Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = toehold switches

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5375 KiB  
Article
A Novel Approach Using LuxSit-i Enhanced Toehold Switches for the Rapid Detection of Vibrio parahaemolyticus
by Xiaodan Kang, Chen Zhao, Shuting Chen, Shuran Yang, Xi Zhang, Bin Xue, Chenyu Li, Shang Wang, Xiaobo Yang, Chao Li, Zhigang Qiu, Jingfeng Wang and Zhiqiang Shen
Biosensors 2024, 14(12), 637; https://doi.org/10.3390/bios14120637 - 21 Dec 2024
Viewed by 1159
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a significant concern, as it can cause severe infections and hemolytic trauma. Given its prevalence in seawater and coastal seafood, it poses a substantial risk as a foodborne pathogen. Biosensor-based detection technology has been continuously evolving, [...] Read more.
Vibrio parahaemolyticus (V. parahaemolyticus) is a significant concern, as it can cause severe infections and hemolytic trauma. Given its prevalence in seawater and coastal seafood, it poses a substantial risk as a foodborne pathogen. Biosensor-based detection technology has been continuously evolving, and toehold switches have emerged as a promising area within it, especially in the detection of RNA viruses. Here, we have developed a cell-free toehold switch sensor for V. parahaemolyticus detection. Traditional toehold switch detection methods usually use green fluorescent protein (GFP) or enzyme LacZ as the output signal, with an incubation time as long as 2 h, and are also mainly applied to the detection of RNA viruses. In this study, we introduced a novel, artificially designed luciferase (LuxSit-i) as an output signal and constructed toehold switches with two different output signals (sfGFP, LuxSit-i), aimed at reducing the incubation time of toehold switches. Moreover, to further improve the detection process, we separately utilize recombinase polymerase amplification (RPA) and nucleic acid sequence-based amplification (NASBA) to amplify dead and live bacterial suspensions for detection and attempt to distinguish between dead and live bacteria. This study provided a convenient, rapid, and accurate method for the on-site detection of V. parahaemolyticus, especially beneficial for resource-limited settings. By eliminating the requirement for specialized facilities and personnel, this system has the potential to be a valuable tool in improving public health responses, especially in developing regions. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

16 pages, 1801 KiB  
Article
Development of Toehold Switches as a Novel Ribodiagnostic Method for West Nile Virus
by Antonis Giakountis, Zoe Stylianidou, Anxhela Zaka, Styliani Pappa, Anna Papa, Christos Hadjichristodoulou and Kostas D. Mathiopoulos
Genes 2023, 14(1), 237; https://doi.org/10.3390/genes14010237 - 16 Jan 2023
Cited by 4 | Viewed by 3053
Abstract
West Nile virus (WNV) is an emerging neurotropic RNA virus and a member of the genus Flavivirus. Naturally, the virus is maintained in an enzootic cycle involving mosquitoes as vectors and birds that are the principal amplifying virus hosts. In humans, the [...] Read more.
West Nile virus (WNV) is an emerging neurotropic RNA virus and a member of the genus Flavivirus. Naturally, the virus is maintained in an enzootic cycle involving mosquitoes as vectors and birds that are the principal amplifying virus hosts. In humans, the incubation period for WNV disease ranges from 3 to 14 days, with an estimated 80% of infected persons being asymptomatic, around 19% developing a mild febrile infection and less than 1% developing neuroinvasive disease. Laboratory diagnosis of WNV infection is generally accomplished by cross-reacting serological methods or highly sensitive yet expensive molecular approaches. Therefore, current diagnostic tools hinder widespread surveillance of WNV in birds and mosquitoes that serve as viral reservoirs for infecting secondary hosts, such as humans and equines. We have developed a synthetic biology-based method for sensitive and low-cost detection of WNV. This method relies on toehold riboswitches designed to detect WNV genomic RNA as transcriptional input and process it to GFP fluorescence as translational output. Our methodology offers a non-invasive tool with reduced operating cost and high diagnostic value that can be used for field surveillance of WNV in humans as well as in bird and mosquito populations. Full article
(This article belongs to the Section Viral Genomics)
Show Figures

