Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = total petroleum hydrocarbon depletion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 11154 KB  
Article
Organic Geochemistry and Petroleum Potential for Cambrian-Silurian Source Rocks in the Baltic Basin Onshore Poland
by Przemysław Karcz
Minerals 2025, 15(11), 1170; https://doi.org/10.3390/min15111170 - 7 Nov 2025
Viewed by 535
Abstract
The Upper Cambrian–Lower Silurian sediments of the Baltic Basin represent organic-rich clastic and carbonate rocks that are a key exploration target for hydrocarbons in northern Pomerania, Poland. The source rocks contain an average total organic carbon (TOC) content of 4.1 wt% (range: 0.7–9.6 [...] Read more.
The Upper Cambrian–Lower Silurian sediments of the Baltic Basin represent organic-rich clastic and carbonate rocks that are a key exploration target for hydrocarbons in northern Pomerania, Poland. The source rocks contain an average total organic carbon (TOC) content of 4.1 wt% (range: 0.7–9.6 wt%). The organic matter is primarily in the early to mid-oil window; however, both more mature and overmature organic matter also occur (average Tmax: 445 °C; range: 427–488 °C; average Ro: 1.3%; range: 1.0%–1.8%). These organic-rich rocks were mostly deposited under dysoxic rather than anoxic conditions. Fossils of oxygen-dependent benthic fauna are widely distributed, even in the darkest (black shale) lithologies. Nevertheless, short intervals lacking benthic fossils indicate episodes of anoxic bottom-water conditions. The Furongian–Lower Llandovery source rocks exhibit a low sedimentation rate, ranging from 1 to 19 m/Ma. Geochemically, the organic matter is dominated by type II kerogen. Petrographically, the kerogen consists mainly of graptolites and algae. Due to the predominance of planktonic-origin fauna and thermal maturity, the kerogen is relatively hydrogen depleted (average Hydrogen Index, HI: 169 mg HC/g TOC; range: 1–340 mg HC/g TOC). The present day petroleum potential of these source rocks varies from fair to good and very good. Bitumen analysis revealed a dominance of kerogen components, with only minor admixtures of light and heavy oils. Full article
Show Figures

Figure 1

23 pages, 2125 KB  
Article
Development and Evaluation of an Exogenous Bioaugmentation Framework Using an Immobilized Mixed Bacterial Consortium for the Remediation of Hydrocarbon-Contaminated Soils
by Emerance Jessica Claire D’Assise Goma-Tchimbakala, Ilaria Pietrini, Alessandro Conte, Neria Costa and Stefano Paolo Corgnati
Appl. Microbiol. 2025, 5(4), 102; https://doi.org/10.3390/applmicrobiol5040102 - 25 Sep 2025
Viewed by 1254
Abstract
Improving the quality of oil-contaminated soils remains a critical challenge, and bioaugmentation using allochthonous bacteria offers promising perspectives. This study proposes a framework for exogenous bioaugmentation using a bacterial consortium, composed of strains from diverse climates, immobilized in alginate beads and combined with [...] Read more.
Improving the quality of oil-contaminated soils remains a critical challenge, and bioaugmentation using allochthonous bacteria offers promising perspectives. This study proposes a framework for exogenous bioaugmentation using a bacterial consortium, composed of strains from diverse climates, immobilized in alginate beads and combined with calcium peroxide as an oxygen-releasing compound. Two conditions were tested: freshly prepared beads (BA) and lyophilized beads (LA). Their performance was compared to natural attenuation (NA) and to landfarming coupled with bioaugmentation using a free autochthonous consortium. Hydrocarbon degradation was assessed through total petroleum hydrocarbon (TPH) and alkane depletion (GC-MS), microbial community dynamics (amplicon sequencing), and abundance of the alkB gene (qPCR). In three months, the BA treatment achieved a 44% TPH reduction, outperforming LA (34%) and NA (10% less than BA). However, LA induced a marked increase in alkB gene copies and microbial biomass at the end of the experiment, suggesting greater long-term potential. Dominant genera varied across treatments: Rhodococcus in NA, Gordonia in BA, and Pseudomonas in LA. In parallel, the autochthonous consortium achieved up to 80% oil degradation. This study demonstrates the viability of lyophilized microbial consortia in scalable, ready-to-use formulations and provides an operational methodology for exogenous bioaugmentation as a tool for the remediation of hydrocarbon-contaminated soils. Full article
Show Figures

