Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = tillage knife

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4024 KiB  
Article
Experimental Investigation of Impact Mechanisms of Seeding Quality for Ridge-Clearing No-Till Seeder Under Strip Tillage
by Yuanyuan Gao, Yongyue Hu, Shuo Yang, Xueguan Zhao, Shengwei Lu, Hanjie Dou, Qingzhen Zhu, Peiying Li and Yongyun Zhu
Agronomy 2025, 15(8), 1875; https://doi.org/10.3390/agronomy15081875 - 1 Aug 2025
Viewed by 242
Abstract
Under conservation tillage in the Huang-Huai-Hai wheat–maize rotation area, the ridge-clearing no-till seeder for strip tillage mitigates the adverse impacts of surface residues on seeding quality by clearing stubble specifically within the seed rows, demonstrating significant potential for application and promotion. However, the [...] Read more.
Under conservation tillage in the Huang-Huai-Hai wheat–maize rotation area, the ridge-clearing no-till seeder for strip tillage mitigates the adverse impacts of surface residues on seeding quality by clearing stubble specifically within the seed rows, demonstrating significant potential for application and promotion. However, the inadequate understanding of the seeder’s operational performance and governing mechanisms under varying field conditions hinders its high-quality and efficient implementation. To address this issue, this study selected the stubble height, forward speed, and stubble knife rotational speed (PTO speed) as experimental factors. Employing a three-factor quasi-level orthogonal experimental design, coupled with response surface regression analysis, this research systematically elucidated the interaction mechanisms among these factors concerning the seeding depth consistency and seed spacing uniformity of the seeder. An optimized parameter-matching model was subsequently derived through equation system solving. Field trials demonstrated that a lower forward speed improved the seed spacing uniformity and seeding depth consistency, whereas high speeds increased the missing rates and spacing deviations. An appropriate stubble height enhanced the seed spacing accuracy, but an excessive height compromised depth precision. Higher PTO speeds reduced multiple indices but impaired depth accuracy. Response surface analysis based on the regression models demonstrated that the peak value of the seed spacing qualification index occurred within the forward speed range of 8–9 km/h and the stubble height range of 280–330 mm, with the stubble height being the dominant factor. Similarly, the peak value of the seeding depth qualification index occurred within the stubble height range of 300–350 mm and the forward speed range of 7.5–9 km/h, with the forward speed as the primary factor. Validation confirmed that combining stubble heights of 300−330 mm, forward speeds of 8−9 km/h, and PTO speeds of 540 r/min optimized both metrics. This research reveals nonlinear coupling relationships between operational parameters and seeding quality metrics, establishes a stubble–speed dynamic matching model, and provides a theoretical foundation for the intelligent control of seeders in conservation tillage systems. Full article
(This article belongs to the Collection AI, Sensors and Robotics for Smart Agriculture)
Show Figures

Figure 1

20 pages, 3201 KiB  
Article
The Design and Testing of a New Antitangling and Antisticking Knife for a Wet Clay Soil Environment
by Guosheng Geng, Tailai Chen, Maohua Xiao, Chenshuo Xie and Cungan Tang
Agriculture 2025, 15(10), 1102; https://doi.org/10.3390/agriculture15101102 - 20 May 2025
Viewed by 384
Abstract
Aiming at the problem that rotary tiller knife rollers are prone to entanglement with straw in the wet and sticky soil environment of rice fields in the middle and lower reaches of the Yangtze River in China, an antitangling and sticking cutter was [...] Read more.
Aiming at the problem that rotary tiller knife rollers are prone to entanglement with straw in the wet and sticky soil environment of rice fields in the middle and lower reaches of the Yangtze River in China, an antitangling and sticking cutter was designed. The cutter reduces knife roller entanglement in order to reduce rotary tiller energy consumption and improve work efficiency, and its effectiveness was verified through theoretical analysis, discrete element simulation, and field trials. The design’s validity was verified through theoretical analysis, discrete element simulation, and field tests. The blade inclination design was completed through motion force analysis, and the tool geometry was optimized with a 36.87° inclination baffle and staggered arrangement. A simulation model of the soil–straw–rotary tillage knife interaction was established and we used the discrete element method to analyze the variation in torque between the antisticking knife and the China standard rotary tillage knife (IT245) at four different cutter shaft rotational speeds. In the simulation, the average torque for the antisticking knives was smaller than that of the national standard rotary tillage knives, with reductions of 37.1%, 52.1%, 52.8%, and 50.0%, respectively, demonstrating a remarkable effect. Field tests showed that the average operational efficiency of the antisticking knife was 0.57 hm2/h, with an operation qualification rate of 95.72%. The average torque results from simulation (with and without the antisticking knife) and field tests were analyzed, yielding correlation coefficients of 0.994 and 0.973 for the change curves of average torque between the antisticking knife and the national standard rotary tillage knife. This result confirms the accuracy of the simulation model and the consistency between the simulation and field test results. This study can provide some references for the design and test of antisticking of rotary tillers. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

