Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = traffic calming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9393 KB  
Article
Evaluation of the Efficiency of a Speed Monitoring Display (SMD) in a Very Short-Term Roadwork Zone
by Itziar Gurrutxaga, Miren Isasa, José Manuel Baraibar and Heriberto Pérez-Acebo
Infrastructures 2026, 11(1), 24; https://doi.org/10.3390/infrastructures11010024 - 12 Jan 2026
Viewed by 72
Abstract
Roadwork zones are high-risk environments where sudden geometric changes, narrowed lanes, and driver unfamiliarity frequently lead to inappropriate speeds. Ensuring safe vehicle speeds in roadwork zones remains a priority due to drivers’ limited perception of risk and frequent non-compliance with temporary limits. This [...] Read more.
Roadwork zones are high-risk environments where sudden geometric changes, narrowed lanes, and driver unfamiliarity frequently lead to inappropriate speeds. Ensuring safe vehicle speeds in roadwork zones remains a priority due to drivers’ limited perception of risk and frequent non-compliance with temporary limits. This study evaluates the effectiveness of a speed monitoring display (SMD) installed in a nighttime, four-day motorway roadwork site involving a temporary median crossing, where traffic was diverted through a single lane and a chicane-type re-entry. Speed data were collected at two points, 100 and 50 m before the median crossing, labelled as P1 and P2, respectively, during two phases: with standard work zone signage only (Phase 1) and with an SMD added (Phase 2). Results show statistically significant reductions in mean speed after SMD installation at both measurement points, including decreases of 7.09 km/h at P1 and 4.69 km/h at P2, with a greater reduction among heavy vehicles. The percentage of speeding vehicles fell from 95.4% to 81.9% upstream and from 63.4% to 35.7% near the chicane, indicating improved compliance in the most critical section (P2). These findings demonstrate that SMDs can effectively reduce speeds and variability even in very short-term work zones, supporting their integration as low-cost safety measures. Full article
Show Figures

Figure 1

31 pages, 7679 KB  
Article
Comparing Driver Behaviour with Measured Speed—An Innovative Approach to Designing Transition Zones for Smart Cities
by Stanisław Majer and Alicja Sołowczuk
Sustainability 2026, 18(1), 494; https://doi.org/10.3390/su18010494 - 4 Jan 2026
Viewed by 372
Abstract
Speed limits are widely used in transition zones between rural and urban areas, where road and environmental conditions change and drivers are expected to reduce their speed. These locations often generate particularly complex driver behaviour in response to applied traffic calming measures (TCMs). [...] Read more.
Speed limits are widely used in transition zones between rural and urban areas, where road and environmental conditions change and drivers are expected to reduce their speed. These locations often generate particularly complex driver behaviour in response to applied traffic calming measures (TCMs). Previous studies have mainly focused on the effectiveness of individual TCMs in reducing speed; however, analyses directly comparing drivers’ declared behaviours with actual measured speeds remain limited. The aim of this study was to assess the effectiveness of selected TCMs—chicanes, central island, refuges island, and dynamic speed feedback signs (DSFSs)—across 26 transition zones, taking into account land-use characteristics, driver fixation points, and the road’s visual perspective. To evaluate consistency or discrepancies, the declared behaviours of survey respondents assessing these locations were compared with speed measurements collected from other drivers travelling through the same zones. The analyses help define the relationship between drivers’ perception and their actual behaviour, identifying which TCMs, when combined with specific road-environment features, are most effective in achieving the target speed of 50 km/h in built-up areas. The most effective chicanes proved to be those with the greatest width (2.5 m), i.e., almost equal to the width of a traffic lane, as well as those with a width of 2.0 m combined with a change in pavement surface from asphalt to stone paving, or those located upstream of a road section characterised by high curvature and limited visibility. In contrast, symmetrical islands, even with a width of 3.0 m, were found to be completely ineffective. The findings support the development of more effective transition-zone design principles and provide guidance for future mobility strategies, including the integration of automated vehicles in smart cities. Full article
(This article belongs to the Special Issue Smart Cities with Innovative Solutions in Sustainable Urban Future)
Show Figures

