Oil Characterization and Distribution in Florida Estuary Sediments Following the Deepwater Horizon Spill
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
Site Name | Site 1 ID | Site 1 Number | Distance from Pass (km) 2 | Latitude | Longitude | Site Characteristics | Booms Present 3 |
---|---|---|---|---|---|---|---|
Fort Pickens | FP | 1 | 1.1 | 30.3310 | −87.2966 | sandy beach | yes 4 |
Santa Rosa Sound 1 | SRS1 | 2 | 12.1 | 30.3273 | −87.1823 | sandy beach | No |
Santa Rosa Sound 2 | SRS2 | 3 | 17.7 | 30.3345 | −87.1389 | sandy beach | yes 5 |
Santa Rosa Sound 3 | SRS3 | 4 | 27.9 | 30.3531 | −87.0414 | sandy beach | yes 5 |
Santa Rosa Sound 4 | SRS4 | 5 | 43.2 | 30.3830 | −86.8650 | sandy beach | No |
Santa Rosa Sound 5 | SRS5 | 6 | 29.3 | 30.3852 | −87.0135 | sandy beach | No |
Santa Rosa Sound 6 | SRS6 | 7 | 22.1 | 30.3737 | −87.0914 | sandy beach | No |
Naval Live Oaks S | NLOS | 8 | 18.6 | 30.3641 | −87.1276 | sandy beach | No |
Naval Live Oaks N | NLON | 9 | 17.2 | 30.3696 | −87.1426 | sandy beach | No |
East Bay | EB | 10 | 24.4 | 30.3988 | −87.0735 | sandy beach | No |
Escambia Riverdelta | ERD | 11 | 36.2 | 30.5810 | −87.1611 | sand, organic mix | No |
Scenic Bluffs | SB | 12 | 21.2 | 30.4551 | −87.1675 | sand, organic mix | No |
Bayou Texar south | BTS | 13 | 15.4 | 30.4201 | −87.1933 | sand, silt, clay | yes 6 |
Bayou Texar north | BTN | 14 | 16.7 | 30.4315 | −87.1902 | sand, silt, clay | yes 6 |
Bayou Chico east | BCE | 15 | 11.9 | 30.4001 | −87.2428 | sand, silt, clay | No |
Bayou Chico west | BCW | 16 | 13.6 | 30.4037 | −87.2604 | sand, silt, clay | yes 6 |
Bayou Grande | BG1 | 17 | 12.8 | 30.3762 | −87.3031 | sand, silt, clay | yes 6 |
Naval Air Station | NAS | 18 | 1.5 | 30.3441 | −87.3072 | sandy beach | yes 3 |
2.2. Analytical Chemistry
2.3. Data Analyses
Sample Location 1 | Sediment TPH (mg/Kg) at Each 2010 Sample Date | |||||||
---|---|---|---|---|---|---|---|---|
16–17 Jun | 24–25 Jun | 30 Jun–1 Jul | 8–9 Jul | 22–23 Jul | 5–6 Aug | 18–19 Aug | 29–30 Sept | |
1 | 6.65 | 197 * | 366 * | 4580 * | 14.3 | 2.44 | 7.18 | 7.91 |
2 | 9.59 | 7.99 | 39.8 * | 2.51 | 8.34 | 4.02 | 6.32 | 6.94 |
3 | 16.1 | 9.58 | 7.10 | 4.04 | 9.81 | 3.10 | 7.86 | 7.30 |
4 | 7.71 | 8.73 | 6.96 | 2.38 | 9.55 | 3.93 | 7.60 | 8.53 |
5 | 8.73 | 7.64 | 9.49 | 2.45 | 7.66 | 3.85 | 6.69 | 7.80 |
6 | 8.39 | 8.85 | 7.80 | 3.08 | 9.16 | 4.39 | 7.52 | 6.85 |
7 | 10.5 | 11.1 | 8.18 | 8.97 | 9.12 | 6.19 | 6.85 | 10.2 |
8 | 7.17 | 9.54 | 3.69 | 1.82 | 8.13 | 3.22 | 6.56 | 8.01 |
9 | 8.31 | 8.19 | 9.57 | 2.02 | 8.74 | 2.59 | 6.98 | 6.43 |
10 | 7.71 | 10.5 | 7.14 | 2.33 | 9.21 | 5.97 | 6.51 | 8.98 |
11 | X 2 | 9.56 | 13.6 | 2.83 | 10.70 | 4.70 | 8.60 | 13.6 |
