Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = tire and road wear particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3830 KiB  
Article
Field Evaluation of Rice Husk Biochar and Pine Tree Woodchips for Removal of Tire Wear Particles from Urban Stormwater Runoff in Oxford, Mississippi (USA)
by Boluwatife S. Olubusoye, James V. Cizdziel, Kendall Wontor, Ruojia Li, Rachel Hambuchen, Voke Tonia Aminone, Matthew T. Moore and Erin R. Bennett
Sustainability 2025, 17(9), 4080; https://doi.org/10.3390/su17094080 - 30 Apr 2025
Viewed by 1406
Abstract
Tire wear particles (TWPs), a form of microplastics (MPs) pollution, are transported into waterbodies through stormwater runoff, leading to environmental pollution and impacts on associated biota. Here, we investigated the effectiveness of stormwater filter socks filled with rice husk biochar or pine tree [...] Read more.
Tire wear particles (TWPs), a form of microplastics (MPs) pollution, are transported into waterbodies through stormwater runoff, leading to environmental pollution and impacts on associated biota. Here, we investigated the effectiveness of stormwater filter socks filled with rice husk biochar or pine tree woodchips in reducing TWP pollution in urban runoff in Oxford, Mississippi. Triplicate runoff samples were collected upstream and downstream of the biofilters at two sites during two storm events at peak flow within minutes of the start of the storm and after 30 min. Samples were analyzed for TWPs using a combination of stereomicroscopy, micro-attenuated total reflectance Fourier transform infrared spectroscopy (µ-ATR-FTIR), and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). Concentrations (TWPs/L) upstream of the biofilter were variable but highest at the start of the runoff, dropping from an average of 2811 ± 1700 to 476 ± 63 after 30 min at site 1 and from 2702 ± 353 to 2356 ± 884 at site 2. Biochar was more effective than woodchips (p < 0.05) at removing TWPs, reducing concentrations by an average of 97.6% (first use) and 85.3% (second use) compared to 66.2% and 54.2% for woodchips, respectively. Biochar was particularly effective at removing smaller TWPs (<100 µm). Both materials became less effective with use, suggesting fewer available trapping sites and the need for removal and replacement of the material with time. Overall, this study suggests that biochar and woodchips, alone or in combination, deserve further scrutiny as a potential cost-effective and sustainable method to mitigate the transfer of TWPs to aquatic ecosystems and associated biota. Full article
Show Figures

Figure 1

17 pages, 3430 KiB  
Article
Chemical Assessment of Real Driving Tire and Road Wear Particles in Urban and Suburban Seoul, Korea
by Sunhee Mun, Hwansoo Chong, Yunsung Lim and Sangil Kwon
Sustainability 2024, 16(23), 10395; https://doi.org/10.3390/su162310395 - 27 Nov 2024
Cited by 1 | Viewed by 1394
Abstract
Extensive research about non-exhaust fine particles from tires and brakes in vehicles has been reported, focusing on the significant effects on air pollution and human harm. Significant investigations are still needed in determining the cause of influence on the environment and human health. [...] Read more.
Extensive research about non-exhaust fine particles from tires and brakes in vehicles has been reported, focusing on the significant effects on air pollution and human harm. Significant investigations are still needed in determining the cause of influence on the environment and human health. The regulations on emissions have been discussed in earnest, starting with the introduction of brake wear particle emission standards in Euro 7. Various indoor and outdoor experiments have been conducted, such as analysis of the amount of wear on tires and brakes, and analysis of the physical and chemical properties of fine particles, and the effect of non-exhaust fine wear particles on the atmosphere and human health, as fundamental data for the introduction of emission standards and the development of low-wear tires and brakes to meet regulations. Recently, international standardized indoor experimental methods for brakes have been announced, and indoor and outdoor experimental methods for tires have been continuously studied to develop international standardized methods. In particular, tire and road wear particles, including brake wear particles, are usually mixed with each other in the non-exhaust particles from a vehicle driving on real roads, and in-depth research is being performed on their accurate classification and characteristic analysis. In this study, the characteristics of the volatile organic compounds and marker substances for tire and tire and road wear particles were analyzed. A system was installed on the vehicle to collect non-exhaust wear fine particles from the vehicle running on two different roads, urban and suburban, of the Seoul area, and the proving ground road. The specific findings are as follows: (1) From the chemical analysis of the volatile organic compounds, high n-hexane and n-dodecane were measured in the tire–road-wear particles. (2) The volatile organic compound species in the PM2.5 (aerodynamic diameter ≤ 2.5 µm) increased as the vehicle velocity increased. (3) For the PM10 (aerodynamic diameter ≤ 10 µm), high volatile organic compound species were recorded at 40 km/h of the vehicle velocity. (4) This study also revealed that higher vinylcyclohexene and dipentene were measured in the particle size below 10 μm than those in PM2.5. Full article
Show Figures

