Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = time series integrated regression fuzzy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3266 KB  
Article
Wavelet Multiresolution Analysis-Based Takagi–Sugeno–Kang Model, with a Projection Step and Surrogate Feature Selection for Spectral Wave Height Prediction
by Panagiotis Korkidis and Anastasios Dounis
Mathematics 2025, 13(15), 2517; https://doi.org/10.3390/math13152517 - 5 Aug 2025
Viewed by 384
Abstract
The accurate prediction of significant wave height presents a complex yet vital challenge in the fields of ocean engineering. This capability is essential for disaster prevention, fostering sustainable development and deepening our understanding of various scientific phenomena. We explore the development of a [...] Read more.
The accurate prediction of significant wave height presents a complex yet vital challenge in the fields of ocean engineering. This capability is essential for disaster prevention, fostering sustainable development and deepening our understanding of various scientific phenomena. We explore the development of a comprehensive predictive methodology for wave height prediction by integrating novel Takagi–Sugeno–Kang fuzzy models within a multiresolution analysis framework. The multiresolution analysis emerges via wavelets, since they are prominent models characterised by their inherent multiresolution nature. The maximal overlap discrete wavelet transform is utilised to generate the detail and resolution components of the time series, resulting from this multiresolution analysis. The novelty of the proposed model lies on its hybrid training approach, which combines least squares with AdaBound, a gradient-based algorithm derived from the deep learning literature. Significant wave height prediction is studied as a time series problem, hence, the appropriate inputs to the model are selected by developing a surrogate-based wrapped algorithm. The developed wrapper-based algorithm, employs Bayesian optimisation to deliver a fast and accurate method for feature selection. In addition, we introduce a projection step, to further refine the approximation capabilities of the resulting predictive system. The proposed methodology is applied to a real-world time series pertaining to spectral wave height and obtained from the Poseidon operational oceanography system at the Institute of Oceanography, part of the Hellenic Center for Marine Research. Numerical studies showcase a high degree of approximation performance. The predictive scheme with the projection step yields a coefficient of determination of 0.9991, indicating a high level of accuracy. Furthermore, it outperforms the second-best comparative model by approximately 49% in terms of root mean squared error. Comparative evaluations against powerful artificial intelligence models, using regression metrics and hypothesis test, underscore the effectiveness of the proposed methodology. Full article
(This article belongs to the Special Issue Applications of Mathematics in Neural Networks and Machine Learning)
Show Figures

Figure 1

30 pages, 8853 KB  
Article
Research and Prediction Analysis of Key Factors Influencing the Carbon Dioxide Emissions of Countries Along the “Belt and Road” Based on Panel Regression and the A-A-E Coupling Model
by Xiang-Dong Feng, Xiang-Long Wang, Li Wen, Yao Yuan and Yu-Qin Zhang
Sustainability 2024, 16(24), 11014; https://doi.org/10.3390/su162411014 - 16 Dec 2024
Cited by 1 | Viewed by 1241
Abstract
With the in-depth implementation of China’s “Belt and Road” strategic policy, member countries along the Belt and Road have gained enormous economic benefits. Thus, it is important to accurately grasp the factors that affect carbon emissions and coordinate the relationship between economic development [...] Read more.
With the in-depth implementation of China’s “Belt and Road” strategic policy, member countries along the Belt and Road have gained enormous economic benefits. Thus, it is important to accurately grasp the factors that affect carbon emissions and coordinate the relationship between economic development and environmental protection, which can impact the living environment of people worldwide. In this study, the researchers gathered data from the World Bank database, identified key indicators significantly impacting carbon emissions, employed the Pearson correlation coefficient and random forest model to perform dimensionality reduction on these indicators, and subsequently assessed the refined data using a panel regression model to examine the correlation and significance of these indicators and carbon emissions across various country types. To ensure the stability of the results, three prediction models were selected for coupling analysis: the adaptive neuro-fuzzy inference system (ANFIS) from the field of machine learning, the autoregressive integrated moving average (ARIMA) model, and the exponential smoothing method prediction model (ES) from the field of time series prediction. These models were used to assess carbon emissions from 54 countries along the Belt and Road from 2021 to 2030, and a coupling formula was defined to integrate the prediction results. The findings demonstrated that the integrated prediction amalgamates the forecasting traits of the three approaches, manifesting remarkable stability. The error analysis also indicated that the short-term prediction results are satisfactory. This has substantial practical implications for China in terms of fine-tuning its foreign policy, considering the entire situation and planning accordingly, and advancing energy conservation and emission reduction worldwide. Full article
Show Figures