12 | X | 8.33 | 9.39 | 2.89 | 9.80 | 4.15 | 9.56 | 10.6 |
13 | 35.7 * | 27.2 | 26.6 | 21.0 | 35.4 * | 23.7 | 21.0 | 45.7 * |
14 | 13.9 | 11 | 20.1 | 18.5 | 16.4 | 12.2 | 14.9 | 22.8 |
15 | 23.2 | 19.3 | 12.8 | 9.54 | 13.8 | 8.82 | 12.1 | 36.4 * |
16 | 12.2 | 24.3 | 18.5 | 52.2 * | 11.5 | 8.47 | 10.9 | 18.7 |
17 | 11.5 | 9.94 | 8.43 | 2.62 | 8.29 | 4.94 | 7.54 | 11.4 |
18 | X | X | X | X | 18.3 | 5.62 | 105 | 13.7 |
Biomarker | Components | MCO | FP 1 | NAS 1 |
---|---|---|---|---|
Ts/Tm 2 | 18α-22,29,30-trisnorneohopane/17α-22,29,30-trisnorhopane | 1.28 | 1.20 | 0.911 |
Ts/(Ts+Tm) 3 | 18α-22,29,30-trisnorneohopane/(18α-22,29,30-trisnorneohopane + 17α-22,29,30-trisnorhopane) | 0.561 | 0.545 | 0.477 |
Triplet terp 2 | C26 tricyclic terpane 22S + 22R/C24 tetracyclic terpane | 2.66 | 2.52 | 2.66 |
24Tri/23Tri 2 | C24 tricyclic terpane/C23 tricyclic terpane | 0.508 | 0.798 | 0.812 |
26Tri/25Tri 2 | C26 tricylclic terpane 22S + 22R/C25 tricyclic terpane | 1.03 | 1.06 | NC 3 |
28Tri/29Tri 2 | C28 tricylclic terpane 22S + 22R/C29 tricyclic terpane 22S + 22R | 1.03 | 1.17 | NC 3 |
29D/29H 2 | 18α(H)-30-norneohopane/17α(H),21β(H)-30-norhopane | 0.401 | 0.398 | 0.349 |
C28R/C29R 2 | 14α,17α-methylcholestane 20R/14α,17α-ethylcholestane 20R | 1.00 | 0.987 | 1.139 |
C31S/(S+R) 4,5 | 17α,21β-homohopane 22S/17α,21β-homohopane 22S + 22R | 0.371 | 0.407 | 0.472 |
H29/H30 2,6 | 17α,21β-30-norhopane/17α,21β-hopane | 0.493 | 0.427 | 0.466 |
Pri/Phy 6 | pristane/phytane | 1.652 | 0.611 | 0.719 |
C31S/H30 2 | 17α,21β-homohopane 22S/17α,21β-hopane | 0.227 | 0.266 | 0.325 |
C29S/(S+R) 6 | 14α,17α-ethylcholestane 20S/14α,17α-ethylcholestane 20S + R | 0.547 | 0.497 | 0.517 |
D2/P2 2,7 | C2 dibenzothiophenes/C2 phenanthrenes | 0.340 | 0.270 | 0.272 |
D3/P3 2,7 | C3 dibenzothiophenes/C3 phenanthrenes | 0.371 | 0.405 | 0.465 |
Pri/C17 6 | pristane/n-C17 | 0.629 | 0.595 | 0.765 |
Phy/C18 6 | phytane/n-C18 | 0.489 | 0.397 | 0.528 |
WR 8 | ∑ (nC23 to nC34)/∑ (nC11 to nC22) | 0.238 | 1.48 3 | 1.08 3 |
RPDI 9 | [1 − (tPAH/hopanesample)/(tPAH/hopaneoil)] × 100 | 0 | 99.5 | 98.9 |
RADI 9 | [1 – (∑ alkanes/Hopanesample)/(∑ alkanes/Hopanesource oil)] × 100 | 0 | 100 | 100 |
D3/C3 7 | C3 dibenzothiophenes/C3 chrysenes | 0.969 | 1.73 | 1.88 |
3. Results
3.1. Oil Distribution
3.2. Weathering and Fingerprinting to Source Oil
3.3. Other Contaminants
4. Discussion
Supplementary Materials
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- USCG. On Scene Coordinator Report Deepwater Horizon Oil Spill. Submitted to National Response Team September 2011. United States Coast Guard: Cincinnati, OH, USA, 2010. Available online: http://www.uscg.mil/foia/docs/dwh/fosc_dwh_report.pdf (accessed on 15 January 2015).