Figure 1

18 pages, 14763 KB  
Article
The Impact of Speed Bumps on Traffic Flow Speed in Urban Road Networks
by Željko Šarić, Tomislav Kučinić, Andrej Kunštek and Ján Ondruš
Appl. Sci. 2025, 15(22), 12221; https://doi.org/10.3390/app152212221 - 18 Nov 2025
Viewed by 913
Abstract
Traffic safety is a fundamental element of urban mobility, and speed bumps remain one of the most widely used measures for reducing vehicle speeds on local streets. This study investigates how different types of speed bumps influence traffic flow speed in the City [...] Read more.
Traffic safety is a fundamental element of urban mobility, and speed bumps remain one of the most widely used measures for reducing vehicle speeds on local streets. This study investigates how different types of speed bumps influence traffic flow speed in the City of Zagreb, Croatia. A total of 208 locations were surveyed across all city districts, where geometric characteristics, regulatory compliance, and local contextual features were recorded. In addition, UAV monitoring was conducted at eight representative sites, capturing 906 vehicle trajectories and enabling the extraction of speed profiles at two measurement points per location, together with vehicle classification. This combined approach—integrating UAV-based speed tracking with a detailed geometric compliance assessment—provides a novel and reproducible methodological framework for evaluating vertical traffic-calming measures under real operating conditions. The results show substantial differences in performance between bump types. Raised platforms reduced vehicle speeds by up to 53%, while narrow platforms achieved reductions of up to 49%. In contrast, modular rubber elements exhibited noticeably weaker performance, particularly for heavy vehicles. These findings differ from previous research that has primarily focused on single bump types or limited samples and reported mixed effectiveness depending on height and material. The reductions observed in this study are operationally relevant, as they indicate which bump designs reliably maintain speeds below the 40 km/h safety threshold required on residential streets and around schools. By linking bump geometry and compliance with actual driver behaviour, this study offers a practical and transferable framework that can support urban traffic-safety planning, standardization of vertical calming devices, and improved selection of appropriate measures for mixed-traffic urban environments. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

34 pages, 4193 KB  
Article
Impact of Traffic Calming Zones (TCZs) in Cities on Public Transport Operations
by Mirosław Czerliński, Tomasz Krukowicz, Michał Wolański and Patryk Pawłowski
Sustainability 2025, 17(22), 10012; https://doi.org/10.3390/su172210012 - 9 Nov 2025
Viewed by 942
Abstract
Traffic calming zones (TCZs) are increasingly being implemented in urban areas to enhance road safety, reduce vehicle speeds, and support sustainable mobility. However, their impact on public transport (PT) operations, particularly bus services, remains underexplored. This study examines the impact of classifying streets [...] Read more.
Traffic calming zones (TCZs) are increasingly being implemented in urban areas to enhance road safety, reduce vehicle speeds, and support sustainable mobility. However, their impact on public transport (PT) operations, particularly bus services, remains underexplored. This study examines the impact of classifying streets into TCZs on bus transport performance in Poland’s ten largest cities. Geospatial analysis and a custom R algorithm delineated areas suitable for TCZs based on road class and administrative category. GTFS data were analysed for almost 1000 bus lines to evaluate the overlap of their routes with TCZs. The findings reveal that in several cities, a significant portion of bus operations would run through TCZs, with the average route segment affected notably by city and zone classification methods. Differences in TCZ size and shape across cities were also statistically significant. This study concludes that although TCZs contribute to safer and more liveable urban environments, their influence on bus speeds, which can lead to changes in fuel or energy consumption, and route design must be carefully managed. Strategic planning is essential to find a balance between the benefits of traffic calming and the operational efficiency of PT. These insights offer valuable guidance for integrating TCZs into sustainable urban transport policy without compromising PT performance. Full article
Show Figures