Figure 1

16 pages, 7268 KiB  
Article
Traffic Intensity as a Factor Influencing Microplastic and Tire Wear Particle Pollution in Snow Accumulated on Urban Roads
by Karolina Mierzyńska, Wojciech Pol, Monika Martyniuk and Piotr Zieliński
Water 2024, 16(20), 2907; https://doi.org/10.3390/w16202907 - 13 Oct 2024
Cited by 5 | Viewed by 2215
Abstract
Traffic-related roads are an underestimated source of synthetic particles in the environment. This study investigated the impact of traffic volume on microplastic (MP) and tire wear particle (TWP) pollution in road snow. An examination was conducted in a medium-sized city situated in northeastern [...] Read more.
Traffic-related roads are an underestimated source of synthetic particles in the environment. This study investigated the impact of traffic volume on microplastic (MP) and tire wear particle (TWP) pollution in road snow. An examination was conducted in a medium-sized city situated in northeastern Poland, known for being one of the cleanest regions in the country. MPs and TWPs were found at all 54 sites, regardless of the intensity of traffic. The average concentration for all samples was 354.72 pcs/L. Statistically significant differences were found between the average values of the particle concentration on low, medium, and heavy traffic roads, amounting to 62.32 pcs/L, 335.97 pcs/L, and 792.76 pcs/L, respectively. Within all three studied groups of roads, MPs and TWPs with the smallest size, ranging from 50 to 200 μm, were prevalent. In all of the studied groups of roads, four analyzed shapes of particles were found, with irregular fragments being the most abundant form (89.23%). The most frequently recorded color among the collected samples was black (99.85%), and the least frequently recorded color was blue, constituting only 0.01%. This study suggests that snow cover on the roads may act like a temporary storage of pollutants during winter particularly in the temperate climate zone and, after thawing can significantly increase the concentration of MPs and TWPs in surface waters. Possible measures to decrease the release of MPs and TWPs into the environment in the city may include reducing the traffic volume and speed, implementing street sweeping, utilizing filtration chambers, and installing stormwater bioretention systems or settling ponds. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