- Barron, M.G. Ecological impacts of the Deepwater Horizon oil spill: Implications for immuntoxicity. Toxicol. Pathol. 2012, 40, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Rosenbauer, R.J.; Campbell, P.L.; Lam, A.; Lorenson, T.D.; Hostettler, F.D.; Thomas, B.; Wong, F.L. Reconnaissance of Macondo-1 Well Oil in Sediment and Tarballs from the Northern Gulf of Mexico Shoreline, Texas to Florida; U.S. Geological Survey Open-File Report 2010–1290; United States Coast Guard: Cincinnati, OH, USA, 2010. Available online: http://pubs.usgs.gov/of/2010/1290/of2010-1290.pdf (accessed on 15 January 2015).
- Eckle, P.; Burgherr, P.; Michaux, E. Risk of large oil spills: A statistical analysis in the aftermath of Deepwater Horizon. Environ. Sci. Technol. 2012, 46, 13002–13008. [Google Scholar] [CrossRef] [PubMed]
- Carriger, J.; Barron, M.G. Minimizing risks from spilled oil to ecosystem services using influence diagrams: The Deepwater Horizon spill response. Environ. Sci. Technol. 2011, 45, 7631–7639. [Google Scholar] [CrossRef] [PubMed]
- NOAA. Environmental Response Management Application (ERMA) Deepwater Gulf Response. National Oceanographic and Atmospheric Administration; NOAA: Washington, DC, USA, 2013. Available online: http://resources.geoplatform.gov/news/mapping-response-bp-oil-spill-gulf-mexico (accessed on 25 September 2013).
- Michel, J.; Owens, E.H.; Zengel, S.; Graham, A.; Nixon, Z.; Allard, T.; Holton, W.; Reimer, P.D.; Lamarche, A.; White, M.; et al. Extent and degree of shoreline oiling: Deepwater Horizon oil spill, Gulf of Mexico, USA. PLoS ONE 2013, 8, e65087. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, J.C.; Trahan, C.J.; Howard, M.T.; Fleming, J.G.; Weaver, R.J.; Tanaka, S.; Yu, L.; Luettich, R.A.; Dawson, C.N.; Westerink, J.J.; et al. Surface trajectories of oil transport along the northern coastline of the Gulf of Mexico. Cont. Shelf Res. 2012, 41, 17–48. [Google Scholar] [CrossRef]
- Sammarco, P.W.; Kolian, S.R.; Warby, R.A.F.; Bouldin, J.L.; Subra, W.A.; Porter, S.A. Distribution and concentrations of petroleum hydrocarbons associated with the BP/Deepwater Horizon oil spill, Gulf of Mexico. Mar. Pollut. Bull. 2013, 73, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Allan, S.E.; Smith, B.W.; Anderson, K.A. Impact of Deepwater Horizon oil spill on bioavailable polycyclic aromatic hydrocarbons in Gulf of Mexico coastal waters. Environ. Sci. Technol. 2012, 46, 2033–2039. [Google Scholar] [CrossRef] [PubMed]
- USEPA. The Ecological Condition of the Pensacola Bay System, Northwest Florida; EPA/620/R-05/002; United States Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 2005.