Figure 1

22 pages, 12074 KB  
Article
Influence of Speed Bumps on Hydraulic Efficiency of Grated Inlets
by Beniamino Russo and Jackson Tellez-Álvarez
Water 2025, 17(19), 2897; https://doi.org/10.3390/w17192897 - 7 Oct 2025
Viewed by 609
Abstract
In the context of the growing promotion of sustainable urban mobility policies, traffic calming is one of the main actions adopted by local, regional, and national administrations to support the liveability and vitality of residential and commercial areas through improvements in non-motorists’ safety, [...] Read more.
In the context of the growing promotion of sustainable urban mobility policies, traffic calming is one of the main actions adopted by local, regional, and national administrations to support the liveability and vitality of residential and commercial areas through improvements in non-motorists’ safety, mobility, and comfort. Traffic calming is achieved through the implementation of several actions and physical features such as speed bumps. These elements are generally accompanied by surface drainage elements (grated inlets) located upstream. The presence of speed bumps modifies the hydraulic performance of the inlets. This work aimed to evaluate, by experimental tests, the effects produced by the presence of two different speed bumps on two grated inlets commonly used in Barcelona. The results indicate that the hydraulic efficiency of grated inlets located upstream of speed bumps increases with respect to conventional situations (without speed bumps). These increments are relevant (up to 60%) for flat areas and streets with longitudinal slopes of up to 4–6%, but can be neglected for steep roads (more than 6%). The increase in grate inlet hydraulic performance means modifications in terms of inlet spacing, with significant economic savings for local administrations in charge of the design, implementation, and maintenance of surface drainage systems. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

28 pages, 23116 KB  
Article
Evaluation of Pedestrian Movement and Sustainable Public Realm in Planned Residential Areas, Mersin, Türkiye
by Züleyha Sara Belge, Burak Belge, Hayriye Oya Saf and Elvan Elif Özdemir
Sustainability 2025, 17(18), 8205; https://doi.org/10.3390/su17188205 - 11 Sep 2025
Viewed by 1860
Abstract
The study investigates the disconnect between formal urban planning standards and experiential walkability outcomes in Viranşehir, a planned neighborhood in Mersin, Türkiye. Although the area complies with national regulations on the provision of public services, it exhibits systemic limitations, including car-oriented street layouts, [...] Read more.
The study investigates the disconnect between formal urban planning standards and experiential walkability outcomes in Viranşehir, a planned neighborhood in Mersin, Türkiye. Although the area complies with national regulations on the provision of public services, it exhibits systemic limitations, including car-oriented street layouts, fragmented pedestrian networks, and underutilized public spaces. Employing a mixed-methods case study, the research integrates archival sources (aerial imagery, zoning plans, satellite data) with field observations to assess pedestrian environments. A light coding of sidewalk continuity, crossings, and edge conditions indicates that many streets are bounded by extensive inactive walls, protected crossings are absent along critical routes such as the school–park axis, and sidewalks are frequently narrow, obstructed, or discontinuous. These built-form features undermine safety, comfort, and social interaction despite formal regulatory compliance. The findings demonstrate how grid-pattern street systems prioritize vehicular mobility, while gated developments restrict permeability and diminish everyday encounters. In response, the study proposes a hierarchy of interventions: immediate measures such as school streets, protected crossings, and traffic calming, followed by medium- to long-term strategies including shaded seating, sidewalk widening, and participatory design guidelines. By linking statutory standards with lived experience, the paper conceptualizes walkability not only as a technical planning requirement but also as a socio-cultural right, offering transferable insights for the creation of more inclusive urban environments. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