14 pages, 5500 KiB  
Article
Laboratory Evaluation of Wear Particle Emissions and Suspended Dust in Tire–Asphalt Concrete Pavement Friction
by Jongsub Lee, Ohsun Kwon, Yujoong Hwang and Gyumin Yeon
Appl. Sci. 2024, 14(14), 6362; https://doi.org/10.3390/app14146362 - 22 Jul 2024
Cited by 2 | Viewed by 1283
Abstract
This study aims to evaluate the tire–road-wear particles (TRWPs) and suspended dust generated based on the nominal maximum aggregate size (NMAS) of the polymer-modified stone mastic asphalt (SMA) mixtures indoors. The SMA mixtures containing styrene butadiene styrene (SBS) polymer and the NMASs of [...] Read more.
This study aims to evaluate the tire–road-wear particles (TRWPs) and suspended dust generated based on the nominal maximum aggregate size (NMAS) of the polymer-modified stone mastic asphalt (SMA) mixtures indoors. The SMA mixtures containing styrene butadiene styrene (SBS) polymer and the NMASs of 19, 13, 10, 8, and 6 mm were used. Dust was generated from the wear of the tires and the pavement inside the indoor chamber by using the laboratory tire–road-wear particle generation and evaluation tester (LTRWP tester) developed by Korea Expressway Corporation (KEC). In this method, a cylindrical asphalt-mixture specimen rotates in the center, and a load is applied using three tires on the sides of the test specimen. During the test, a digital sensor was used to measure the concentration for each particle size. After the test was completed, the dust was collected and weighed. According to the test results, the generated TRWP emissions were reduced by approximately 0.15 g as the NMAS of the SMA mixture decreased by 1 mm. TRWP emissions decreased by 20% when using the 6 mm SMA mixture compared to the 13 mm SMA mixture. For practical application, a predicted equation of TRWP emissions estimation was developed by using the concentration of suspended dust measured by the digital sensor in the LTRWP tester. LTRWP can be used as an indoor test method to evaluate pavement and tire materials to reduce the amount of dust generated from tire and pavement wear. Full article
(This article belongs to the Special Issue Advances in Renewable Asphalt Pavement Materials)
Show Figures

Figure 1

14 pages, 3534 KiB  
Article
Abrasion Behaviors of Silica-Reinforced Solution Styrene–Butadiene Rubber Compounds Using Different Abrasion Testers
by Eunji Chae, Seong Ryong Yang and Sung-Seen Choi
Polymers 2024, 16(14), 2038; https://doi.org/10.3390/polym16142038 - 17 Jul 2024
Cited by 3 | Viewed by 1725
Abstract
Solution styrene–butadiene rubber (SSBR) is widely used to improve the properties of tire tread compounds. Tire wear particles (TWPs), which are generated on real roads as vehicles traverse, represent one of significant sources of microplastics. In this study, four SSBR compounds were prepared [...] Read more.
Solution styrene–butadiene rubber (SSBR) is widely used to improve the properties of tire tread compounds. Tire wear particles (TWPs), which are generated on real roads as vehicles traverse, represent one of significant sources of microplastics. In this study, four SSBR compounds were prepared using two SSBRs with high styrene (STY samples) and 1,2-unit (VIN samples) contents, along with dicyclopentadiene resin. The abrasion behaviors were investigated using four different abrasion testers: cut and chip (CC), Lambourn, DIN, and laboratory abrasion tester (LAT100). The abrasion rates observed in the Lambourn and LAT100 abrasion tests were consistent with each other, but the results of CC and DIN abrasion tests differed from them. The addition of the resin improved the abrasion rate and resulted in the generation of large wear particles. The abrasion rates of STY samples in the Lambourn and LAT100 abrasion tests were lower than those of VIN samples, whereas the values in the CC and DIN abrasion tests were higher than those of VIN samples. The wear particles were predominantly larger than 1000 μm, except for the VIN sample in the DIN abrasion test. However, TWPs > 1000 μm are rarely produced on real roads. The size distributions of wear particles > 1000 μm were 74.0–99.5%, 65.9–93.4%, 7.2–95.1%, and 37.5–83.0% in the CC, Lambourn, DIN, and LAT100 abrasion tests, respectively. The size distributions of wear particles in the Lambourn and LAT100 abrasion tests were broader than those in the other tests, whereas the distributions in the CC abrasion test were narrower. The abrasion patterns and the morphologies and size distributions of wear particles generated by the four abrasion tests varied significantly, attributable to differences in the bound rubber contents, crosslink densities, and tensile properties. Full article
Show Figures

