potentially toxic elements (PTEs)-polluted soil. This research assessed the Pb phytoremediation potential of three Sorghum bicolor [red cultivar (S1), white cultivar (S2) and shahla cultivar (S3)]. A pot experiment with five treatments (0, 100, 200, 400 and 800 mg Pb/kg soil) was carried out to assess the potential possibility of using these cultivars to remediate the soil of Pb. The potential possibility of using these plants to phytoremediate the soil of Pb was also assessed. The results emphasized that all the examined cultivars could attain growth to maturity in high Pb spiked soil. However, Pb influenced morphological and chlorophyll contents, especially in plants grown in soil amended with 800 mg/kg. The S1 cultivar had the most significant reduction in total chlorophyll with an average of 72%, followed by the S2 and S3 cultivars (65% and 58% reduction, respectively). The highest Pb content in root (110.0, 177.6 and 198.9 mg/kg, respectively) and in-plant shoot (83.9, 103.6 and 99.0 mg/kg, respectively) were detected by sorghum (S1, S2 and S3, respectively) grown in soil enriched by 800 mg/kg of Pb. From the calculated results of the contamination indices, contamination factor (CF), translocation factor (TF), plant uptake (UT) and tolerance index (TI), none of the investigated cultivars were considered Pb hyperaccumulators, but all were identified as particularly ideal for phytostabilization. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

13 pages, 2851 KiB  
Article
The Phytoremediation Potential of Local Wild Grass Versus Cultivated Grass Species for Zinc-Contaminated Soil
by Jolanta Korzeniowska and Ewa Stanislawska-Glubiak
Agronomy 2023, 13(1), 160; https://doi.org/10.3390/agronomy13010160 - 3 Jan 2023
Cited by 5 | Viewed by 3351
Abstract
The aim of the study was to compare the phytoremediation potential of cultivated grasses with local wild grass for soil contaminated with zinc. Two pot experiments were carried out on soil artificially contaminated with Zn. Four species of cultivated grasses were used as [...] Read more.
The aim of the study was to compare the phytoremediation potential of cultivated grasses with local wild grass for soil contaminated with zinc. Two pot experiments were carried out on soil artificially contaminated with Zn. Four species of cultivated grasses were used as test plants: Poa pratensis, Lolium perenne, Festuca rubra, Festuca pratensis, and one wild, native grass: Deschampsia caespitosa. Wild grass seeds were collected from soil contaminated with heavy metals near a zinc smelter. The phytoremediation potential of grasses was determined on the basis of the tolerance index (TI), bioaccumulation (BF), and translocation (TF) factors. Differences were found between the species in the reduction in the shoot and root biomass with increasing soil contamination with Zn. The tolerance of the studied grasses to excess Zn in the soil was in the following order: D. caespitosa > L. perenne > F. rubra > F. pratensis > P. pratensis. In addition, there were differences in the accumulation and distribution of Zn between the roots and shoots, which is related to the different defense mechanisms of the studied grasses against Zn phytotoxicity. Of the five grasses tested, the highest phytoremediation potential was shown by D. caespitosa. This grass had a significantly higher tolerance to Zn and a lower transfer of Zn from the roots to shoots than the other cultivated grasses tested. All four cultivated grasses can be useful for phytostabilization because they accumulated Zn mainly in the roots and limited its translocation to the shoots. Unlike wild grass seeds, cultivated grass seeds are readily available commercially and can be used for the phytoremediation of HM-contaminated sites. Full article
Show Figures

Figure 1

15 pages, 2093 KiB  
Article
Dendroremediation Potential of Six Quercus Species to Polluted Soil in Historic Copper Mining Sites
by Yini Cao, Liangqian Yu, Ning Dang, Lixiang Sun, Pingxuan Zhang, Jiwu Cao and Guangcai Chen
Forests 2023, 14(1), 62; https://doi.org/10.3390/f14010062 - 29 Dec 2022
Cited by 5 | Viewed by 2310
Abstract
Green remediation of severely contaminated soils around mining sites can be achieved using suitable woody plants such as Quercus species, but their phytoremediation potential has not been well evaluated yet. Six Quercus species, which were popular in ecological restoration and landscape application in [...] Read more.
Green remediation of severely contaminated soils around mining sites can be achieved using suitable woody plants such as Quercus species, but their phytoremediation potential has not been well evaluated yet. Six Quercus species, which were popular in ecological restoration and landscape application in east China, were selected and evaluated for their phytoremediation potential of metal polluted soil using a pot experiment that lasted for 150 d. The results suggested that Quercus species exhibited high tolerance to multi-metal contamination of Cu (9839 mg·kg−1), Cd (8.5 mg·kg−1), and Zn (562 mg·kg−1) with a tolerance index (TI) ranging from 0.52 to 1.21. Three Quercus (Q. pagoda, Q. acutissima, and Q. nuttallii) showed relatively higher tolerance with TIs of 1.08, 1.09, and 1.21, respectively. Above-ground tissues accounted for most of the total biomass in T1 (mixture of clean and polluted soil, 50%) and T2 (100% polluted soil) treatments for most species. The Cu contents in plant tissues were in the order of root > leaf > stem, whereas Zn exhibited the order of leaf > stem > root, and Cd showed divergent mobility within the Quercus species. All the Quercus species exhibited higher capacity for Zn phytoextraction with translocation factor (TF) over 1 and Cu/Cd phytostabilization with TFs lower than 1. The analytic hierarchy process-entropy weight model indicated that Q. virginiana and Q. acutissima were two excellent species with evident phytoremediation capacity of Cu, Cd, and Zn co-contaminated soil. Taken together, Quercus species showed great potential for phytoremediation of soils severely polluted by Cu, Cd, and Zn around historic mining sites. Application of Quercus species is a green remediation option with low-maintenance cost and prospective economic benefit for phytomanagement of historic mining sites. Full article
(This article belongs to the Topic Effect of Heavy Metals on Plants)
Show Figures