23 pages, 2028 KB  
Article
A Driving Simulator-Based Assessment of Traffic Calming Measures at High-to-Low Speed Transition Zones
by Ali Pirdavani, Mahdi Sadeqi Bajestani, Maarten Mantels and Thibaut Spooren
Smart Cities 2025, 8(5), 147; https://doi.org/10.3390/smartcities8050147 - 11 Sep 2025
Cited by 1 | Viewed by 1529
Abstract
Effective speed management at urban entry points is essential for ensuring traffic safety and supporting sustainable mobility in smart cities. This study contributes to urban mobility planning by using a high-fidelity driving simulation to evaluate gateway designs that enhance safety and behavioral compliance [...] Read more.
Effective speed management at urban entry points is essential for ensuring traffic safety and supporting sustainable mobility in smart cities. This study contributes to urban mobility planning by using a high-fidelity driving simulation to evaluate gateway designs that enhance safety and behavioral compliance at built-up entry zones. Seven gateway configurations, comprising physical (i.e., chicanes, road narrowing) and psychological (i.e., transverse markings, avenue planting) speed calming measures, were evaluated against a reference scenario. A total of 54 participants completed a 14 km simulated route under standardized conditions, with vehicle speed, acceleration/deceleration, and lateral position continuously recorded. The strongest effects were observed in designs featuring chicanes, which achieved the largest speed reductions but also induced abrupt deceleration. In contrast, the combination of road narrowing and transverse markings resulted in a smoother and more gradual deceleration, minimizing driver discomfort and lateral instability. Psychological measures alone, such as avenue planting, had a limited impact on speed behavior. These findings highlight the importance of combining physical and psychological traffic calming measures to create effective, perceptually engaging transitions that promote safer and more consistent driver responses. Full article
Show Figures

Figure 1

23 pages, 4646 KB  
Article
Analysis of Vehicle Lateral Position in Curves Using a Driving Simulator: Road Markings, Human Factors and Road Features
by Santiago Martin-Castresana, Miriam Martinez-Garcia, Rafael Enriquez and Maria Castro
Appl. Sci. 2025, 15(17), 9851; https://doi.org/10.3390/app15179851 - 8 Sep 2025
Viewed by 2196
Abstract
The vehicle lateral position within a lane is critical in road safety, particularly on curved sections, where excessive deviations are often associated with crashes. This study analyses the effect of three traffic-calming measures on the lateral position of vehicles on curves with varying [...] Read more.
The vehicle lateral position within a lane is critical in road safety, particularly on curved sections, where excessive deviations are often associated with crashes. This study analyses the effect of three traffic-calming measures on the lateral position of vehicles on curves with varying radii and turning directions. The experiment was conducted using a driving simulator with the participation of 48 drivers, assessing two leading indicators: the vehicle’s mean lateral position (LP) and the standard deviation of that position (SDLP). The results showed that, in curves, male drivers tended to drive further from the centre of the lane compared to female drivers. Additionally, female drivers exhibited less weaving in their trajectories (lower SDLP). Older drivers adopted more centred trajectories; however, SDLP increased with age. Drivers with higher annual exposure tended to drive further from the lane centre in curves. Among the traffic-calming measures, red-coloured transverse bands (CTB) reduced the lateral position by approximately 0.12 m in left curves. In contrast, red peripheral transverse bars (PTB) proved most effective in lowering lateral variability (SDLP). Geometric differences were also observed: greater curve radii were associated with lower SDLP values. Full article
(This article belongs to the Special Issue Human–Vehicle Interactions)
Show Figures

Figure 1

22 pages, 703 KB  
Article
An Impact Assessment of Speed Humps’ Geometric Characteristics and Spacing on Vehicle Speed: An Overview
by Nawaf M. Alshabibi
Infrastructures 2025, 10(7), 190; https://doi.org/10.3390/infrastructures10070190 - 21 Jul 2025
Viewed by 4571
Abstract
This review examines the effect of geometric properties and the spacing of road humps on vehicle speed and noise, with a particular emphasis on South Asian contexts, especially Malaysia. Road humps are widely used traffic-calming devices designed to reduce vehicle speed and enhance [...] Read more.
This review examines the effect of geometric properties and the spacing of road humps on vehicle speed and noise, with a particular emphasis on South Asian contexts, especially Malaysia. Road humps are widely used traffic-calming devices designed to reduce vehicle speed and enhance road safety. The effectiveness of these measures is strongly influenced by parameters such as height, width, profile, and placement intervals. While the geometric optimization of humps generally improves speed-reduction outcomes, several studies indicate that braking and acceleration at humps can lead to increased traffic noise, particularly in residential and high-density areas. This review also explores design strategies and material choices (e.g., asphalt use, sinusoidal profiles) that may help mitigate noise impacts. Overall, a balance between speed control and noise management is necessary to ensure both safety and community acceptance. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