22 pages, 9649 KiB  
Review
The Development of No-Tillage Seeding Technology for Conservation Tillage—A Review
by Yue Ma, Zheng Li, Yandong Xu, Chenglong Li, Hao Ding, Chenghao Li, Qiang Tang, Minghui Liu and Junming Hou
Sustainability 2025, 17(5), 1808; https://doi.org/10.3390/su17051808 - 20 Feb 2025
Cited by 1 | Viewed by 1273
Abstract
In the field of conservation tillage, no-till seeding technology has emerged as an efficient and environmentally friendly form of agricultural production. It is increasingly recognized as a crucial avenue toward sustainable agricultural development. This study focuses on the research of no-till seeding technology, [...] Read more.
In the field of conservation tillage, no-till seeding technology has emerged as an efficient and environmentally friendly form of agricultural production. It is increasingly recognized as a crucial avenue toward sustainable agricultural development. This study focuses on the research of no-till seeding technology, specifically analyzing the technical characteristics of no-till seeders, their principles of operation, and their application. No-till planters are designed to either minimize or eliminate soil tillage. When paired with precision seeding technology, they can significantly reduce soil erosion, promote soil and water conservation, reduce agricultural production costs, and ensure optimal growing conditions for crops. No-till seeding breakers play a critical role in resolving the stubble-breaking issue that is inherent in no-till seeding technology. The integration of no-till planters with stubble breaker knife technology can substantially improve the adaptability and operational efficiency of no-tillage operations under conservation tillage scenarios. This progress offers indispensable technical backup, which not only aims to ramp up food production levels but also contributes agro-ecological protection of the environment. Full article
Show Figures

Figure 1

27 pages, 6609 KiB  
Article
Discrete Element-Based Design of a High-Speed Rotary Tiller for Saline-Alkali Land and Verification of Optimal Tillage Parameters
by Shuai Zheng, Tong Lu, Jie Liu, Yu Tian, Miaomiao Han, Muhao Tai, Shuqi Gao, Tao Liu, Dongwei Wang and Zhuang Zhao
Agriculture 2025, 15(3), 269; https://doi.org/10.3390/agriculture15030269 - 26 Jan 2025
Cited by 2 | Viewed by 1003
Abstract
Aiming at the saline soil in Binhai New Area, which is solid and sclerotic, and addressing the problem of poor quality and low efficiency of traditional rotary tillage, this research designed a high-speed rotary tiller that can realize the high-speed rotation of knife [...] Read more.
Aiming at the saline soil in Binhai New Area, which is solid and sclerotic, and addressing the problem of poor quality and low efficiency of traditional rotary tillage, this research designed a high-speed rotary tiller that can realize the high-speed rotation of knife rollers to cut. The average operating speed is higher than that of the ordinary rotary tiller. We analyzed the rotary tiller operating conditions and rotary tiller knife cutting process and conducted a movement trajectory theoretical analysis to determine the rotary tiller’s high-speed operating speed relationship. The working process of a high-speed rotary tiller was simulated using EDEM software. The experimental indicators included the soil-crushing rate and surface smoothness after tilling. The experimental factors included the forward speed of the machine, the rotational speed of the blade roller, and the tilling depth. An orthogonal experiment was performed to establish regression equations for the soil-crushing rate and surface smoothness. Using Design-Expert analysis software, we obtained the following optimal combination of parameters: a knife roller speed at 310 r/min, tillage depth of 13.2 cm, and machine forward speed of 4.8 km/h. At this time, the simulation values of the soil fragmentation rate and surface flatness were 90.6% and 18.2 mm, respectively. When determining the optimal knife roller speed of 310 r/min, a transient structural simulation under the mesh bevel gear transient was conducted. The simulation analysis showed that the maximum equivalent stress value was 584.57 MPa, which was smaller than the permissible stress of 695.8 MPa, meeting the bevel gear meshing strength requirements. Under the optimal combination determined by a field comparison test, the results show that the values of the high-speed rotary tiller operation after the soil-breaking rate, tillage depth, the tillage depth stability coefficient, and vegetation cover were 89.3%, 14.2 cm, 92.8%, and 90.3%. The land surface flatness was 16.4 mm, which is superior to the ordinary rotary tiller operation effects, meeting the agronomic requirements for pre-sowing land preparation for peanuts in the saline land of Binhai New Area. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

