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Abstract: Triangular fuzzy numbers (TFNs) are used to express the weights of criteria and alternatives
to account for the ambiguity and uncertainty inherent to subjective evaluations. However, the
proposed method can easily be extended to other fuzzy settings depending on the uncertainty facing
managers and decision-makers. Triangular fuzzy number (TFN) is a critical component in building
fuzzy models such as fuzzy regression and fuzzy autoregressive. Many symmetrical triangular fuzzy
numbers have been proposed to improve the scale’s linguistic accuracy. Additionally, Sturges’ rule is a
well-known approach to determining criteria or intervals of grouped data. However, some existing
TFN methods are challenging despite being considered in building fuzzy regression models. The
increase in electricity distribution is caused by the number of customers and the amount of installed
capacity factors in Indonesia. The identified factors are uncertainty, inexactness, and random nature.
This paper investigates the residential electricity distribution model using fuzzy regression time series.
In the beginning step, the integration between conventional TFN and Sturges’ rule was proposed
to determine the criteria or scale of linguistic terms. The secondary data was collected from BPS
Indonesia from 2000 to 2021. The dependent variable was denoted as electric power distribution (YRT).
On the other hand, the number of customers and the amount of installed capacity were grouped as
independent variables (XPL and XKT). The results showed that the best forecasting model is an FLR
right upper limit without constant. This proposed model also has higher MAPE accuracy at 1.44%
compared to classical models. Additionally, the proposed triangular fuzzy number could improve the
accuracy of the proposed model significantly. Interestingly, both dependent and independent factors
were initially forecasted using a basic time series model, namely exponential smoothing.

Keywords: fuzzy linear regression; exponential smoothing; triangular fuzzy number; Sturges rule;
electricity power distribution

1. Introduction

The conventional ordinary regression method requires very strict statistical assumptions
such as linearity of variables, no multicollinearity among independent variables, homoskedas-
ticity, reliability of measurement, error should be normally distributed and independently [1].
All assumptions above should be provided completely to attain the best regression model.
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Additionally, the input information related to data quality is a highly indispensable compo-
nent that should be considered for this method. However, this regression method will not be
effective and is not recommended for limited data size and linguistic variables. Based on a
systematic review paper, multiple linear regression, general linear regression, polynomial
regression, exponential regression, and multivariate adaptive regression spline are frequently
implemented for electricity load consumption forecasting models [2].

In previous studies, some non-statistical methods, such as fuzzy regression, fuzzy
autoregressive, general regression neural network, kernel regression with k-nearest neigh-
bors, and fuzzy time series, have been integrated with ordinary regression to handle the
previously-mentioned limitations [3–6]. Its applications are commonly employed for elec-
tricity forecasting [2]. For example, one of them is the integration between fuzzy and
regression methods in handling some issues like linguistic data, small-size data, and nor-
mality data. Fuzzy regression estimates parameters using the fuzzy optimization approach
more effectively than the ordinary least square [7,8]. Some fuzzy regression methods
consider the triangular fuzzy number (TFN) for data pre-processing [9].

In each country, electricity forecasting and its models are the main components to be
managed and projected by state and private companies for efficient operations of power
distribution systems in supporting daily life activities [10,11]. The conventional models
have been discussed and implemented by previous researchers to investigate electricity
power distribution and its factors using conventional regression or time series. However,
the highest forecasting accuracy is an arduous task since various unpredictable factors may
influence electricity power distributions.

Hybrid models have been introduced to improve elements, such as forecasting ac-
curacy and data size. Fuzzy regression is one of the hybrid model types in electricity
forecasting [12–14]. This model deals with the triangular fuzzy number (TFN) of fuzzy
form data and is not strictly vital in terms of statistical assumptions [15–17]. In this paper,
time series analysis is proposed to support fuzzy regression in predicting the value of each
variable (dependent and independent) by following a series of times (yearly data). Because
the fuzzy regression model is suitable for estimating the significant relationship between
dependent and independent variables using fuzzy parameters, it is not a recommended
model to forecast future values of variables, especially time series data. Thus, an exponen-
tial smoothing model is more practical for such forecasting purposes. Essentially, there are
two forecasting phases in this paper.