33 pages, 1710 KB  
Systematic Review
Promoting Sustainable Transport: A Systematic Review of Walking and Cycling Adoption Using the COM-B Model
by Hisham Y. Makahleh, Madhar M. Taamneh and Dilum Dissanayake
Future Transp. 2025, 5(3), 79; https://doi.org/10.3390/futuretransp5030079 - 1 Jul 2025
Cited by 2 | Viewed by 6373
Abstract
Walking and cycling, as active modes of transportation, play a vital role in advancing sustainable urban mobility by reducing emissions and improving public health. However, widespread adoption faces challenges such as inadequate infrastructure, safety concerns, socio-cultural barriers, and policy limitations. This study systematically [...] Read more.
Walking and cycling, as active modes of transportation, play a vital role in advancing sustainable urban mobility by reducing emissions and improving public health. However, widespread adoption faces challenges such as inadequate infrastructure, safety concerns, socio-cultural barriers, and policy limitations. This study systematically reviewed 56 peer-reviewed articles from 2004 to 2024, across 30 countries across five continents, employing the Capability, Opportunity and Motivation-Behaviour (COM-B) framework to identify the main drivers of walking and cycling behaviours. Findings highlight that the lack of dedicated infrastructure, inadequate enforcement of road safety measures, personal and traffic safety concerns, and social stigmas collectively hinder active mobility. Strategic interventions such as developing integrated cycling networks, financial incentives, urban planning initiatives, and behavioural change programs have promoted increased engagement in walking and cycling. Enhancing urban mobility further requires investment in pedestrian and cycling infrastructure, improved integration with public transportation, the implementation of traffic-calming measures, and public education campaigns. Post-pandemic initiatives to establish new pedestrian and cycling spaces offer a unique opportunity to establish enduring changes that support active transportation. The study suggests expanding protected cycling lanes and integrating pedestrian pathways with public transit systems to strengthen safety and accessibility. Additionally, leveraging digital tools can enhance mobility planning and coordination. Future research is needed to explore the potential of artificial intelligence in enhancing mobility analysis, supporting the development of climate-resilient infrastructure, and informing transport policies that integrate gender perspectives to better understand long-term behavioural changes. Coordinated policy efforts and targeted investments can lead to more equitable transportation access, support sustainability goals, and alleviate urban traffic congestion. Full article
Show Figures

Figure 1

27 pages, 1470 KB  
Review
Beyond Speed Reduction: A Systematic Literature Review of Traffic-Calming Effects on Public Health, Travel Behaviour, and Urban Liveability
by Fotios Magkafas, Grigorios Fountas, Panagiotis Ch. Anastasopoulos and Socrates Basbas
Infrastructures 2025, 10(6), 147; https://doi.org/10.3390/infrastructures10060147 - 16 Jun 2025
Viewed by 5909
Abstract
Traffic calming has emerged as a key urban strategy to reduce vehicle speeds and mitigate road traffic risks, with increasing recognition of its broader implications for public health, human behaviour, and urban liveability. This systematic literature review examines the multifaceted impacts of traffic-calming [...] Read more.
Traffic calming has emerged as a key urban strategy to reduce vehicle speeds and mitigate road traffic risks, with increasing recognition of its broader implications for public health, human behaviour, and urban liveability. This systematic literature review examines the multifaceted impacts of traffic-calming measures—from speed limit reductions to physical infrastructure and enforcement-based interventions—by synthesising findings from 28 peer-reviewed studies. Guided by the PRISMA framework, the review compiles research exploring links between traffic calming and outcomes related to public health, behaviour, and urban quality of life. Research consistently indicates that such interventions reduce both the frequency and severity of collisions, improve air and noise quality, and promote active mobility. These effects are shaped by user perceptions: non-motorised users tend to report higher levels of safety and accessibility, whereas motorised users often express frustration or resistance. Beyond safety and environmental improvements, traffic calming has been associated with greater use of public space, stronger social connections, and enhanced environmental aesthetics. The findings also show that key challenges may affect the effectiveness of traffic calming and these include negative attitudes among drivers, mixed outcomes for air quality, and unintended consequences such as traffic displacement or increased noise when interventions are poorly implemented. Overall, the findings suggest that traffic calming can serve as both a public health initiative and a tool for enhancing urban liveability, provided that the measures are designed with contextual sensitivity and supported by inclusive communication strategies. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