Figure 1

23 pages, 2488 KiB  
Article
Calorific Value of Festuca rubra Biomass in the Phytostabilization of Soil Contaminated with Nickel, Cobalt and Cadmium Which Disrupt the Microbiological and Biochemical Properties of Soil
by Jadwiga Wyszkowska, Edyta Boros-Lajszner and Jan Kucharski
Energies 2022, 15(9), 3445; https://doi.org/10.3390/en15093445 - 9 May 2022
Cited by 18 | Viewed by 2763
Abstract
The choice of optimal plant species for phytoremediation and organic fertilization plays an important role in stabilizing the functions of soils contaminated with heavy metals. The influence of nickel, cobalt and cadmium on the biomass yield and calorific value of Festuca rubra, [...] Read more.
The choice of optimal plant species for phytoremediation and organic fertilization plays an important role in stabilizing the functions of soils contaminated with heavy metals. The influence of nickel, cobalt and cadmium on the biomass yield and calorific value of Festuca rubra, heavy metal concentrations in soil and plants and the microbiological, biochemical and physicochemical proprieties of soil were analyzed in a pot experiment. The tolerance index (TI) describing Festuca rubra’s ability to tolerate heavy metals, as well as the translocation (TF), accumulation (AF) and bioaccumulation (BF) factors of heavy metals in Festuca rubra were calculated. The experiment was conducted in two series: In soil fertilized and not fertilized with compost. Nickel and cobalt significantly inhibited the growth and development of Festuca rubra. The experiment demonstrated that this plant species can be grown on soil contaminated with heavy metals. Festuca rubra contained on average 46.05% C, 34.59% O, 5.91% H, 3.49% N, 0.19% S and 9.76% ash. Festuca rubra has a stable calorific value which is not affected by heavy metals; therefore, biomass harvested from heavy metal-polluted soil can be used for energy generation. The calorific value of Festuca rubra ranged from 15.924 to 16.790 MJ kg−1 plant d.m., and the heat of combustion from 17.696 to 18.576 MJ kg1. It has a stable calorific value which is not affected by heavy metals, therefore biomass harvested from heavy metal-polluted soil can be used for energy generation. Festuca rubra is particularly useful for the phytostabilization of soil contaminated with cadmium and cobalt. Compost minimizes the adverse effects of heavy metal pollution on the microbiological, biochemical and physicochemical properties of soil. Full article
(This article belongs to the Special Issue Biomass Energy for Environmental Sustainability)
Show Figures

Figure 1

11 pages, 892 KiB  
Article
The Possibilities of Using Common Buckwheat in Phytoremediation of Mineral and Organic Soils Contaminated with Cd or Pb
by Jolanta Domańska, Danuta Leszczyńska and Aleksandra Badora
Agriculture 2021, 11(6), 562; https://doi.org/10.3390/agriculture11060562 - 19 Jun 2021
Cited by 16 | Viewed by 3960
Abstract
The results of this study provided accurate guidance on the possibility of using common buckwheat (Fagopyrum esculentum Moench) in phytoremediation practices for mineral soil or organic soils contaminated with Cd or Pb. Based on a model pot experiment, the tolerance of buckwheat [...] Read more.
The results of this study provided accurate guidance on the possibility of using common buckwheat (Fagopyrum esculentum Moench) in phytoremediation practices for mineral soil or organic soils contaminated with Cd or Pb. Based on a model pot experiment, the tolerance of buckwheat to elevated contents of cadmium and lead in organic and mineral soils was examined. The soils were differentiated into neutral and acidic, and amended with metals at doses of 10 mg Cd kg−1 DM and 100 mg Pb kg−1 DM of soil. The growth, development, biomass, translocation coefficient, and tolerance index (TI) of the tested plants were examined. The use of metals caused a weakening of plant growth and development, as well as intensified chlorotic and necrotic changes to the buckwheat leaves. The application of Cd caused a statistically significant decrease in shoot biomass. The plants growing in organic acidic soil were most vulnerable to Cd toxicity. The (TI) values confirm the generally low tolerance of buckwheat to Cd, except for the treatment in organic neutral soil, and the high tolerance of this plant to Pb in all the studied soils. Full article
(This article belongs to the Special Issue Bioremediation in Agricultural and Urban Soils)
Show Figures