2. Fundamental Concept
2.1. Triangular Fuzzy Number (TFN)

In 1965, the concepts of fuzzy set and membership function were first proposed by
Zadeh [18–20]. Some basic notions on fuzzy sets and numbers are included below:

Definition 1. Fuzzy sets
A fuzzy set A of a universal set X is defined as follows:

A = {(x, µA(x)) ‖ x ∈ X}

where µA(x) : X → [0, 1] is the membership function of the set A. The membership value µA(x)
indicates the degree of membership of x ∈ X to the set A.

Definition 2. Triangular Fuzzy Number (TFN)
Let a, b and c be real numbers with, a < b < c. Then, the triangular fuzzy number (TFN), A

= (a, b, c) is the fuzzy number (FN) with a membership function [18].

y = m(x) =


x−a
b−a , x ∈ [a, b]
c−x
c−b , x ∈ [b, c]

0, x < a and x > c
(1)
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Thus, Equation (1) is interpreted as membership functions as shown in Figure 1.
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Based on Equation (1), a TFN can be defined as:

TFN = y = [αl , c, αr] (2)

Based on Equation (2), if the TFN is symmetrical, α2− α1 = α3− α2, then y is denoted as

y = [c, α] (3)

where a is a spread of TFN and y is a non-fuzzy number if a = 0.

2.2. Fuzzy Regression Model (FRM)

Fuzzy least square and fuzzy linear regression models have been introduced by Tanaka
in 1982. Both models used fuzzy forms in terms of input, process, and output, respectively.
Mathematically, FRM with and without intercept is written as [21]:

∼
Y =

∼
A0 +

∼
A1X1i + · · ·+

∼
AN XiN =

∼
AX (4)

and ∼
Y =

∼
A1X1i + · · ·+

∼
AN XiN =

∼
AX (5)

From Equations (4) and (5),
∼
A =

(
pj; cj

)
, j = 1, 2, · · · , m, while pj is a mid-value of j

and cj reveals a spread value of j. Both equations are detailed in Table 1.

Table 1. General FRM based on intercept and bound functions.

Bound Function FRM with Intercept FRM without Intercept

Lower bound function Yl
i =

m
∑

j=0
(pj − cj)Xij Yl

i =
m
∑

j=1
(pj − cj)Xij

Mid-value function Yh
i =

m
∑

j=0
pjXij Yh

i =
m
∑

j=1
pjXij

Upper bound function Yu
i =

m
∑

j=0
(pj + cj)Xij Yu

i =
m
∑

j=1
(pj + cj)Xij

Based on Table 1, some extension models have been proposed by previous
researchers [21–23] to handle the limitation and minimize the spread of the triangular
fuzzy number (TFN) from FRM, as presented in Table 2.
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Table 2. Extended FRM based on [11–13].

FRM with Intercept [21] FRM without Intercept [21]

Z = min∑m
j=0 cj

∑m
j=0 pjXij + (1− h)∑m

j=0 cj

∣∣∣Xij

∣∣∣ ≥ Yi + (1− h)ei

∑m
j=0 pjXij + (1− h)∑m

j=0 cj

∣∣∣Xij

∣∣∣ ≤ Yi + (1− h)ei

which cj ≥ 0, p ∈ R; 0 ≤ h ≤ 1

Z = min∑m
j=1 cj

∑m
j=1 pjXij + (1− h)∑m

j=1 cj

∣∣∣Xij

∣∣∣ ≥ Yi + (1− h)ei

∑m
j=1 pjXij + (1− h)∑m

j=1 cj

∣∣∣Xij

∣∣∣ ≤ Yi + (1− h)ei

which cj ≥ 0, p ∈ R; 0 ≤ h ≤ 1

FRM with intercept [22] FRM without intercept [22]

Z = min∑m
j=0 cj∑n

i=0 |X ij

∣∣∣
∑m

j=0 pjXij + (1− h)∑m
j=0 cjXij ≥ Yi + (1− h)ei

∑m
j=0 pjXij + (1− h)∑m

j=0 cjXij ≤ Yi + (1− h)ei

Z = min∑m
j=1 cj∑n

i=1 |X ij

∣∣∣
∑m

j=1 pjXij + (1− h)∑m
j=1 cjXij ≥ Yi + (1− h)ei

∑m
j=1 pjXij + (1− h)∑m

j=1 cjXij ≤ Yi + (1− h)ei

FRM with intercept [23] FRM without intercept [23]

Z =
min
cj

(∑n
i=0 ∑m

j=0 cjXij)

Yi ≤ ∑m
j=0 pjXij + (1− h)∑m

j=0 cjXij.
Yi ≥ ∑m

j=0 pjXij − (1− h)∑m
j=0 cjXij.