Figure 1

15 pages, 969 KB  
Article
Double Decomposition and Fuzzy Cognitive Graph-Based Prediction of Non-Stationary Time Series
by Junfeng Chen, Azhu Guan and Shi Cheng
Sensors 2024, 24(22), 7272; https://doi.org/10.3390/s24227272 - 14 Nov 2024
Cited by 2 | Viewed by 1100
Abstract
Deep learning models, such as recurrent neural network (RNN) models, are suitable for modeling and forecasting non-stationary time series but are not interpretable. A prediction model with interpretability and high accuracy can improve decision makers’ trust in the model and provide a basis [...] Read more.
Deep learning models, such as recurrent neural network (RNN) models, are suitable for modeling and forecasting non-stationary time series but are not interpretable. A prediction model with interpretability and high accuracy can improve decision makers’ trust in the model and provide a basis for decision making. This paper proposes a double decomposition strategy based on wavelet decomposition (WD) and empirical mode decomposition (EMD). We construct a prediction model of high-order fuzzy cognitive maps (HFCM), called the WE-HFCM model, which considers interpretability and strong reasoning ability. Specifically, we use the WD and EDM algorithms to decompose the time sequence signal and realize the depth extraction of the signal’s high-frequency, low-frequency, time-domain, and frequency domain features. Then, the ridge regression algorithm is used to learn the HFCM weight vector to achieve modeling prediction. Finally, we apply the proposed WE-HFCM model to stationary and non-stationary datasets in simulation experiments. We compare the predicted results with the autoregressive integrated moving average (ARIMA) and long short-term memory (LSTM) models.For stationary time series, the prediction accuracy of the WE-HFCM model is about 45% higher than that of the ARIMA, about 35% higher than that of the SARIMA model, and about 16% higher than that of the LSTM model. For non-stationary time series, the prediction accuracy of the WE-HFCM model is 69% higher than that of the ARIMA and SARIMA models. Full article
(This article belongs to the Special Issue Emerging Machine Learning Techniques in Industrial Internet of Things)
Show Figures

Figure 1

11 pages, 1039 KB  
Article
Granular Weighted Fuzzy Approach Applied to Short-Term Load Demand Forecasting
by Cesar Vinicius Züge and Leandro dos Santos Coelho
Technologies 2024, 12(10), 182; https://doi.org/10.3390/technologies12100182 - 1 Oct 2024
Viewed by 2170
Abstract
The development of accurate models to forecast load demand across different time horizons is challenging due to demand patterns and endogenous variables that affect short-term and long-term demand. This paper presents two contributions. First, it addresses the problem of the accuracy of the [...] Read more.
The development of accurate models to forecast load demand across different time horizons is challenging due to demand patterns and endogenous variables that affect short-term and long-term demand. This paper presents two contributions. First, it addresses the problem of the accuracy of the probabilistic forecasting model for short-term time series where endogenous variables interfere by emphasizing a low computational cost and efficient approach such as Granular Weighted Multivariate Fuzzy Time Series (GranularWMFTS) based on the fuzzy information granules method and a univariate form named Probabilistic Fuzzy Time Series. Secondly, it compares time series forecasting models based on algorithms such as Holt-Winters, Auto-Regressive Integrated Moving Average, High Order Fuzzy Time Series, Weighted High Order Fuzzy Time Series, and Multivariate Fuzzy Time Series (MVFTS) where this paper is based on Root Mean Squared Error, Symmetric Mean Absolute Percentage Error, and Theil’s U Statistic criteria relying on 5% error criteria. Finally, it presents the concept and nuances of the forecasting approaches evaluated, highlighting the differences between fuzzy algorithms in terms of fuzzy logical relationship, fuzzy logical relationship group, and fuzzification in the training phase. Overall, the GranularWMVFTS and weighted MVFTS outperformed other evaluated forecasting approaches regarding the performance criteria adopted with a low computational cost. Full article
(This article belongs to the Collection Electrical Technologies)
Show Figures