- ESRI. ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2011. [Google Scholar]
- Page, D.S.; Boehm, P.D.; Douglas, G.S.; Bence, A.E. Identification of hydrocarbon sources in the benthic sediments of Prince William Sound and the Gulf of Alaska following the Exxon Valdez oil spill. In Exxon Valdez Oil Spill: Fate and Effects in Alaskan Waters; ASTM STP 1219; Wells, P.G., Bulter, J.N., Hughes, J.S, Eds.; American Society for Testing and Materials: Philadelphia, PA, USA, 2008; pp. 44–83. [Google Scholar]
- Wang, Z.; Stout, S.A. Chemical fingerprinting of spilled or discharged petroleum—Methods and factors affecting petroleum fingerprints in the environment. In Oil Spill Environmental Forensics: Fingerprinting and Source Identification; Wang, Z., Stout, S.A., Eds.; Elsevier Publishing Company: Boston, MA, USA, 2007; pp. 1–53. [Google Scholar]
- Wang, Z.; Stout, S.A.; Fingas, M. Forensic fingerprinting of biomarkers for oil spill characterization and source identification. Environ. Forensics 2006, 7, 105–146. [Google Scholar] [CrossRef]
- Rosenbauer, R.J.; Campbell, P.L.; Lam, A.; Lorenson, T.D.; Hostettler, F.D.; Thomas, B.; Wong, F.L. Petroleum Hydrocarbons in Sediment from Northern Gulf of Mexico Shoreline, Texas to Florida; U.S. Geological Survey Open-File Report 2011-1014; USGS: Reston, VA, USA, 2011. Available online: http://pubs.usgs.gov/of/2011/1014/of2011-1014.pdf (accessed on 15 January 2015).
- Mulabagal, V.; Yin, F.; John, G.F.; Hayworth, J.S.; Clement, T.P. Chemical fingerprinting of petroleum biomarkers in Deepwater Horizon oil spill samples collected from Alabama shoreline. Mar. Pollut. Bull. 2013, 70, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Hostettler, F.D.; Lorenson, T.D.; Bekins, B.A. Petroleum fingerprinting with organic markers. Environ. Forensics 2013, 14, 262–277. [Google Scholar] [CrossRef]
- Douglas, G.S.; Bence, A.E.; Prince, R.C.; McMillen, S.J.; Buttler, E.L. Environmental stability of selected petroleum hydrocarbon source and weathering ratios. Environ. Sci. Technol. 1996, 30, 2332–2339. [Google Scholar] [CrossRef]
- Atlas, R.M.; Bragg, J.R. Bioremediation of marine oil spills: When and when not—The Exxon Valdez experience. Microbiol. Biotech. 2009, 2, 213–221. [Google Scholar]
- Schantz, M.M.; Kucklick, J.R. Interlaboratory Analytical Comparison Study to Support Deepwater Horizon Natural Resource Damage Assessment: Description and Results for Crude Oil QA10OIL01; NISTIR 7793; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011.
- Buchman, M.F. NOAA Screening Quick Reference Tables; NOAA OR&R Report 08-1; National Oceanic and Atmospheric Administration: Seattle, WA, USA, 2008; p. 34.
- Kostka, J.E.; Prakash, O.; Overholt, W.A.; Green, S.J.; Freyer, G.; Canion, A.; Delgardio, J.; Norton, N.; Hazen, T.C.; Huettel, M. Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon Spill. Appl. Environ. Microbiol. 2011, 77, 7962–7974. [Google Scholar] [CrossRef] [PubMed]
- OSAT. Summary Report for Fate and Effects of Remnant Oil Remaining in the Beach Environment; Operational Science Advisory Team (OSAT-2); United States Coast Guard: Cincinnati, OH, USA, 2011. Available online: http://www.restorethegulf.gov/sites/default/files/u316/OSAT-2%20Report%20no%20ltr.pdf (accessed on 15 January 2015).
- Hayworth, J.S.; Clement, T.P.; Valentine, J.F. Deepwater Horizon oil spill impacts on Alabama beaches. Hydrol. Earth Syst. Sci. 2011, 15, 3639–3649. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barron, M.G.; Awkerman, J.; Raimondo, S. Oil Characterization and Distribution in Florida Estuary Sediments Following the Deepwater Horizon Spill. J. Mar. Sci. Eng. 2015, 3, 1136-1148. https://doi.org/10.3390/jmse3031136
Barron MG, Awkerman J, Raimondo S. Oil Characterization and Distribution in Florida Estuary Sediments Following the Deepwater Horizon Spill. Journal of Marine Science and Engineering. 2015; 3(3):1136-1148. https://doi.org/10.3390/jmse3031136
Chicago/Turabian StyleBarron, Mace G., Jill Awkerman, and Sandy Raimondo. 2015. "Oil Characterization and Distribution in Florida Estuary Sediments Following the Deepwater Horizon Spill" Journal of Marine Science and Engineering 3, no. 3: 1136-1148. https://doi.org/10.3390/jmse3031136