Figure 1

13 pages, 2520 KiB  
Article
Characteristics of Vehicle Tire and Road Wear Particles’ Size Distribution and Influencing Factors Examined via Laboratory Test
by Chongzhi Zhong, Jiaxing Sun, Jing Zhang, Zishu Liu, Tiange Fang, Xiaoyu Liang, Jiawei Yin, Jianfei Peng, Lin Wu, Qijun Zhang and Hongjun Mao
Atmosphere 2024, 15(4), 423; https://doi.org/10.3390/atmos15040423 - 29 Mar 2024
Cited by 7 | Viewed by 3612
Abstract
With the implementation of strict emission regulations and the use of cleaner fuels, there has been a considerable reduction in exhaust emissions. However, the relative contribution of tire wear particles (TWPs) to particulate matters is expected to gradually increase. This study conducted laboratory [...] Read more.
With the implementation of strict emission regulations and the use of cleaner fuels, there has been a considerable reduction in exhaust emissions. However, the relative contribution of tire wear particles (TWPs) to particulate matters is expected to gradually increase. This study conducted laboratory wear experiments on tires equipped on domestically popular vehicle models, testing the factors and particle size distribution of TWPs. The results showed that the content of tire wear particle emission was mainly ultrafine particles, accounting for 94.80% of particles ranging from 6 nm to 10 μm. There were at least two concentration peaks for each test condition and sample, at 10~13 nm and 23~41 nm, respectively. The mass of TWP emission was mainly composed of fine particles and coarse particles, with concentration peaks at 0.5 μm and 1.3–2.5 μm, respectively. Both the number and mass of TWPs exhibited a bimodal distribution, with significant differences in emission intensity among different tire samples. However, there was a good exponential relationship between PM10 mass emissions from tire wear and tire camber angle. The orthogonal experimental results showed that the slip angle showed the greatest impact on TWP emission, followed by speed and load, with the smallest impact from inclination angle. Full article
(This article belongs to the Special Issue Traffic Related Emission (2nd Edition))
Show Figures

Figure 1

14 pages, 5009 KiB  
Article
An Experimental Study on the Fine Particle Emissions of Brake Pads According to Different Conditions Assuming Vehicle Deceleration with Pin-on-Disc Friction Test
by Jaesang Yoo and Youngze Lee
Appl. Sci. 2024, 14(3), 1000; https://doi.org/10.3390/app14031000 - 24 Jan 2024
Cited by 1 | Viewed by 1536
Abstract
Fine particles from vehicles occur in a range of particulate matter (PM) sizes and influence the roadside atmosphere. The contribution of fine dust from automobiles to road pollution has reportedly been extremely high. Researchers have estimated that non-exhaust fine dust originating from brakes, [...] Read more.
Fine particles from vehicles occur in a range of particulate matter (PM) sizes and influence the roadside atmosphere. The contribution of fine dust from automobiles to road pollution has reportedly been extremely high. Researchers have estimated that non-exhaust fine dust originating from brakes, tires, clutches, and road surface wear rate is increasing. Several studies have shown that brake pads account for a significant proportion of non-exhaust emissions. In this study, a friction test using vehicle brake pads was carried out with a friction tester to reveal the harmfulness of brake pad particles by the driver’s driving habits. Conditions were made considering the pressure, vehicle speed, and temperature and assuming the amount of deceleration of the vehicle. Particle collection devices were used to analyze the concentration of number and the mass distribution of particles produced in the experiment, with a range from 6 nm to 7.3 μm to gauge the toxicity of particles. The results showed that the number concentration of fine particles tended to increase linearly with changes in vehicle deceleration (braking energy) in the particle diameter region around 0.75–7.3 μm. The number concentration of fine particles tended to increase exponentially in the particle diameter region around 71–120 nm. The rapid occurrence of ultrafine particles in nanometers varied depending on the test conditions. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