Graphical abstract

19 pages, 4917 KB  
Article
Life Cycle Assessment of Crude Oil-Contaminated Soil Treated by Low-Temperature Thermal Desorption and Its Beneficial Reuse for Soil Amendment
by Young Ho Song, Geon Yong Kim, Da Yeon Kim and Yong Woo Hwang
Sustainability 2024, 16(24), 10900; https://doi.org/10.3390/su162410900 (registering DOI) - 12 Dec 2024
Cited by 2 | Viewed by 2578
Abstract
The effectiveness of thermal treatment technologies for the remediation of soils contaminated with heavy hydrocarbons has been extensively documented in the scientific literature. In general, high-concentration crude-oil-contaminated soil is treated with high-temperature thermal desorption (HTTD) in order to achieve high remediation efficiency. However, [...] Read more.
The effectiveness of thermal treatment technologies for the remediation of soils contaminated with heavy hydrocarbons has been extensively documented in the scientific literature. In general, high-concentration crude-oil-contaminated soil is treated with high-temperature thermal desorption (HTTD) in order to achieve high remediation efficiency. However, this process has the unintended consequence of destroying soil fertility. Low-temperature thermal desorption (LTTD) represents an alternative approach that has been developed with the objective of remediating heavily crude-oil-contaminated soil in a more rapid and cost-effective manner while simultaneously enhancing soil fertility. The thermal desorption unit (TDU) was employed using both LTTD and HTTD, operating at 300 °C and 500 °C, respectively, with a 30 min residence time in the kiln. The concentration of total petroleum hydrocarbons (TPH) in both the LTTD- and HTTD-treated soils was found to be less than 1% by weight, thereby below regulatory standards. The environmental impacts of both processes were assessed using the OpenLCA software version 2.0. The HTTD process exhibited a total abiotic depletion potential (ADP) impact of 1.63 × 10−4 MJ and a global warming potential (GWP) of 414 kg CO2-eq. In contrast, LTTD demonstrated lower impacts, with an ADP of 1.29 × 10−4 MJ and a GWP of 278 kg CO2-eq. The transition from HTTD to LTTD resulted in a notable reduction in ADP by 20.5% and in GWP by 32.9%. The application of LTTD-treated soil coated with coke or carbonized residues has been demonstrated to serve as an effective soil amendment, with the capacity to sequester approximately 50% of organic hydrocarbon contaminants. The results of this study illustrate the potential of LTTD for not only economical and rapid soil remediation but also the enhancement of soil quality through beneficial reuse. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

19 pages, 5761 KB  
Article
Bio-Based Decontamination and Detoxification of Total Petroleum Hydrocarbon-Contaminated Dredged Sediments: Perspectives to Produce Constructed Technosols in the Frame of the Circular Economy
by Simone Becarelli, Giacomo Bernabei, Giovanna Siracusa, Diego Baderna, Monica Ruffini Castiglione, Giampiero De Simone and Simona Di Gregorio
Water 2023, 15(23), 4106; https://doi.org/10.3390/w15234106 - 27 Nov 2023
Cited by 1 | Viewed by 1822
Abstract
To accelerate the depletion of total petroleum hydrocarbons, a hydrocarburoclastic ascomycetes, Lambertella sp. MUT 5852, was bioaugmented to dredged sediments co-composting with a lignocellulosic matrix. After only 28 days of incubation, a complete depletion of the contamination was observed. The 16S rDNA metabarcoding [...] Read more.
To accelerate the depletion of total petroleum hydrocarbons, a hydrocarburoclastic ascomycetes, Lambertella sp. MUT 5852, was bioaugmented to dredged sediments co-composting with a lignocellulosic matrix. After only 28 days of incubation, a complete depletion of the contamination was observed. The 16S rDNA metabarcoding of the bacterial community and a predictive functional metagenomic analysis were adopted to evaluate potential bacterial degrading and detoxifying functions. A combination of toxicological assays on two eukaryotic models, the root tips of Vicia faba and the human intestinal epithelial Caco-2 cells, was adopted to assess the robustness of the process not only for the decontamination but also for the detoxification of the dredged sediments. Bacterial taxa, such as Kocuria and Sphingobacterium sps., resulted to be involved in both the decontamination and detoxification of the co-composting dredged sediments by potential activation of diverse oxidative processes. At the same time, the Kocuria sp. showed plant growth-promoting activity by the potential expression of the 1-aminocyclopropane-1-carboxylate deaminase activity, providing functional traits of interest for a technosol in terms of sustaining primary producer growth and development. Full article
Show Figures