30 pages, 37368 KiB  
Article
Spray Angle and Uniformity of the Flat Fan Nozzle of Deep Loosener Fertilizer for Intra-Soil Application of Fertilizers
by Sayakhat Nukeshev, Khozhakeldi Tanbayev, Mikalai Ramaniuk, Nurbol Kakabayev, Adilet Sugirbay and Aidar Moldazhanov
AgriEngineering 2024, 6(2), 1365-1394; https://doi.org/10.3390/agriengineering6020079 - 20 May 2024
Cited by 3 | Viewed by 3079
Abstract
This paper deals with the problem of predetermining the spray angle and uniformity of the flat fan sprayer with a semicircular impact surface for the intra-soil application of liquid mineral fertilizers. The jet impact on a round splash plate and radial atomization properties [...] Read more.
This paper deals with the problem of predetermining the spray angle and uniformity of the flat fan sprayer with a semicircular impact surface for the intra-soil application of liquid mineral fertilizers. The jet impact on a round splash plate and radial atomization properties are investigated theoretically, the formation features of the spray with an obtuse angle are studied in a geometrical way, and the design search of the nozzle shape and optimization calculations are performed using computational fluid dynamics (CFD) simulations and then verified experimentally. It was revealed that the spray rate and spray angle can be adjusted by changing the parameter s, and when the spray angle is within s = 0–0.2 mm, it forms spray angles with range of 140°–175°. The spraying angle, in turn, shows the potential length of the tillage knife in accordance with the undersoil cavity dimensions. A spray uniformity of up to 74% was achieved, which is sufficient for applied studies and for intra-soil application operations. According to the investigations and field experiments, it can be concluded that the designed nozzle is applicable for the intra-soil application of liquid mineral fertilizers. The use of flat fan nozzles that form a spraying band under the soil cavity and along the entire length of the tillage knife ensures a highly efficient mixing process, the liquid mineral fertilizers with treated soil (particles) positively contributing to plant maturation. Full article
Show Figures