38 pages, 6637 KB  
Article
Socio-Spatial Bridging Through Walkability: A GIS and Mixed-Methods Analysis in Amman, Jordan
by Majd Al-Homoud and Sara Al-Zghoul
Buildings 2025, 15(12), 1999; https://doi.org/10.3390/buildings15121999 - 10 Jun 2025
Cited by 1 | Viewed by 1901
Abstract
Decades of migration and refugee influxes have driven Amman’s rapid urban growth, yet newer neighborhoods increasingly grapple with fragmented social cohesion. This study examines whether walkable design can strengthen community bonds, focusing on Deir Ghbar, a car-centric district in West Amman. Using GIS [...] Read more.
Decades of migration and refugee influxes have driven Amman’s rapid urban growth, yet newer neighborhoods increasingly grapple with fragmented social cohesion. This study examines whether walkable design can strengthen community bonds, focusing on Deir Ghbar, a car-centric district in West Amman. Using GIS and mixed-methods analysis, we assess how walkability metrics (residential density, street connectivity, land-use mix, and retail density) correlate with sense of community. The results reveal that street connectivity and residential density enhance social cohesion, while land-use mix exhibits no significant effect. High-density, compact neighborhoods foster neighborly interactions, but major roads disrupt these connections. A critical mismatch emerges between quantitative land-use metrics and resident experiences, highlighting the need to integrate spatial data with community insights. Amman’s zoning policies, particularly the stark contrast between affluent low-density Zones A/B and underserved high-density Zones C/D, perpetuate socio-spatial segregation—a central critique of this study. We urge the Greater Amman Municipality’s 2025 Master Plan to prioritize mixed-density zoning, pedestrian retrofits (e.g., traffic calming and sidewalk upgrades), and equitable access to amenities. This study provides a replicable GIS and survey-based framework to address urban socio-spatial divides, aligning with SDG 11 for inclusive cities. It advocates for mixed-density zoning and pedestrian-first interventions in Amman’s Master Plan. By integrating a GIS with social surveys, this study offers a replicable model for addressing socio-spatial divides in cities facing displacement and inequality. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

25 pages, 3462 KB  
Article
Effect of Road Markings on Speed Through Curves on Rural Roads: A Driving Simulator Study in Spain
by Santiago Martin-Castresana, Diego Alvarez, Fabian Andrade-Cataño and Maria Castro
Infrastructures 2025, 10(4), 94; https://doi.org/10.3390/infrastructures10040094 - 10 Apr 2025
Cited by 1 | Viewed by 2351
Abstract
Traffic accidents remain a leading cause of mortality worldwide. In Spain, a total of 9666 accidents occurred on curves in 2023, highlighting the need for effective speed management strategies. This study analyses, using a driving simulator, the effectiveness of three low-cost traffic calming [...] Read more.
Traffic accidents remain a leading cause of mortality worldwide. In Spain, a total of 9666 accidents occurred on curves in 2023, highlighting the need for effective speed management strategies. This study analyses, using a driving simulator, the effectiveness of three low-cost traffic calming measures—checkerboard patterns, red peripheral transverse bars, and red coloured transverse bands—on vehicle speed through curves of varying radii and directions. Additionally, it examines the influence of driver characteristics (age, gender, and experience) and road geometric features (curve radius and direction) on driving behaviour. The simulated road included ten curves with radii ranging from 26 to 190 metres (operating speeds of 30–70 km/h) with traffic calming measures placed at the tangents before the curves. The sample consisted of 48 drivers. Men exhibited faster speeds than women, while younger drivers were faster than seniors. Increased driving experience (annual distances) correlated with higher speeds. Additionally, smaller radii resulted in lower speeds. Regarding the traffic calming measures, significant differences were found mainly where the road markings were placed (tangent) and in the initial phases of the curve. Checkerboard patterns performed better in curves with smaller radii. In contrast, red coloured transverse bands showed the best performance in larger radius curves. Full article
Show Figures