Figure 1

21 pages, 3116 KiB  
Article
Assessment of Potential Toxic Metals in a Ramsar Wetland, Central Mexico and its Self-Depuration through Eichhornia crassipes
by J. Tabla-Hernandez, P. F. Rodriguez-Espinosa, J. A. Mendoza-Pérez, E. Sánchez-Ortíz, E. Martinez-Tavera and A. G. Hernandez-Ramirez
Water 2019, 11(6), 1248; https://doi.org/10.3390/w11061248 - 14 Jun 2019
Cited by 10 | Viewed by 4795
Abstract
The Valsequillo reservoir is a Ramsar wetland due to its importance as a point of convergence of migratory waterfowl. It is located in Central Mexico and is currently endangered by the constant spill of municipal and industrial discharges from Puebla city. On this [...] Read more.
The Valsequillo reservoir is a Ramsar wetland due to its importance as a point of convergence of migratory waterfowl. It is located in Central Mexico and is currently endangered by the constant spill of municipal and industrial discharges from Puebla city. On this context, we evaluated thirteen potential toxic metals (PTMs) in water, Water hyacinth (E. crassipes) plants and sediments at this site. A combined number of 31 samples were collected from the study area. The degree/extent of metal contamination in sediments was assessed through different geochemical indexes, namely: Geoaccumulation index (Igeo), Enrichment Factor (EF) and Potential Ecological Risk Index (PERI). The ability of Water hyacinth plants residues as a phytodepurator in the Ramsar site was tested in terms of the bioaccumulation factor (BF) and the translocation factor (TF). The results concerning sediments showed that Pb, Cu and Hg pose a threat to the aquatic environment since Igeo and EF indicate sediments ranging from moderately contaminated to contaminated. Moreover, PERI pointed out Hg as the main contributor to the ecological risk in sediments, especially in the part of the reservoir covered by E. crassipes. Water hyacinth plants displayed good capacity to absorb PTMs from the water, since the content of Co, Zn, As, Ni, Cu, Pb, Ti, Cr, Ba, Mo and V in the total plant was (all values in mg/kg of dry weight) 21 ± 9, 408 ± 300, 12 ± 6, 93 ± 21, 93 ± 69, 53 ± 29, 1067 ± 643, 78 ± 55, 362 ± 39, 14 ± 0.6 and 96 ± 35, respectively. Metal content in sediments resembles to that of E. crassipes; especially in the roots, suggesting a constant deposition of plants at the bottom of the reservoir, which contributes to the eutrophication of the water. The present work encourages the need for a sustainable management of Water hyacinth plants in the Ramsar site, since they represent a plague and a natural phyto-depurator at the same time. Full article
Show Figures

Graphical abstract

15 pages, 566 KiB  
Article
Bioabsorption and Bioaccumulation of Cadmium in the Straw and Grain of Maize (Zea mays L.) in Growing Soils Contaminated with Cadmium in Different Environment
by Jorge Retamal-Salgado, Juan Hirzel, Ingrid Walter and Iván Matus
Int. J. Environ. Res. Public Health 2017, 14(11), 1399; https://doi.org/10.3390/ijerph14111399 - 16 Nov 2017
Cited by 54 | Viewed by 5880
Abstract
There is a worldwide increase of heavy metal or potentially toxic element (PTE), contamination in agricultural soils caused mainly by human and industrial action, which leads to food contamination in crops such as in maize. Cadmium (Cd) is a PTE often found in [...] Read more.
There is a worldwide increase of heavy metal or potentially toxic element (PTE), contamination in agricultural soils caused mainly by human and industrial action, which leads to food contamination in crops such as in maize. Cadmium (Cd) is a PTE often found in soils and it is ingested through food. It is necessary to determine the bioabsorption, distribution, and accumulation levels in maize to reduce or prevent food chain contamination. Cadmium absorption and accumulation in three maize cultivars were evaluated in three agricultural environments in Chile by increasing CdCl2 rates (0, 1, and 2 mg·kg−1). Evaluation included Cd accumulation and distribution in different plant tissues, bioaccumulation factor (BAF), bioconcentration factor (BCF), translocation factor (TF), and tolerance index (TI). Cadmium whole-plant uptake was only affected by the CdCl2 rate; the highest uptake was obtained with 2 mg·kg−1 CdCl2 (34.4 g·ha−1) (p < 0.05). Cadmium distribution in the maize plant usually exhibited the highest accumulation in the straw (p < 0.05), independently of the environment, Cd rate, and evaluated cultivar. Given the results for TF (TF > 2) and BAF (BAF > 1), the Los Tilos and Chillán environments were classified as having a high capacity to contaminate the food chain for all evaluated cultivars. Full article
(This article belongs to the Special Issue Soil Pollution and Remediation)
Show Figures

Figure 1

Back to TopTop