Figure 1

21 pages, 9852 KiB  
Article
Optimized Design of Touching Parts of Soil Disinfection Machine Based on Strain Sensing and Discrete Element Simulation
by Jianmin Gao, Yuhao Shen and Benlei Ma
Sensors 2023, 23(14), 6369; https://doi.org/10.3390/s23146369 - 13 Jul 2023
Cited by 9 | Viewed by 1706
Abstract
With the increasing level in the intensification of agricultural production in China, continuous cropping obstacles have become a problem that needs to be solved. The use of vertical rotary tillage technology and soil disinfection technology is an effective solution. In this paper, a [...] Read more.
With the increasing level in the intensification of agricultural production in China, continuous cropping obstacles have become a problem that needs to be solved. The use of vertical rotary tillage technology and soil disinfection technology is an effective solution. In this paper, a vertical rotary soil-tilling variable disinfection combine was developed and an on-board control system with STM32 as the control core was designed to realize the real-time acquisition of powder monopoly torque information and the variable application of soil disinfection chemicals. Based on the obtained experimental soil parameters, a discrete element soil particle model was established, and orthogonal experiments were conducted to analyze the single-blade roller tillage process, and the optimal operating parameters were finally selected as 500 mm powder monopoly depth, 320 r/min knife roller speed, and 0.26 m/s forward speed, respectively. The field experiment found that the average tillage depth of the implement was 489 mm, the stability coefficient of tillage depth was 94.50%, the uniformity coefficient of soil disinfection was 85.57%, and the applied amount and the speed ratio coefficient of the given flow were linearly related, respectively. This research provides a technical reference for the deep tillage and soil disinfection of the powder monopoly. Full article
(This article belongs to the Special Issue Smart Machinery and Control System for Precision Agriculture)
Show Figures

Figure 1

15 pages, 5532 KiB  
Article
Experimental Analysis and Evaluation of Automatic Control System for Evenly Scattering Crushed Straw
by Bokai Wang, Feng Wu, Fengwei Gu, Hongchen Yang, Huichang Wu and Zhichao Hu
Agriculture 2023, 13(3), 679; https://doi.org/10.3390/agriculture13030679 - 14 Mar 2023
Cited by 1 | Viewed by 1972
Abstract
In order to improve the solution to the unachieved uniformity of straw throwing, the unachieved qualified rate of coverage and the uneven straw throwing in sowing wheat without a tillage process after the rice harvest, and to change this unsatisfied quality of the [...] Read more.
In order to improve the solution to the unachieved uniformity of straw throwing, the unachieved qualified rate of coverage and the uneven straw throwing in sowing wheat without a tillage process after the rice harvest, and to change this unsatisfied quality of the straw mulch, a set of automatic control systems for straw throwing and covering was designed innovatively. An STM32 microcontroller was used as the main control unit, and the torque-acquisition system was used to collect the torque of the cutter roller shaft in real time and convert it into the conveying signal of the crushed straw. The control system changes the conveying quantity of broken straw in real time, through the dynamic response. This process realizes the optimal dynamic matching between the conveying amount of crushed straw and the impeller speed. We set up two kinds of tests: a straw-crushing-and-throwing system test bench (T6)6 with an automatic control system and a control test bench (C) without an automatic control system. T1 to T5 are, in turn, 0.85 m/s, 1.0 m/s, 1.15 m/s, 1.30 m/s and 1.45 m/s. For the C test, six test levels of 0.85 m/s (C1), 1.0 m/s (C2), 1.15 m/s (C3), 1.30 m/s (C4), 1.45 m/s (C5) and variable speed test (C6) were also set as control tests. The running time of the test-bed at each test level was 10 s; taking the throwing uniformity of the crushed straw and the rate of coverage as indexes, the rapid effect of the throwing-impeller speed on the test indexes at six levels was studied, and compared with the control test. Based on the great practical needs of this problem, this experiment innovatively realized the automatic regulation of the rotating speed of the scattering impeller at different forward speeds. Although some experimental innovations have been made in this study, the smashing knife (group) of the knife roller shaft will hit the ground during the rotation, which brings uncertainty and certain experimental errors to the real-time monitoring of the torque signals. In the next step, more sensors and intelligent algorithms will be added to the system, to reduce the knife throwing. Full article
Show Figures