Z =
min
cj

(∑n
i=1 ∑m

j=1 cjXij)

Yi ≤ ∑m
j=1 pjXij + (1− h)∑m

j=1 cjXij

Yi ≥ ∑m
j=1 pjXij − (1− h)∑m

j=1 cjXij

From Table 2, the general FRM has been extended in terms of objective and constraint
functions, respectively. All extended models will be used to estimate the significant factors
that contribute to the electricity power distribution for residential sectors in Indonesia from
2000–2016.

2.3. Exponential Smoothing Model (ESM)

In time series data analysis, ESM is widely used for estimating in the light of more
recent in an exponentially decreasing manner. The most recent observation receives the
most weight, α (where 0 < α < 1); the second most recent observation receives less
weight, α(1− α); the observation of two time periods in the past receives even less weight,
α(1− α)2; and so forth. Formally, ESM is written mathematically as below [24,25]:

Ŷt+1 = αYt + (1− α)Ŷt (6)

From Equation (6), Ŷt+1 is a new smoothed value or the forecast value for the next
period, α is the smoothing constant, Yt is a new observation or the actual value of the series
in period t, and Ŷt is the old-smoothed value or the forecast for period t. This model is also
frequently applied to the forecast of electricity load demand data.

3. Forecasting Model for Electricity Power Distribution

In this paper, we considered three phases on electricity power distribution and its
factors were proposed based on three different forecasting models as illustrated in Figure 2.
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Based on Figure 2, FRM can be applied if the ORM has been established in the first
phase. All slopes or parameters obtained from the ORM will be used to formulate a fuzzy
linear programming model. From the FRM, some possibilistic models will be obtained,
as described in Table 2, respectively. Measurement error using mean absolute percentage
error (MAPE) through data training-testing will be considered to choose the best FR. At the
end of the process, ESM will be implemented to forecast the electricity power distribution
and its factors for the residential sector by following a series of times (yearly data).

4. Empirical Study

In this section, the implementation of the suggested phases is attempted in two case
studies as follows:

Case study A: Electricity power distribution
Step 1: Build ORM for electricity power distribution using secondary data [26] as

presented in Table 3.

Table 3. ORM for electricity power distribution data.

Assumptions Statistical Test Output

Normality p-value = 0.200 p-value > α, variables are normally distributed.

Linearity Scatterplot Linear trends between dependent and
independent factors occurred.

Autocorrelation p-value = 1.00 p-value > α, no autocorrelation in variable.

Heteroskedastic p-value xPL = 0.00
p-value xKT = 0.35

p-value > α, there is no heteroscedastic occurred
among variables.

Multicollinearity VIF = 22.302 VIF > 10

Step 2: Transform single data into symmetrical TFN forms for electricity power
distribution and its factors using Sturges rule as follows:

• Determine range (R) data for each dependent and independent variable.
• Determine k = 1 + 3.322log (n).
• Determine I = R

k .
• Determine lower and upper limits of intervals.
• Provide a distribution table.

For example, the transformation value of customer numbers is illustrated in Figure 3.
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Step 3: The estimates of fuzzy parameters presented in Table 4 illustrate the building
of fuzzy optimization.

Table 4 shows the minimization of the spread function (cj) from the mid value (pj)
using fuzzy intervals to left-right constraints.

Step 4: Based on parameters obtained in Step 3, build FRMs as presented in Table 5.
Table 5 shows that the left and right sides have three different FRMs, respectively.

Furthermore, these models will be used for forecasting purposes using training and testing
data in Step 5.

Step 5: Forecast electricity power distribution using all possible FRM as expressed in
Table 6, respectively.

Step 6: Evaluate and validate all possible FRMs using MAPE of training and testing
data, respectively, as presented in Table 7.
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Table 4. Fuzzy parameters estimation.