22 pages, 3275 KiB  
Article
Influence of Longitudinal and Lateral Forces on the Emission of Tire–Road Particulate Matter and Its Size Distribution
by Stefan Schläfle, Hans-Joachim Unrau and Frank Gauterin
Atmosphere 2023, 14(12), 1780; https://doi.org/10.3390/atmos14121780 - 1 Dec 2023
Cited by 7 | Viewed by 2716
Abstract
The objective of this study was to experimentally determine the mathematical correlations between the loading of the tire, being longitudinal and lateral forces, and the emission of particulate matter (PM) from the tire–road contact. Existing emission factors (EF, emission per vehicle and distance [...] Read more.
The objective of this study was to experimentally determine the mathematical correlations between the loading of the tire, being longitudinal and lateral forces, and the emission of particulate matter (PM) from the tire–road contact. Existing emission factors (EF, emission per vehicle and distance traveled) are the result of long-term measurements, which means that no conclusion can be drawn about the exact driving condition. To determine meaningful emission factors, extensive driving tests were conducted on an internal drum test bench while measuring PM emissions from the tire–road contact in real-time. This showed that the increases in emission over longitudinal and lateral forces can be approximated with fourth-order functions, with lateral forces leading to significantly higher emissions than longitudinal forces for the summer tire investigated. Using the emission functions obtained, a three-dimensional map was created that assigns an EF to each load condition consisting of different longitudinal and lateral forces for one vertical load. With known driving data, the map can be used for future simulation models to predict the total emission of real driving cycles. Furthermore, the results show that the average particle size increases with increasing horizontal force. The particles collected during the tests were analyzed to determine the proportions of tire and road material. According to the results, the tire contributes only about 20% of the particle mass, while 80% is attributable to the road surface. In terms of volume, these shares are 32% and 68%, respectively. Full article
(This article belongs to the Special Issue Vehicle Exhaust and Non-exhaust Emissions)
Show Figures

Figure 1

18 pages, 4028 KiB  
Article
Quantification and Chemical Characterization of Plastic Additives and Small Microplastics (<100 μm) in Highway Road Dust
by Beatrice Rosso, Barbara Bravo, Elena Gregoris, Carlo Barbante, Andrea Gambaro and Fabiana Corami
Toxics 2023, 11(11), 936; https://doi.org/10.3390/toxics11110936 - 17 Nov 2023
Cited by 6 | Viewed by 3283
Abstract
Road dust is one of the environment’s most important microplastic and plastic additive sources. Traffic vehicles and the wear of tires can release these emerging contaminants, which can be resuspended in the air and washed off by stormwater runoff. In this study, a [...] Read more.
Road dust is one of the environment’s most important microplastic and plastic additive sources. Traffic vehicles and the wear of tires can release these emerging contaminants, which can be resuspended in the air and washed off by stormwater runoff. In this study, a concurrent quantification and chemical characterization of additives, plasticizers, natural and non-plastic synthetic fibers (APFs), and small microplastics (SMPs, <100 µm) in samples of highway road dust (HWRD) was performed. The sampling procedure was optimized, as well as pretreatment (extraction, purification, and filtration) and analysis via micro-FTIR. The average length of the SMPs was 88 µm, while the average width was 50 µm. The highest abundance of SMPs was detected in HWRD 7 (802 ± 39 SMPs/g). Among the polymers characterized and quantified, vinyl ester and polytetrafluoroethylene were predominant. APFs’ average particle length was 80 µm and their width was 45 µm, confirming that both of these emerging pollutants are less than 100 µm in size. Their maximum concentration was in RD7, with 1044 ± 45 APFs/g. Lubricants and plasticizers are the two most abundant categories, followed by vulcanizing agents, accelerators, and pre-vulcanizing retarders derived mainly from tires. A potential relationship between APFs and SMPs in the different seasons was observed, as their concentration was lower in summer for both and higher in winter 2022. These results will be significant in investigating the load of these pollutants from highways, which is urgently necessary for more accurate inclusion in emission inventories, receptor modeling, and health protection programs by policymakers, especially in air and water pollution policies, to prevent risks to human health. Full article
Show Figures