Figure 1

13 pages, 4944 KB  
Article
Oil Spill Occurrence and Pollution Risk Assessment Based on Sea State, Oil Platform Location, and Shipping Route Density in the Bohai Sea
by Tao Liu, Ruichen Cao, Minxia Zhang, Xing Chen, Fan Bi and Jiangling Xu
J. Mar. Sci. Eng. 2025, 13(4), 729; https://doi.org/10.3390/jmse13040729 - 5 Apr 2025
Viewed by 1203
Abstract
The Bohai Sea is the only semi-enclosed inland sea in China. With active marine economic activities, it faces a persistently high risk of oil spill accidents. This study assesses the occurrence risk and pollution risk of oil spills by considering factors such as [...] Read more.
The Bohai Sea is the only semi-enclosed inland sea in China. With active marine economic activities, it faces a persistently high risk of oil spill accidents. This study assesses the occurrence risk and pollution risk of oil spills by considering factors such as sea state, the location of oil platform, and shipping route density in the Bohai Sea. The results show that the central part of the Bohai Sea, the southern Liaodong Peninsula, and the Bohai Strait area have a relatively high occurrence risk of oil spills due to busy maritime traffic and harsh sea conditions. In contrast, some areas in the northern, western, and southern parts of the Bohai Sea have a relatively low occurrence risk of oil spills because of weak maritime activity intensity and relatively calm sea state. In terms of the oil pollution risk, its distribution in the Bohai Sea shows significant seasonal characteristics, which are mainly comprehensively affected by multiple dynamic factors such as circulation, monsoon, and seawater exchange. Based on the oil pollution risk distribution, seasonally targeted strategies are proposed, which can provide a scientific basis for oil spill prevention and emergency management in the Bohai Sea, and help relevant departments formulate targeted prevention and control strategies. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

23 pages, 1347 KB  
Article
Enhancing Walkability for Older Adults: The Role of Government Policies and Urban Design
by Akshatha Rao, Rama Devi Nandineni, Roshan S. Shetty, Kailas Mallaiah and Giridhar B. Kamath
Infrastructures 2025, 10(4), 77; https://doi.org/10.3390/infrastructures10040077 - 28 Mar 2025
Cited by 4 | Viewed by 2867
Abstract
This research examines the impact of government policy initiatives, community engagement programs, and age-friendly urban design policies on the built environment, with a specific focus on the walkability of older adults. The walkability of older adults in the built environment is essential because [...] Read more.
This research examines the impact of government policy initiatives, community engagement programs, and age-friendly urban design policies on the built environment, with a specific focus on the walkability of older adults. The walkability of older adults in the built environment is essential because it promotes physical activity, social connectedness, and independence, thereby enhancing the overall quality of life and supporting healthy aging. This study employs a quantitative approach and cross-sectional design with convenience sampling in Udupi district, one of the urbanizing districts in India. The sample includes 333 older adults from diverse sociodemographic backgrounds who actively use the built environment. Structural equation modeling was used to test the hypotheses. The findings indicate that community engagement programs are the strongest enabler of safety and security perceptions related to walkability. Safety and security positively correlate with increased physical activity level, increased socialization level, and improved quality of life in older adults. Security also mediates the relationship between community engagement programs and all three outcomes associated with walkability. It highlights priority urban design features such as strategic lighting, sheltered walkways, traffic calming measures, barrier-free access, rest areas, and inclusive design elements as critical components of adaptive urban spaces that promote safety, accessibility, and social inclusion for older adults. Full article
Show Figures

Figure 1

Back to TopTop