Figure 1

10 pages, 1753 KB  
Proceeding Paper
Yearly Residential Electricity Forecasting Model Based on Fuzzy Regression Time Series in Indonesia
by Riswan Efendi, Noor Wahida Md Yunus, Sri Rahayu Widyawati, Rika Susanti, Erol Egrioglu, Muhammad Syahri, Emansa Hasri Putra and Amir Hamzah
Eng. Proc. 2023, 39(1), 4; https://doi.org/10.3390/engproc2023039004 - 26 Jun 2023
Viewed by 1266
Abstract
Triangular fuzzy numbers (TFNs) are used to express the weights of criteria and alternatives to account for the ambiguity and uncertainty inherent to subjective evaluations. However, the proposed method can easily be extended to other fuzzy settings depending on the uncertainty facing managers [...] Read more.
Triangular fuzzy numbers (TFNs) are used to express the weights of criteria and alternatives to account for the ambiguity and uncertainty inherent to subjective evaluations. However, the proposed method can easily be extended to other fuzzy settings depending on the uncertainty facing managers and decision-makers. Triangular fuzzy number (TFN) is a critical component in building fuzzy models such as fuzzy regression and fuzzy autoregressive. Many symmetrical triangular fuzzy numbers have been proposed to improve the scale’s linguistic accuracy. Additionally, Sturges’ rule is a well-known approach to determining criteria or intervals of grouped data. However, some existing TFN methods are challenging despite being considered in building fuzzy regression models. The increase in electricity distribution is caused by the number of customers and the amount of installed capacity factors in Indonesia. The identified factors are uncertainty, inexactness, and random nature. This paper investigates the residential electricity distribution model using fuzzy regression time series. In the beginning step, the integration between conventional TFN and Sturges’ rule was proposed to determine the criteria or scale of linguistic terms. The secondary data was collected from BPS Indonesia from 2000 to 2021. The dependent variable was denoted as electric power distribution (YRT). On the other hand, the number of customers and the amount of installed capacity were grouped as independent variables (XPL and XKT). The results showed that the best forecasting model is an FLR right upper limit without constant. This proposed model also has higher MAPE accuracy at 1.44% compared to classical models. Additionally, the proposed triangular fuzzy number could improve the accuracy of the proposed model significantly. Interestingly, both dependent and independent factors were initially forecasted using a basic time series model, namely exponential smoothing. Full article
(This article belongs to the Proceedings of The 9th International Conference on Time Series and Forecasting)
Show Figures

Figure 1

15 pages, 2104 KB  
Article
A Fuzzy Seasonal Long Short-Term Memory Network for Wind Power Forecasting
by Chin-Wen Liao, I-Chi Wang, Kuo-Ping Lin and Yu-Ju Lin
Mathematics 2021, 9(11), 1178; https://doi.org/10.3390/math9111178 - 23 May 2021
Cited by 10 | Viewed by 2875
Abstract
To protect the environment and achieve the Sustainable Development Goals (SDGs), reducing greenhouse gas emissions has been actively promoted by global governments. Thus, clean energy, such as wind power, has become a very important topic among global governments. However, accurately forecasting wind power [...] Read more.
To protect the environment and achieve the Sustainable Development Goals (SDGs), reducing greenhouse gas emissions has been actively promoted by global governments. Thus, clean energy, such as wind power, has become a very important topic among global governments. However, accurately forecasting wind power output is not a straightforward task. The present study attempts to develop a fuzzy seasonal long short-term memory network (FSLSTM) that includes the fuzzy decomposition method and long short-term memory network (LSTM) to forecast a monthly wind power output dataset. LSTM technology has been successfully applied to forecasting problems, especially time series problems. This study first adopts the fuzzy seasonal index into the fuzzy LSTM model, which effectively extends the traditional LSTM technology. The FSLSTM, LSTM, autoregressive integrated moving average (ARIMA), generalized regression neural network (GRNN), back propagation neural network (BPNN), least square support vector regression (LSSVR), and seasonal autoregressive integrated moving average (SARIMA) models are then used to forecast monthly wind power output datasets in Taiwan. The empirical results indicate that FSLSTM can obtain better performance in terms of forecasting accuracy than the other methods. Therefore, FSLSTM can efficiently provide credible prediction values for Taiwan’s wind power output datasets. Full article
(This article belongs to the Special Issue Fuzzy Applications in Industrial Engineering)
Show Figures