Figure 1

11 pages, 1931 KiB  
Article
An Experimental Study on the Component Analysis and Variation in Concentration of Tire and Road Wear Particles Collected from the Roadside
by Taewoo Kang and Hyeokjung Kim
Sustainability 2023, 15(17), 12815; https://doi.org/10.3390/su151712815 - 24 Aug 2023
Cited by 7 | Viewed by 1685
Abstract
Tire and road wear particles (TRWPs) are generated unintentionally while driving vehicles. The generated TRWPs move to various environments by environmental and mechanical action, and they are present in fresh water, river, and ocean and may cause problems to the environment and human [...] Read more.
Tire and road wear particles (TRWPs) are generated unintentionally while driving vehicles. The generated TRWPs move to various environments by environmental and mechanical action, and they are present in fresh water, river, and ocean and may cause problems to the environment and human health. In Korea, the number of registered cars is increasing year by year, so the problem of TRWPs will become serious. In this study, we study the concentrations of TRWPs generated from the roadsides by temperature difference, in order to reduce the generation of TRWPs. Dust samples were collected from roadsides during summer and winter to measure the amount of TRWPs generated on roadsides according to seasonal temperature changes. Dust particles of 75–150 µm size, which corresponds to the TRWP size, were separated from the dust samples using sieves. Additionally, only TRWPs were separated using a solution of dibromomethane and Trans-1,2-dichloroethylene. TRWPs accounted for <2% in the dust collected from roadsides, and their amount increased by approximately 7.6–24.2% in summer more than in winter. Thermogravimetric analysis results confirmed that the tire components and road components and minerals accounted for 30% and 70% in TRWPs regardless of the season, respectively. Full article
Show Figures

Figure 1

18 pages, 9331 KiB  
Article
Characterization of Road Dust, PMx and Aerosol in a Shopping–Recreational Urban Area: Physicochemical Properties, Concentration, Distribution and Sources Estimation
by Dusan Jandacka, Matej Brna, Daniela Durcanska and Matus Kovac
Sustainability 2023, 15(17), 12674; https://doi.org/10.3390/su151712674 - 22 Aug 2023
Cited by 3 | Viewed by 1751
Abstract
Road transport is a source of exhaust and non-exhaust emissions of particulate matter (PM). Non-exhaust PM emissions include road surface wear, tires, brakes and road dust resuspension. An important part of PM in urban air consists of particles that originate from the resuspension [...] Read more.
Road transport is a source of exhaust and non-exhaust emissions of particulate matter (PM). Non-exhaust PM emissions include road surface wear, tires, brakes and road dust resuspension. An important part of PM in urban air consists of particles that originate from the resuspension of road dust. This study focused on the analysis of the physicochemical properties of road dust and PM10, PM2.5 and PM1 (PMx) in the air (size, concentration, distribution, content of chemical elements), the properties of urban aerosol (number, mass and area distribution), and at the same time, the interconnection between the detected chemical elements in road dust and individual PM fractions in the air in order to reveal the sources of PM in the Žilina City, Slovakia. The presence of various chemical elements was found in road dust, of which the highest concentrations (more than 100 mg/g) were the elements Ca, Si and Al (specifically 373.3 mg/g, 351.4 mg/g and 113.9 mg/g on average from four sampling sites). The concentrations of PM10, PM2.5 and PM1 were, on average, 27.2 μg/m3, 19.5 μg/m3 and 14.5 μg/m3 during the measurement period according to the reference gravimetric method. The chemical elements K, S, Cd, Sb, Pb, Ni and Zn were detected and the most represented (more than 60%) in the fine PM2.5 fraction, and the chemical elements Mg, Al, Si, Ca, Cr, Cu, Fe and Ba were the most represented in the coarse PM2.5–10 fraction. The analysis of the aerosol in the range of 12 nm–20 μm revealed a bimodal distribution of the collected sample of the investigated urban aerosol. This study provides a comprehensive view of the properties of road dust, airborne PM and aerosol (up to the size of nanoparticles), which can contribute to the expansion of knowledge in this field. Full article
Show Figures