Side Model h (p0; c0) (p1; c1) (p2; c2)

Left

With
intercept 0.1 (0; 6254.65) (0.0009; 0) (0.4744; 0)

Without
intercept 0.1 - (0.0011; 0) (0.1689; 0.2478)

Right

With
intercept 0.1 (0; 5566.48) (0.0014; 0) (0; 0)

Without
intercept 0.1 - (0.0014; 0) (0; 0.1761)

Table 5. FRM for left and right sides.

Side Bound FRM with Intercept FRM without Intercept

Left
Lower ∼

yRT = (−6254.653) + (0.0009)xPL + (0.4744)xKT
∼
yRT = (0.0011)xPL + (−0.0789)xKT

Middle ∼
yRT = (0.0009)xPL + (0.4744)xKT

∼
yRT = (0.0011)xPL + (0.1689)xKT

Upper ∼
yRT = (6254.653) + (0.0009)xPL + (0.4744)xKT

∼
yRT = (0.0011)x + (0.4167)xKT

Right
Lower ∼

yRT = (−5566.489) + (0.00145)xPL
∼
yRT = (0.00142)xPL + (−0.1761)xKT

Middle ∼
yRT = (0.00145)xPL

∼
yRT = (0.00142)xPL

Upper ∼
yRT = (5566.489) + (0.0014)xPL

∼
yRT = (0.00142)xPL + (0.1761)xKT

Table 6. Forecast values using left-right sides FRM.

Side Year
FRM with Intercept

Lower Forecast
(GWh)

Middle Forecast
(GWh)

Upper Forecast
(GWh)

Left

Training

2000 27,753.59 34,008.25 40,262.90
2001 28,847.35 35,102.00 41,356.66
. . . . . . . . . . . .

2012 56,522.18 62,776.84 69,031.49

Testing
2013 60,169.24 66,423.89 72,678.54
2014 66,913.75 73,168.41 79,423.06
2015 71,008.86 77,263.51 83,518.17

Right

Training

2000 33,288.69 38,855.18 44,421.67
2001 34,896.46 40,462.95 46,029.44
. . . . . . . . . . . .

2012 61,502.51 67,069.00 72,635.49

Testing
2013 67,144.44 72,710.93 78,277.41
2014 71,795.22 77,361.71 82,928.20
2015 76,574.60 82,141.09 87,707.58

Table 7. MAPE training-testing of FRM.

MAPE Training

Side Bound FRM with Intercept FRM without Intercept

Left
Lower 25.21% 87.87%

Mid 10.22% 11.45%
Upper 10.27% 8.49%

Right
Lower 8.17% 10.15%

Mid 10.74% 10.16%
Upper 16.99% 13.73%
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Table 7. Cont.

MAPE Training

Side Bound FRM with Intercept FRM without Intercept

MAPE Testing

Left
Lower 26.71% 85.80%

Mid 15.69% 24.11%
Upper 6.44% 4.50%

Right
Lower 16.35% 25.07%

Mid 7.96% 10.24%
Upper 1.05% 1.44%

Based on Table 6, scatter plots between actual and forecast values are illustrated in
Figure 4.
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Step 7: Forecast electricity power distribution for 2016–2021 using the best FRM
model (smallest MAPE) without intercept and exponential smoothing (ES) as presented in
Tables 8 and 9, respectively.

Table 8. Testing data for 2016.

α xPL xKT yRT (FLR) yRT (ES)

0.1 39,323,118 33,265 [49,980.83; 61,696.83] 56,462.07
0.5 53,328,382 51,360 [66,681.89; 84,770.72] 83,418.89
0.9 56,283,050 55,075 [70,223.31; 89,620.56] 88,212.52
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Table 9. Testing data for 2017–2021.

Year Actual Load (GWh) FLR ES

2017 94,457.38 93,788.67 92,600.35
2018 97,832.28 96,988.25 95,566.78
2019 103,733.43 103,300.98 102,342.23
2020 112,155.85 110,256.76 109,432.34
2021 115,370.04 114,399.12 112,578.35

Based on Table 8, electricity power distribution (yRT) is predicted using FRM right
without intercept, as expressed in Table 7. On a regular basis, a regression model is
not directly practical for forecasting purposes. In this case, each variable was gathered
and measured by considering time intervals (yearly time series data). Thus, they should
be predicted separately using time series models such as exponential smoothing (ES).
Additionally, each forecasted value was obtained from the ES model, respectively.