Graphical abstract

17 pages, 1363 KB  
Review
Microbial Involvement in the Bioremediation of Total Petroleum Hydrocarbon Polluted Soils: Challenges and Perspectives
by Ilaria Chicca, Simone Becarelli and Simona Di Gregorio
Environments 2022, 9(4), 52; https://doi.org/10.3390/environments9040052 - 15 Apr 2022
Cited by 41 | Viewed by 10833
Abstract
Nowadays, soil contamination by total petroleum hydrocarbons is still one of the most widespread forms of contamination. Intervention technologies are consolidated; however, full-scale interventions turn out to be not sustainable. Sustainability is essential not only in terms of costs, but also in terms [...] Read more.
Nowadays, soil contamination by total petroleum hydrocarbons is still one of the most widespread forms of contamination. Intervention technologies are consolidated; however, full-scale interventions turn out to be not sustainable. Sustainability is essential not only in terms of costs, but also in terms of restoration of the soil resilience. Bioremediation has the possibility to fill the gap of sustainability with proper knowledge. Bioremediation should be optimized by the exploitation of the recent “omic” approaches to the study of hydrocarburoclastic microbiomes. To reach the goal, an extensive and deep knowledge in the study of bacterial and fungal degradative pathways, their interactions within microbiomes and of microbiomes with the soil matrix has to be gained. “Omic” approaches permits to study both the culturable and the unculturable soil microbial communities active in degradation processes, offering the instruments to identify the key organisms responsible for soil contaminant depletion and restoration of soil resilience. Tools for the investigation of both microbial communities, their degradation pathways and their interaction, will be discussed, describing the dedicated genomic and metagenomic approaches, as well as the interpretative tools of the deriving data, that are exploitable for both optimizing bio-based approaches for the treatment of total petroleum hydrocarbon contaminated soils and for the correct scaling up of the technologies at the industrial scale. Full article
(This article belongs to the Special Issue Soil Remediation)
Show Figures

Figure 1

21 pages, 4483 KB  
Article
Ascomycetes versus Spent Mushroom Substrate in Mycoremediation of Dredged Sediments Contaminated by Total Petroleum Hydrocarbons: The Involvement of the Bacterial Metabolism
by Simone Becarelli, Giovanna Siracusa, Ilaria Chicca, Giacomo Bernabei and Simona Di Gregorio
Water 2021, 13(21), 3040; https://doi.org/10.3390/w13213040 - 1 Nov 2021
Cited by 8 | Viewed by 3223
Abstract
Two mycoremediation approaches for the depletion of the total petroleum hydrocarbons in dredged sediments were compared: co-composting with spent mushroom substrate (SMS) from Pleurotus ostreatus and bioaugmentation with Lambertella sp. MUT 5852, an ascomycetes autochthonous to the sediment, capable of utilizing diesel oil [...] Read more.
Two mycoremediation approaches for the depletion of the total petroleum hydrocarbons in dredged sediments were compared: co-composting with spent mushroom substrate (SMS) from Pleurotus ostreatus and bioaugmentation with Lambertella sp. MUT 5852, an ascomycetes autochthonous to the sediment, capable of utilizing diesel oil its sole carbon source. After 28 days of incubation, 99% depletion was observed in presence of Lambertella sp. MUT 5852. No total petroleum hydrocarbon depletion was observed in sediment co-composting with the SMS after 60 days of incubation. 16S rDNA metabarcoding of the bacterial community was performed to evaluate the potential synergism between fungi and bacteria in the bioremediation process. The functional metagenomic prediction approach indicated that the biodiversity of the bacterial genera potentially involved in the degradation of TPH was higher in sediment bioaugmented with Lambertella sp. MUT 5852, which resulted in being mandatory for TPH depletion. Mechanisms of co-substrate inhibition of the hydrocarburoclastic bacterial species, due to the bioavailable organic matter of the SMS, are suggested to be involved in the observed kinetics of TPH depletion, failing in the case of SMS and successful in the case of Lambertella sp. MUT 5852. Full article
Show Figures