Figure 1

16 pages, 3448 KiB  
Article
Cellular Computational Logic Using Toehold Switches
by Seungdo Choi, Geonhu Lee and Jongmin Kim
Int. J. Mol. Sci. 2022, 23(8), 4265; https://doi.org/10.3390/ijms23084265 - 12 Apr 2022
Cited by 7 | Viewed by 5915
Abstract
The development of computational logic that carries programmable and predictable features is one of the key requirements for next-generation synthetic biological devices. Despite considerable progress, the construction of synthetic biological arithmetic logic units presents numerous challenges. In this paper, utilizing the unique advantages [...] Read more.
The development of computational logic that carries programmable and predictable features is one of the key requirements for next-generation synthetic biological devices. Despite considerable progress, the construction of synthetic biological arithmetic logic units presents numerous challenges. In this paper, utilizing the unique advantages of RNA molecules in building complex logic circuits in the cellular environment, we demonstrate the RNA-only bitwise logical operation of XOR gates and basic arithmetic operations, including a half adder, a half subtractor, and a Feynman gate, in Escherichia coli. Specifically, de-novo-designed riboregulators, known as toehold switches, were concatenated to enhance the functionality of an OR gate, and a previously utilized antisense RNA strategy was further optimized to construct orthogonal NIMPLY gates. These optimized synthetic logic gates were able to be seamlessly integrated to achieve final arithmetic operations on small molecule inputs in cells. Toehold-switch-based ribocomputing devices may provide a fundamental basis for synthetic RNA-based arithmetic logic units or higher-order systems in cells. Full article
(This article belongs to the Special Issue Impacts of Molecular Structure on Nucleic Acid-Protein Interactions)
Show Figures

Figure 1

16 pages, 2907 KiB  
Article
Detection of pks Island mRNAs Using Toehold Sensors in Escherichia coli
by Taeyang Heo, Hansol Kang, Seungdo Choi and Jongmin Kim
Life 2021, 11(11), 1280; https://doi.org/10.3390/life11111280 - 22 Nov 2021
Cited by 6 | Viewed by 3971
Abstract
Synthetic biologists have applied biomolecular engineering approaches toward the goal of novel biological devices and have shown progress in diverse areas of medicine and biotechnology. Especially promising is the application of synthetic biological devices towards a novel class of molecular diagnostics. As an [...] Read more.
Synthetic biologists have applied biomolecular engineering approaches toward the goal of novel biological devices and have shown progress in diverse areas of medicine and biotechnology. Especially promising is the application of synthetic biological devices towards a novel class of molecular diagnostics. As an example, a de-novo-designed riboregulator called toehold switch, with its programmability and compatibility with field-deployable devices showed promising in vitro applications for viral RNA detection such as Zika and Corona viruses. However, the in vivo application of high-performance RNA sensors remains challenging due to the secondary structure of long mRNA species. Here, we introduced ‘Helper RNAs’ that can enhance the functionality of toehold switch sensors by mitigating the effect of secondary structures around a target site. By employing the helper RNAs, previously reported mCherry mRNA sensor showed improved fold-changes in vivo. To further generalize the Helper RNA approaches, we employed automatic design pipeline for toehold sensors that target the essential genes within the pks island, an important target of biomedical research in connection with colorectal cancer. The toehold switch sensors showed fold-changes upon the expression of full-length mRNAs that apparently depended sensitively on the identity of the gene as well as the predicted local structure within the target region of the mRNA. Still, the helper RNAs could improve the performance of toehold switch sensors in many instances, with up to 10-fold improvement over no helper cases. These results suggest that the helper RNA approaches can further assist the design of functional RNA devices in vivo with the aid of the streamlined automatic design software developed here. Further, our solutions for screening and stabilizing single-stranded region of mRNA may find use in other in vivo mRNA-sensing applications such as cas13 crRNA design, transcriptome engineering, and trans-cleaving ribozymes. Full article
(This article belongs to the Special Issue Synthetic Genetic Elements, Devices, and Systems)
Show Figures