Figure 1

14 pages, 6180 KiB  
Article
Simulation of Soil Cutting and Power Consumption Optimization of a Typical Rotary Tillage Soil Blade
by Xiongye Zhang, Lixin Zhang, Xue Hu, Huan Wang, Xuebin Shi and Xiao Ma
Appl. Sci. 2022, 12(16), 8177; https://doi.org/10.3390/app12168177 - 16 Aug 2022
Cited by 19 | Viewed by 3606
Abstract
The rotary tillage knife roller, as one of the typical soil-touching parts of the tillage equipment cutting process, is in direct contact with the soil. During the cutting process, there are problems related to structural bending, deformation, and high power consumption, caused by [...] Read more.
The rotary tillage knife roller, as one of the typical soil-touching parts of the tillage equipment cutting process, is in direct contact with the soil. During the cutting process, there are problems related to structural bending, deformation, and high power consumption, caused by impact and load, and it is difficult to observe the micro-change law of the rotary tillage tool and soil. In view of the above problems, we took the soil of the cotton experimental field in Shihezi, Xinjiang, and the soil-contacting parts of the rotary tillage equipment, specifically the rotary tiller roller, as the research subject. Using the finite-element method (FEM) to simulate the structure of the rotary tiller with different bending angle parameters, we obtained its average stress and deformation position information, and obtained a range linear relationship between the bending angle and the structural performance of the rotary tiller tool. Using discrete element method (DEM)-based simulation to build the corresponding contact model, soil particle model, and soil–rotary tillage knife roll interaction model to simulate the dynamic process of a rotary tillage knife roll cutting soil, we obtained the change rules of the soil deformation area, cutting process energy, cutting resistance, and soil particle movement. By using the orthogonal simulation test and the response surface method, we optimized the kinematic parameters of the rotary tiller roller and the key design parameters of a single rotary tiller. Taking the reduction of cutting power consumption as the optimization goal and considering the influence of the bending angle on its structural performance, the optimal parameter combination was obtained as follows: the forward speed was 900 m/h, the rotation speed was 100 rad/min, the bending angle was 115°, and the minimum power consumption of the cutter roller was 0.181 kW. The corresponding average stress and deformation were 0.983 mm and 41.826 MPa, which were 15.8%, 13%, and 7.9% lower than the simulation results of power consumption, stress, and deformation under the initial parameter setting, respectively. Finally, the effectiveness of the simulation optimization model in reducing power consumption and the accuracy of the soil-cutting simulation were verified by a rotary tilling inter-field test, which provided theoretical reference and technical support for the design and optimization of other typical soil-touching parts of tillage and related equipment, such as disc harrow, ploughshare, and sub-soiling shovel. Full article
(This article belongs to the Special Issue Applications of Computer Science in Agricultural Engineering)
Show Figures

Figure 1

21 pages, 7325 KiB  
Article
Design and Test of the Clearing and Covering of a Minimum-Tillage Planter for Corn Stubble
by Shouyin Hou, Shengzhe Wang, Zhangchi Ji and Xiaoxin Zhu
Agriculture 2022, 12(8), 1209; https://doi.org/10.3390/agriculture12081209 - 12 Aug 2022
Cited by 9 | Viewed by 3007
Abstract
Conservation tillage technology can reduce wind erosion and soil erosion, improve soil fertility, avoid straw burning and relieve ecological pressure. It is an important measure to achieve sustainable agricultural development. In northeast China, there is a large amount of straw covering the ground [...] Read more.
Conservation tillage technology can reduce wind erosion and soil erosion, improve soil fertility, avoid straw burning and relieve ecological pressure. It is an important measure to achieve sustainable agricultural development. In northeast China, there is a large amount of straw covering the ground after the corn machine harvest, which can easily lead to the blockage of the soil-touching parts during no-tillage seeding, affecting sowing quality and crop yield. In order to solve the above problems, the clearing and covering of a minimum-tillage planter for corn stubble was developed. The machine can complete multiple processes, such as seedbed preparation, seeding, fertilization, covering and suppression, straw covering, etc., in a single entity. This paper focuses on the design of the straw cleaning device and uses discrete element method software (EDEM 2018, Altair Engineering, Troy, MI, USA) to establish the straw cleaning device–straw–soil discrete element simulation model. The quadratic-regression orthogonal center-of-rotation combination test method is used to optimize the parameter combination of the machine, using the operating speed, the speed of the knife roller and the penetration depth of the knife as the test factors and using the rate of cleaning straw and the equivalent power consumption as the evaluation index. The results show that each factor has a significant influence on the performance evaluation indices, and the order of influence of each factor on the rate of cleaning straw is operation speed > penetration depth of knife > speed of knife roller, and the order of influence of each factor on the equivalent power consumption is penetration depth of knife > speed of knife roller > operation speed. The optimal combination of parameters is a 5.5–6.2 km/h operation speed, a 500 rpm speed of the knife roller, a 40 mm penetration depth of the knife, a straw-cleaning rate of more than 90% and an equivalent power consumption of less than 8 kW. This study provides technical and equipment support for the promotion of conservation tillage technology in Northeast China. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