In the final stage, the prediction of power distribution can be substituted into FRM
right model as written in Equation (7):

∼
yRT = (0.00142)xPL + (0.1761)xKT (7)

From this table, the predicted
∼
yRT values were obtained using Equation (7) and ES

model. Actual yRT power distribution was 93,634.63 GWh in 2016. On a note, the predicted
and actual values revealed immense differences because the State Electricity Company of
Indonesia offered a power subsidy for the residential sector for that year. Additionally,
the national championship sports of Indonesia were also conducted in 2016. Therefore,
the electricity distribution exceeded the actual amount. In this case, two forecasting parts,
namely parameter estimation using fuzzy regression and future amount estimation, were al-
ready taken into account using the exponential smoothing technique. Unlike some previous
studies [11–14], the researchers were only concerned with the fuzzy regression part.

The State Electricity Company of Indonesia offers subsidies for their customers every
year. Thus, the proposed model lacks the ability to capture the actual amount. Occasionally,
the difference is also significant between forecasted and actual amounts.

Case study B: Palm oil production
By following the same steps given in Case study A, the comparison between actual and

forecast values can be shown for palm oil data from January–December 2012 in Tables 10–12,
respectively.

Table 10. Forecast values of monthly palm oil production using left-right sides FRM.

Side Month
FRM without Intercept

Lower Forecast
(Ton)

Middle Forecast
(Ton)

Upper Forecast
(Ton)

Left

Training

January 94,798.74 142,018.68 189,209.00
February 103,945.71 151,423.05 198,870.76

. . . . . . . . . . . .
July 107,295.64 160,669.99 214,014.74

Testing
October 91,942.59 141,056.79 190,141.37

November 123,030.85 180,891.52 238,722.57
December 89,362.53 145,768.25 202,144.36

Right

Training

January 110,503.70 142,588.11 188,983.20
February 119,041.69 151,316.91 197,902.81

. . . . . . . . . . . .
July 122,625.62 159,480.26 210,645.57

Testing
October 107,851.67 141,462.56 189,384.12

November 137,206.26 177,686.27 232,476.96
December 105,871.75 145,206.90 198,852.74
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Table 11. MAPE training-testing data with and without intercept using FRM.

Left
Average

Left

Right
Average

RightBound
Lower

Bound
Middle

Bound
Upper

Bound
Lower

Bound
Middle

Bound
Upper

Training With
intercept 32.45% 10.28% 25.95% 22.90% 21.68% 11.22% 36.73% 23.21%

Without
intercept 29.21% 8.86% 37.91% 25.33% 18.86% 8.84% 36.70% 21.46%

Testing With
intercept 23.32% 22.31% 53.57% 33.07% 17.42% 32.06% 67.20% 38.89%

Without
intercept 21.51% 24.77% 61.64% 35.97% 16.17% 25.36% 61.20% 34.24%

Table 12. Testing data for January 2013.

α X1 X2 X3 Y (FLR) Y (ES)

0.1 24,281.6 28,352.1 217.4 [134,795.7; 176,277.5] 153,420.7
0.5 24,220.2 28,398.1 266.0 [135,332.0; 186,087.2] 159,424.9
0.9 26,089.9 28,362.0 245.9 [11,321,307.1; 11,368,226.9] 154,326.2

5. Conclusions

In this paper, the parameters (intercept and slopes) of ordinary regression in building
fuzzy linear regression were implemented. Both parameters were employed for fuzzy
optimization purposes, namely objective function and left-right constraints. Furthermore,
the Sturges rule was used to determine the symmetrical TFN and the number of fuzzy
intervals when the total number of observations was specified.

In application, FRM without intercept was considered to capture the actual electricity
data precisely. Each variable from FRM was predicted using a basic time series technique
known as exponential smoothing. Therefore, two types of forecasting strategies have been
employed to estimate yearly electricity power distribution in Indonesia from 2000 to 2021
and palm oil production. In this paper, we also considered the effectiveness between with
and without intercepts in the forecasting models.
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