Figure 1

16 pages, 3974 KiB  
Article
Design and Evaluation of Synthetic RNA-Based Incoherent Feed-Forward Loop Circuits
by Seongho Hong, Dohyun Jeong, Jordan Ryan, Mathias Foo, Xun Tang and Jongmin Kim
Biomolecules 2021, 11(8), 1182; https://doi.org/10.3390/biom11081182 - 10 Aug 2021
Cited by 17 | Viewed by 5663
Abstract
RNA-based regulators are promising tools for building synthetic biological systems that provide a powerful platform for achieving a complex regulation of transcription and translation. Recently, de novo-designed synthetic RNA regulators, such as the small transcriptional activating RNA (STAR), toehold switch (THS), and three-way [...] Read more.
RNA-based regulators are promising tools for building synthetic biological systems that provide a powerful platform for achieving a complex regulation of transcription and translation. Recently, de novo-designed synthetic RNA regulators, such as the small transcriptional activating RNA (STAR), toehold switch (THS), and three-way junction (3WJ) repressor, have been utilized to construct RNA-based synthetic gene circuits in living cells. In this work, we utilized these regulators to construct type 1 incoherent feed-forward loop (IFFL) circuits in vivo and explored their dynamic behaviors. A combination of a STAR and 3WJ repressor was used to construct an RNA-only IFFL circuit. However, due to the fast kinetics of RNA–RNA interactions, there was no significant timescale difference between the direct activation and the indirect inhibition, that no pulse was observed in the experiments. These findings were confirmed with mechanistic modeling and simulation results for a wider range of conditions. To increase delay in the inhibition pathway, we introduced a protein synthesis process to the circuit and designed an RNA–protein hybrid IFFL circuit using THS and TetR protein. Simulation results indicated that pulse generation could be achieved with this RNA–protein hybrid model, and this was further verified with experimental realization in E. coli. Our findings demonstrate that while RNA-based regulators excel in speed as compared to protein-based regulators, the fast reaction kinetics of RNA-based regulators could also undermine the functionality of a circuit (e.g., lack of significant timescale difference). The agreement between experiments and simulations suggests that the mechanistic modeling can help debug issues and validate the hypothesis in designing a new circuit. Moreover, the applicability of the kinetic parameters extracted from the RNA-only circuit to the RNA–protein hybrid circuit also indicates the modularity of RNA-based regulators when used in a different context. We anticipate the findings of this work to guide the future design of gene circuits that rely heavily on the dynamics of RNA-based regulators, in terms of both modeling and experimental realization. Full article
Show Figures

Figure 1

14 pages, 5886 KiB  
Article
Multilevel Gene Regulation Using Switchable Transcription Terminator and Toehold Switch in Escherichia coli
by Seongho Hong, Jeongwon Kim and Jongmin Kim
Appl. Sci. 2021, 11(10), 4532; https://doi.org/10.3390/app11104532 - 16 May 2021
Cited by 9 | Viewed by 4596
Abstract
Nucleic acid-based regulatory components provide a promising toolbox for constructing synthetic biological circuits due to their design flexibility and seamless integration towards complex systems. In particular, small-transcriptional activating RNA (STAR) and toehold switch as regulators of transcription and translation steps have shown a [...] Read more.
Nucleic acid-based regulatory components provide a promising toolbox for constructing synthetic biological circuits due to their design flexibility and seamless integration towards complex systems. In particular, small-transcriptional activating RNA (STAR) and toehold switch as regulators of transcription and translation steps have shown a large library size and a wide dynamic range, meeting the criteria to scale up genetic circuit construction. Still, there are limited attempts to integrate the heterogeneous regulatory components for multilevel regulatory circuits in living cells. In this work, inspired by the design principle of STAR, we designed several switchable transcription terminators starting from natural and synthetic terminators. These switchable terminators could be designed to respond to specific RNA triggers with minimal sequence constraints. When combined with toehold switches, the switchable terminators allow simultaneous control of transcription and translation processes to minimize leakage in Escherichia coli. Further, we demonstrated a set of logic gates implementing 2-input AND circuits and multiplexing capabilities to control two different output proteins. This study shows the potential of novel switchable terminator designs that can be computationally designed and seamlessly integrated with other regulatory components, promising to help scale up the complexity of synthetic gene circuits in living cells. Full article
(This article belongs to the Special Issue Applications of Nucleic Acids in Chemistry and Biology)
Show Figures