Figure 1

29 pages, 1666 KB  
Article
Inventory Routing Problem in Supply Chain of Perishable Products under Cost Uncertainty
by Muhammad Imran, Muhammad Salman Habib, Amjad Hussain, Naveed Ahmed and Abdulrahman M. Al-Ahmari
Mathematics 2020, 8(3), 382; https://doi.org/10.3390/math8030382 - 9 Mar 2020
Cited by 25 | Viewed by 5310
Abstract
This paper presents a multi-objective, multi-period inventory routing problem in the supply chain of perishable products under uncertain costs. In addition to traditional objectives of cost and greenhouse gas (GHG) emission minimization, a novel objective of priority index maximization has been introduced in [...] Read more.
This paper presents a multi-objective, multi-period inventory routing problem in the supply chain of perishable products under uncertain costs. In addition to traditional objectives of cost and greenhouse gas (GHG) emission minimization, a novel objective of priority index maximization has been introduced in the model. The priority index quantifies the qualitative social aspects, such as coordination, trust, behavior, and long-term relationships among the stakeholders. In a multi-echelon supply chain, the performance of distributor/retailer is affected by the performance of supplier/distributor. The priority index measures the relative performance index of each player within the supply chain. The maximization of priority index ensures the achievement of social sustainability in the supply chain. Moreover, to model cost uncertainty, a time series integrated regression fuzzy method is developed. This research comprises of three phases. In the first phase, a mixed-integer multi-objective mathematical model while considering the cost uncertainty has been formulated. In order to determine the parameters for priority index objective function, a two-phase fuzzy inference process is used and the rest of the objectives (cost and GHG) have been modeled mathematically. The second phase involves the development of solution methodology. In this phase, to solve the mathematical model, a modified interactive multi-objective fuzzy programming has been employed that incorporates experts’ preferences for objective satisfaction based on their experiences. Finally, in the third phase, a case study of the supply chain of surgical instruments is presented as an example. The results of the case provide optimal flow of products from suppliers to hospitals and the optimal sequence of the visits of different vehicle types that minimize total cost, GHG emissions, and maximizes the priority index. Full article
(This article belongs to the Special Issue Supply Chain Optimization)
Show Figures

Figure 1

19 pages, 692 KB  
Article
Soft Computing Methods with Phase Space Reconstruction for Wind Speed Forecasting—A Performance Comparison
by Juan. J. Flores, José R. Cedeño González, Héctor Rodríguez, Mario Graff, Rodrigo Lopez-Farias and Felix Calderon
Energies 2019, 12(18), 3545; https://doi.org/10.3390/en12183545 - 16 Sep 2019
Cited by 6 | Viewed by 3286
Abstract
This article presents a comparison of wind speed forecasting techniques, starting with the Auto-regressive Integrated Moving Average, followed by Artificial Intelligence-based techniques. The objective of this article is to compare these methods and provide readers with an idea of what method(s) to apply [...] Read more.
This article presents a comparison of wind speed forecasting techniques, starting with the Auto-regressive Integrated Moving Average, followed by Artificial Intelligence-based techniques. The objective of this article is to compare these methods and provide readers with an idea of what method(s) to apply to solve their forecasting needs. The Artificial Intelligence-based techniques included in the comparison are Nearest Neighbors (the original method, and a version tuned by Differential Evolution), Fuzzy Forecasting, Artificial Neural Networks (designed and tuned by Genetic Algorithms), and Genetic Programming. These techniques were tested against twenty wind speed time series, obtained from Russian and Mexican weather stations, predicting the wind speed for 10 days, one day at a time. The results show that Nearest Neighbors using Differential Evolution outperforms the other methods. An idea this article delivers to the reader is: what part of the history of the time series to use as input to a forecaster? This question is answered by the reconstruction of phase space. Reconstruction methods approximate the phase space from the available data, yielding m (the system’s dimension) and τ (the sub-sampling constant), which can be used to determine the input for the different forecasting methods. Full article
Show Figures

Figure 1

25 pages, 6338 KB  
Article
The Use of Large-Scale Climate Indices in Monthly Reservoir Inflow Forecasting and Its Application on Time Series and Artificial Intelligence Models
by Taereem Kim, Ju-Young Shin, Hanbeen Kim, Sunghun Kim and Jun-Haeng Heo
Water 2019, 11(2), 374; https://doi.org/10.3390/w11020374 - 21 Feb 2019
Cited by 40 | Viewed by 6045
Abstract
Climate variability is strongly influencing hydrological processes under complex weather conditions, and it should be considered to forecast reservoir inflow for efficient dam operation strategies. Large-scale climate indices can provide potential information about climate variability, as they usually have a direct or indirect [...] Read more.
Climate variability is strongly influencing hydrological processes under complex weather conditions, and it should be considered to forecast reservoir inflow for efficient dam operation strategies. Large-scale climate indices can provide potential information about climate variability, as they usually have a direct or indirect correlation with hydrologic variables. This study aims to use large-scale climate indices in monthly reservoir inflow forecasting for considering climate variability. For this purpose, time series and artificial intelligence models, such as Seasonal AutoRegressive Integrated Moving Average (SARIMA), SARIMA with eXogenous variables (SARIMAX), Artificial Neural Network (ANN), Adaptive Neural-based Fuzzy Inference System (ANFIS), and Random Forest (RF) models were employed with two types of input variables, autoregressive variables (AR-) and a combination of autoregressive and exogenous variables (ARX-). Several statistical methods, including ensemble empirical mode decomposition (EEMD), were used to select the lagged climate indices. Finally, monthly reservoir inflow was forecasted by SARIMA, SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS, ARX-ANFIS, AR-RF, and ARX-RF models. As a result, the use of climate indices in artificial intelligence models showed a potential to improve the model performance, and the ARX-ANN and AR-RF models generally showed the best performance among the employed models. Full article
Show Figures