Figure 1

14 pages, 3992 KB  
Article
Geochemical Considerations from the Carboniferous Unconventional Petroleum System of SW Iberia
by Gabriel A. Barberes, Rui Pena dos Reis, Nuno L. Pimentel, André L. D. Spigolon, Paulo E. Fonseca, Przemysław Karcz, Marco C. Azevedo and Maria Teresa Barata
Minerals 2021, 11(8), 811; https://doi.org/10.3390/min11080811 - 27 Jul 2021
Cited by 2 | Viewed by 3321
Abstract
The Baixo Alentejo Flysch Group (BAFG) is an important stratigraphic unit that covers over half of the South Portuguese Zone (SPZ) depositional area, and it is composed by three main tectono-stratigraphic units: the Mértola, Mira, and Brejeira formations. All of these formations contain [...] Read more.
The Baixo Alentejo Flysch Group (BAFG) is an important stratigraphic unit that covers over half of the South Portuguese Zone (SPZ) depositional area, and it is composed by three main tectono-stratigraphic units: the Mértola, Mira, and Brejeira formations. All of these formations contain significant thicknesses of black shales and have several wide areas with 0.81 wt.%, 0.91 wt.%, and 0.72 wt.% average total organic carbon (TOC) (respectively) and thermal maturation values within gas zones (overmature). This paper is considering new data from classical methods of organic geochemistry characterization, such as TOC, Rock–Eval pyrolysis, and organic petrography, to evaluate the unconventional petroleum system from the SPZ. A total of 53 samples were collected. From the stratigraphical point of view, TOC values seem to have a random distribution. The Rock–Eval parameters point out high thermal maturation compatible with gas window (overmature zone). The samples are dominated by gas-prone extremely hydrogen-depleted type III/IV kerogen, which no longer has the potential to generate and expel hydrocarbons. The petrographic analyses positioned the thermal evolution of these samples into the end of catagenesis to metagenesis (wet to dry gas zone), with values predominantly higher than 2 %Ro (dry gas zone). The presence of thermogenic hydrocarbon fluids characterized by previous papers indicate that the BAFG from SPZ represents a senile unconventional petroleum system, working nowadays basically as a gas reservoir. Full article
(This article belongs to the Special Issue Mineralogy and Geochemistry of Oil Shale)
Show Figures

Figure 1

11 pages, 1506 KB  
Article
Bioremediation of Crude Oil Contaminated Desert Soil: Effect of Biostimulation, Bioaugmentation and Bioavailability in Biopile Treatment Systems
by Farid Benyahia and Ahmed Shams Embaby
Int. J. Environ. Res. Public Health 2016, 13(2), 219; https://doi.org/10.3390/ijerph13020219 - 16 Feb 2016
Cited by 47 | Viewed by 9297
Abstract
This work was aimed at evaluating the relative merits of bioaugmentation, biostimulation and surfactant-enhanced bioavailability of a desert soil contaminated by crude oil through biopile treatment. The results show that the desert soil required bioaugmentation and biostimulation for bioremediation of crude oil. The [...] Read more.
This work was aimed at evaluating the relative merits of bioaugmentation, biostimulation and surfactant-enhanced bioavailability of a desert soil contaminated by crude oil through biopile treatment. The results show that the desert soil required bioaugmentation and biostimulation for bioremediation of crude oil. The bioaugmented biopile system led to a total petroleum hydrocarbon (TPH) reduction of 77% over 156 days while the system with polyoxyethylene (20) sorbitan monooleate (Tween 80) gave a 56% decrease in TPH. The biostimulated system with indigenous micro-organisms gave 23% reduction in TPH. The control system gave 4% TPH reduction. The addition of Tween 80 led to a respiration rate that peaked in 48 days compared to 88 days for the bioaugmented system and respiration declined rapidly due to nitrogen depletion. The residual hydrocarbon in the biopile systems studied contained polyaromatics (PAH) in quantities that may be considered as hazardous. Nitrogen was found to be a limiting nutrient in desert soil bioremediation. Full article
(This article belongs to the Special Issue Environmental Systems Engineering)
Show Figures

Figure 1

13 pages, 4130 KB  
Article
Oil Characterization and Distribution in Florida Estuary Sediments Following the Deepwater Horizon Spill
by Mace G. Barron, Jill Awkerman and Sandy Raimondo
J. Mar. Sci. Eng. 2015, 3(3), 1136-1148; https://doi.org/10.3390/jmse3031136 - 23 Sep 2015
Cited by 2 | Viewed by 5557
Abstract
Barrier islands of Northwest Florida were heavily oiled during the Deepwater Horizon spill, but less is known about the impacts to the shorelines of the associated estuaries. Shoreline sediment oiling was investigated at 18 sites within the Pensacola Bay, Florida system prior to [...] Read more.
Barrier islands of Northwest Florida were heavily oiled during the Deepwater Horizon spill, but less is known about the impacts to the shorelines of the associated estuaries. Shoreline sediment oiling was investigated at 18 sites within the Pensacola Bay, Florida system prior to impact, during peak oiling, and post-wellhead capping. Only two locations closest to the Gulf of Mexico had elevated levels of total petroleum hydrocarbons (TPH) and total polycyclic aromatic hydrocarbons (PAHs). These samples showed a clear weathered crude oil signature, pattern of depletion of C9 to C19 alkanes and C0 to C4 naphthalenes, and geochemical biomarker ratios in concordance with weathered Macondo crude oil. All other locations and sample times showed only trace petroleum contamination. The results of this study are consistent with available satellite imagery and visual shoreline survey data showing heavy shoreline oiling limited to sandy beaches near the entrance to Pensacola Bay and shorelines of Santa Rosa Island. Full article
(This article belongs to the Special Issue Marine Oil Spills)
Show Figures

Graphical abstract

Back to TopTop