Figure 1

12 pages, 3220 KiB  
Article
Detection of Coronaviruses Using RNA Toehold Switch Sensors
by Soan Park and Jeong Wook Lee
Int. J. Mol. Sci. 2021, 22(4), 1772; https://doi.org/10.3390/ijms22041772 - 10 Feb 2021
Cited by 32 | Viewed by 5659
Abstract
A rapid, sensitive and simple point-of-care (POC) nucleic acid diagnostic test is needed to prevent spread of infectious diseases. Paper-based toehold reaction, a recently emerged colorimetric POC nucleic acid diagnostic test, has been widely used for pathogen detection and microbiome profiling. Here, we [...] Read more.
A rapid, sensitive and simple point-of-care (POC) nucleic acid diagnostic test is needed to prevent spread of infectious diseases. Paper-based toehold reaction, a recently emerged colorimetric POC nucleic acid diagnostic test, has been widely used for pathogen detection and microbiome profiling. Here, we introduce an amplification method called reverse transcription loop-mediated amplification (RT-LAMP) prior to the toehold reaction and modify it to enable more sensitive and faster colorimetric detection of RNA viruses. We show that incorporating the modified RT-LAMP to the toehold reaction detects as few as 120 copies of coronavirus RNA in 70 min. Cross-reactivity test against other coronaviruses indicates this toehold reaction with the modified RT-LAMP is highly specific to the target RNA. Overall, the paper-based toehold switch sensors with the modified RT-LAMP allow fast, sensitive, specific and colorimetric coronavirus detection. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

20 pages, 1236 KiB  
Review
Developments of Riboswitches and Toehold Switches for Molecular Detection—Biosensing and Molecular Diagnostics
by Tin Hoang Trung Chau, Dung Hoang Anh Mai, Diep Ngoc Pham, Hoa Thi Quynh Le and Eun Yeol Lee
Int. J. Mol. Sci. 2020, 21(9), 3192; https://doi.org/10.3390/ijms21093192 - 30 Apr 2020
Cited by 44 | Viewed by 8837
Abstract
Riboswitches and toehold switches are considered to have potential for implementation in various fields, i.e., biosensing, metabolic engineering, and molecular diagnostics. The specific binding, programmability, and manipulability of these RNA-based molecules enable their intensive deployments in molecular detection as biosensors for regulating gene [...] Read more.
Riboswitches and toehold switches are considered to have potential for implementation in various fields, i.e., biosensing, metabolic engineering, and molecular diagnostics. The specific binding, programmability, and manipulability of these RNA-based molecules enable their intensive deployments in molecular detection as biosensors for regulating gene expressions, tracking metabolites, or detecting RNA sequences of pathogenic microorganisms. In this review, we will focus on the development of riboswitches and toehold switches in biosensing and molecular diagnostics. This review introduces the operating principles and the notable design features of riboswitches as well as toehold switches. Moreover, we will describe the advances and future directions of riboswitches and toehold switches in biosensing and molecular diagnostics. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