Figure 1

34 pages, 1253 KB  
Article
Game Theoretical Demand Response Management and Short-Term Load Forecasting by Knowledge Based Systems on the basis of Priority Index
by Mahnoor Khan, Nadeem Javaid, Sajjad, Abdullah, Adnan Naseem, Salman Ahmed, Muhammad Sajid Riaz, Mariam Akbar and Manzoor Ilahi
Electronics 2018, 7(12), 431; https://doi.org/10.3390/electronics7120431 - 12 Dec 2018
Cited by 11 | Viewed by 8281
Abstract
Demand Response Management (DRM) is considered one of the crucial aspects of the smart grid as it helps to lessen the production cost of electricity and utility bills. DRM becomes a fascinating research area when numerous utility companies are involved and their announced [...] Read more.
Demand Response Management (DRM) is considered one of the crucial aspects of the smart grid as it helps to lessen the production cost of electricity and utility bills. DRM becomes a fascinating research area when numerous utility companies are involved and their announced prices reflect consumer’s behavior. This paper discusses a Stackelberg game plan between consumers and utility companies for efficient energy management. For this purpose, analytical consequences (unique solution) for the Stackelberg equilibrium are derived. Besides this, this paper presents a distributed algorithm which converges for consumers and utilities. Moreover, different power consumption activities on the basis of time series are becoming a basic need for load prediction in smart grid. Load forecasting is taken as the significant concerns in the power systems and energy management with growing technology. The better precision of load forecasting minimizes the operational costs and enhances the scheduling of the power system. The literature has discussed different techniques for demand load forecasting like neural networks, fuzzy methods, Naïve Bayes, and regression based techniques. This paper presents a novel knowledge based system for short-term load forecasting. The algorithms of Affinity Propagation and Binary Firefly Algorithm are integrated in knowledge based system. Besides, the proposed system has minimum operational time as compared to other techniques used in the paper. Moreover, the precision of the proposed model is improved by a different priority index to select similar days. The similarity in climate and date proximity are considered all together in this index. Furthermore, the whole system is distributed in sub-systems (regions) to measure the consequences of temperature. Additionally, the predicted load of the entire system is evaluated by the combination of all predicted outcomes from all regions. The paper employs the proposed knowledge based system on real time data. The proposed scheme is compared with Deep Belief Network and Fuzzy Local Linear Model Tree in terms of accuracy and operational cost. In addition, the presented system outperforms other techniques used in the paper and also decreases the Mean Absolute Percentage Error (MAPE) on a yearly basis. Furthermore, the novel knowledge based system gives more efficient outcomes for demand load forecasting. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

21 pages, 5095 KB  
Article
Time Series Seasonal Analysis Based on Fuzzy Transforms
by Ferdinando Di Martino and Salvatore Sessa
Symmetry 2017, 9(11), 281; https://doi.org/10.3390/sym9110281 - 17 Nov 2017
Cited by 7 | Viewed by 4189
Abstract
We define a new seasonal forecasting method based on fuzzy transforms. We use the best interpolating polynomial for extracting the trend of the time series and generate the inverse fuzzy transform on each seasonal subset of the universe of discourse for predicting the [...] Read more.
We define a new seasonal forecasting method based on fuzzy transforms. We use the best interpolating polynomial for extracting the trend of the time series and generate the inverse fuzzy transform on each seasonal subset of the universe of discourse for predicting the value of an assigned output. In the first example, we use the daily weather dataset of the municipality of Naples (Italy) starting from data collected from 2003 to 2015 making predictions on mean temperature, max temperature and min temperature, all considered daily. In the second example, we use the daily mean temperature measured at the weather station “Chiavari Caperana” in the Liguria Italian Region. We compare the results with our method, the average seasonal variation, Auto Regressive Integrated Moving Average (ARIMA) and the usual fuzzy transforms concluding that the best results are obtained under our approach in both examples. In addition, the comparison results show that, for seasonal time series that have no consistent irregular variations, the performance obtained with our method is comparable with the ones obtained using Support Vector Machine- and Artificial Neural Networks-based models. Full article
(This article belongs to the Special Issue Symmetry in Fuzzy Sets and Systems)
Show Figures

Figure 1

Back to TopTop