Figure 1

14 pages, 7631 KiB  
Article
Tire Wear Monitoring Approach for Hotspot Identification in Road Deposited Sediments from a Metropolitan City in Germany
by Daniel Venghaus, Johannes Wolfgang Neupert and Matthias Barjenbruch
Sustainability 2023, 15(15), 12029; https://doi.org/10.3390/su151512029 - 5 Aug 2023
Cited by 5 | Viewed by 2138
Abstract
Plastic in the environment poses an increasing challenge. Microplastics, which include tire wear, enter the aquatic environment via different pathways, and increasing vehicle traffic leads to increased tire wear. This paper describes an approach for how inner-city tire wear hotspots can systematically be [...] Read more.
Plastic in the environment poses an increasing challenge. Microplastics, which include tire wear, enter the aquatic environment via different pathways, and increasing vehicle traffic leads to increased tire wear. This paper describes an approach for how inner-city tire wear hotspots can systematically be identified by sampling road-deposited sediments (RDS) by sweeping. Within the investigations herein described, six inner-city monitoring sites were sampled. The total masses of solids as well as the amount of styrene-butadiene rubber (SBR) representing Tire and Road Wear Particles (TRWP) were determined. It was shown that the sites differ significantly from each other with regard to SBR parts. The amount of SBR in the curve was on average eight times higher than in the slope, and in the area of the traffic lights, it was on average three times higher than in the slope. The RDS mass results also differ but with a factor of 2 for the curve and of 1.5 for the traffic light. The investigations and the corresponding results in this paper are unique, and the monitoring approach can be used in the future to derive and optimize sustainable measures in order to reduce the discharge of TRWP into the environment by road runoff. Full article
Show Figures

Figure 1

13 pages, 9767 KiB  
Article
Real-Time Pyrolysis Dynamics of Thermally Aged Tire Microplastics by TGA-FTIR-GC/MS
by Guangteng Bai, Juyang Fu, Qian Zhou and Xiangliang Pan
Water 2023, 15(10), 1944; https://doi.org/10.3390/w15101944 - 21 May 2023
Cited by 6 | Viewed by 3808
Abstract
Tire wear particles (TWPs), as a type of thermosetting microplastic (MP), accumulate in aquatic environments due to their wide application in road traffic globally. The increase in temperature because of friction heat may cause aging of tire materials, inducing water evaporation, additive volatilization, [...] Read more.
Tire wear particles (TWPs), as a type of thermosetting microplastic (MP), accumulate in aquatic environments due to their wide application in road traffic globally. The increase in temperature because of friction heat may cause aging of tire materials, inducing water evaporation, additive volatilization, polymer decomposition, and may pose serious potential risks to aquatic and terrestrial ecosystems. However, research on real-time pyrolysis dynamics of thermally aged tire MPs is very limited. In this study, a thermogravimetric analyzer coupled with Fourier transform infrared spectrometry and gas chromatography-mass spectrometry (TG-FTIR-GC/MS) was used to investigate pyrolysis behaviors and products of thermally aged tire MPs. FTIR analysis indicated that the main pyrolysis gases included carbon dioxide, carbon monoxide, aliphatic compounds, aromatic compounds and carbonyl compounds. The GC/MS analysis further determined the main pyrolytic products, including methylbenzene, styrene, m-xylene and D-limonene. These data combined with TG analysis revealed that the main pyrolytic products of TWPs were released at 400–600 °C. Moreover, the results showed that the number of aliphatic/aromatic compounds released increased in short-term thermo-oxidative aging but decreased in long-term thermo-oxidative aging. Moreover, the aged TWPs presented higher released amounts of styrene and methylbenzene but lower amounts of D-limonene compared to the original TWPs. These results can provide new insights into the evaluation method of TWP aging and a better understanding on TWP fate in aquatic and terrestrial environments. Full article
(This article belongs to the Special Issue Microplastics Pollution and Solutions)
Show Figures