12 pages, 2137 KiB  
Article
FRET-Based Aptasensor for the Selective and Sensitive Detection of Lysozyme
by Kumar Sapkota and Soma Dhakal
Sensors 2020, 20(3), 914; https://doi.org/10.3390/s20030914 - 9 Feb 2020
Cited by 36 | Viewed by 5064
Abstract
Lysozyme is a conserved antimicrobial enzyme and has been cited for its role in immune modulation. Increase in lysozyme concentration in body fluids is also regarded as an early warning of some diseases such as Alzheimer’s, sarcoidosis, Crohn’s disease, and breast cancer. Therefore, [...] Read more.
Lysozyme is a conserved antimicrobial enzyme and has been cited for its role in immune modulation. Increase in lysozyme concentration in body fluids is also regarded as an early warning of some diseases such as Alzheimer’s, sarcoidosis, Crohn’s disease, and breast cancer. Therefore, a method for a sensitive and selective detection of lysozyme can benefit many different areas of research. In this regard, several aptamers that are specific to lysozyme have been developed, but there is still a lack of a detection method that is sensitive, specific, and quantitative. In this work, we demonstrated a single-molecule fluorescence resonance energy transfer (smFRET)-based detection of lysozyme using an aptamer sensor (also called aptasensor) in which the binding of lysozyme triggers its conformational switch from a low-FRET to high-FRET state. Using this strategy, we demonstrated that the aptasensor is sensitive down to 2.3 picomoles (30 nM) of lysozyme with a dynamic range extending to ~2 µM and has little to no interference from similar biomolecules. The smFRET approach used here requires a dramatically small amount of aptasensor (~3000-fold less as compared to typical bulk fluorescence methods), and it is cost effective compared to enzymatic and antibody-based approaches. Additionally, the aptasensor can be readily regenerated in situ via a process called toehold mediated strand displacement (TMSD). The FRET-based aptasensing of lysozyme that we developed here could be implemented to detect other protein biomarkers by incorporating protein-specific aptamers without the need for changing fluorophore-labeled DNA strands. Full article
(This article belongs to the Special Issue BioMolecular Sensors)
Show Figures

Graphical abstract

13 pages, 3175 KiB  
Article
A Non-Label and Enzyme-Free Sensitive Detection Method for Thrombin Based on Simulation-Assisted DNA Assembly
by Yingying Zhang, Luhui Wang, Yanan Wang and Yafei Dong
Sensors 2018, 18(7), 2179; https://doi.org/10.3390/s18072179 - 6 Jul 2018
Cited by 8 | Viewed by 4361
Abstract
Taking advantage of the high selectivity of aptamers and enzyme-free catalyzed hairpin assembly (CHA) amplification strategy, we herein describe a label-free and enzyme-free sensitive fluorescent and colorimetric strategy for thrombin detection in this paper. In the presence of target, the corresponding aptamer of [...] Read more.
Taking advantage of the high selectivity of aptamers and enzyme-free catalyzed hairpin assembly (CHA) amplification strategy, we herein describe a label-free and enzyme-free sensitive fluorescent and colorimetric strategy for thrombin detection in this paper. In the presence of target, the corresponding aptamer of the partial dsDNA probes will bind to the target and liberate the initiation strand, which is artfully designed as the “on” switch for hairpin assembly. Moreover, the displaced initiation strand partakes in a multi-cycle process and produces numerous G-quadruplexes, which have a remarkable enhancement in fluorescent/colorimetric signal from NMM (N-methyl-mesoporphyrin IX) and TMB (3,3′,5,5′-tetramethylbenzidine), respectively. The proposed amplification strategy for thrombin detection is of high sensitivity, down to 2.4 pM, and also achieves colorimetric signals that are able to be distinguished by naked eye. More importantly, the thermodynamics of interacting DNA strands used in our work, and the process of toehold strand displacement-driven assembly are simulated before biological testing, verifying the feasibility theoretically, and simplifying the subsequent actual experiments. Therefore, our approach and simulation have a certain potential application in biomarker detection and quantitatively monitor for disease diagnosis. Full article
(This article belongs to the Special Issue Label-Free Biosensors)
Show Figures

Figure 1

Back to TopTop