Figure 1

12 pages, 3039 KiB  
Article
Variation in Abundance Ratio of Isoprene and Dipentene Produced from Wear Particles Composed of Natural Rubber by Pyrolysis Depending on the Particle Size and Thermal Aging
by Uiyeong Jung and Sung-Seen Choi
Polymers 2023, 15(4), 929; https://doi.org/10.3390/polym15040929 - 13 Feb 2023
Cited by 11 | Viewed by 2525
Abstract
Tire wear particles (TWPs) are generated by friction between the road and the tire. TWPs are one of the major microplastics found in environmental samples, such as road dust, particulate matter (PM), and sediment. TWP contents in environmental samples are generally analyzed using [...] Read more.
Tire wear particles (TWPs) are generated by friction between the road and the tire. TWPs are one of the major microplastics found in environmental samples, such as road dust, particulate matter (PM), and sediment. TWP contents in environmental samples are generally analyzed using the pyrolysis technique. Tire tread compounds of heavy vehicles are usually composed of natural rubber (NR). Isoprene and dipentene are the principal pyrolysis products of NR, and dipentene is employed as the key marker for the determination of the TWP contents. In this study, an NR abrasion specimen was thermally aged, and an abrasion test was performed to obtain the wear particles. The influence of the wear particle size and thermal aging on the pyrolysis behavior of NR was investigated. The isoprene/dipentene ratio exponentially increased as the wear particle size decreased, and it was also increased by the thermal aging of the abrasion specimen. The increased isoprene/dipentene ratio by thermal aging was explained by increasing the crosslink density. Using the relationship between the wear particle size and the isoprene/dipentene ratio, it is possible to estimate the isoprene/dipentene ratio for very small TWP such as PM. The experimental results concluded that the wear particle size and thermal aging affect the formation of the key pyrogenic products, and the influencing factors should be considered for the quantification of TWP contents in the environmental samples. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

15 pages, 4770 KiB  
Article
Tire and Road Wear Particle-Containing Sediments with High Organic Content Impact Behavior and Survival of Chironomid Larvae (Chironomus riparius)
by Tatjana Tull, Stefanie Krais, Katharina Peschke, Steffen Weyrauch, Rita Triebskorn and Heinz-R. Köhler
Environments 2023, 10(2), 23; https://doi.org/10.3390/environments10020023 - 29 Jan 2023
Cited by 3 | Viewed by 4044
Abstract
Tire and road wear particles (TRWP), which contribute significantly to microplastic emission, are receiving more attention, but details about particle composition, translocation from source to sink, and particularly the possible effects on ecosystems are largely unknown. We examined the influence of native TRWP-containing [...] Read more.
Tire and road wear particles (TRWP), which contribute significantly to microplastic emission, are receiving more attention, but details about particle composition, translocation from source to sink, and particularly the possible effects on ecosystems are largely unknown. We examined the influence of native TRWP-containing sediments from two settling ponds on the mortality and behavior of the aquatic larvae of Chironomus riparius. Both sediments, whether pure or mixed with different proportions of quartz sand and suspended in water, led to increased mortalities with increasing concentrations and were shown to be oxygen consuming. Artificial aeration significantly reduced larval mortality in both sediments. Chironomid larvae show high tolerance to anoxic and polluted environments due to physiological and behavioral adaptations, such as the construction of vertical sediment tubes (chimneys), in which they create oxic compartments. A significant correlation was found between the proportion of contaminated sediment and the number of chimneys: the more contaminated sediment, the fewer chimneys were constructed. The number of chimneys per surviving larva decreased with an increased proportion of contaminated sediment in parallel to increased larval mortality. We hypothesize that contents of these sediments negatively impact the larvae’s ability to survive at low oxygen concentrations due to impairments of essential behavioral and physiological processes. Full article
Show Figures

Figure 1

Back to TopTop