15 pages, 4652 KiB  
Article
Simulation and Test of “Separated Burying Device” of Green Manure Returning Machine Based on the EDEM Software
by Wang Yang, Jinfei Zhao, Xinying Liu, Linqiao Xi and Jiean Liao
Agriculture 2022, 12(5), 569; https://doi.org/10.3390/agriculture12050569 - 19 Apr 2022
Cited by 7 | Viewed by 3047
Abstract
Today, China’s orchard area covers 11,874,850 ha. With China’s progress in implementing the strategy of “quality-based and environmental-friendly agricultural development”, green manure has been developed as a modernized green soil management method for use in orchard areas. Green manure shows the highest decomposition [...] Read more.
Today, China’s orchard area covers 11,874,850 ha. With China’s progress in implementing the strategy of “quality-based and environmental-friendly agricultural development”, green manure has been developed as a modernized green soil management method for use in orchard areas. Green manure shows the highest decomposition rate with a ploughing depth of 150 mm. To efficiently utilize green manure in orchard areas, a “separated burying device” was designed, which can realize “stalk falling and soil falling” simultaneously. The device was composed of rotary blades, an iron chain separation curtain, soil retaining board and compacting machine. The cooperation parameters of different parts of the proposed device were designed through a discrete element simulation test, and a cooperative parameter model of the proposed device was constructed. According to the simulation test, the highest coverage of the prototype (95.16%) was achieved only when the knife roller center of rotary tillage moved to the point where it had a horizontal distance of 378.76 mm from the root of the “iron chain separation curtain”, the width of the transverse soil retaining board was 187.78 mm and the included angle of the soil retaining board θ was 116.48°. Based on a model verification test, the burying rate was found to be 94.36%, which differed slightly from the simulation test results. The burying rate increased by 4.84% upon the application of a “separated burying device”. The “separated burying device” was able to increase the burying rate of green manure between rows in the orchard area. It is conducive to the full utilization of green manure resources and lays good sowing foundations for green manure resowing. The construction of a “separated burying device” and its cooperative parameter model can provide insight into the research, development and optimization of relevant machines, such as the stalk returning machine. Full article
Show Figures

Figure 1

18 pages, 5965 KiB  
Article
Design and Experiment of Spiral Discharge Anti-Blocking and Row-Sorting Device of Wheat No-Till Planter
by Yunxiang Li, Caiyun Lu, Hongwen Li, Jin He, Qingjie Wang, Shenghai Huang, Zhen Gao, Panpan Yuan, Xuyang Wei and Huimin Zhan
Agriculture 2022, 12(4), 468; https://doi.org/10.3390/agriculture12040468 - 25 Mar 2022
Cited by 10 | Viewed by 3295
Abstract
Aiming at the problems of the poor passing capacity of machines and low cleaning rate of seed strip during wheat no-tillage sowing in annual double cropping areas of North China, a spiral discharge anti-blocking and row-sorting device (SDARD) was designed and is reported [...] Read more.
Aiming at the problems of the poor passing capacity of machines and low cleaning rate of seed strip during wheat no-tillage sowing in annual double cropping areas of North China, a spiral discharge anti-blocking and row-sorting device (SDARD) was designed and is reported in this paper. After the straw was cut and chopped by the high-velocity rotating no-till anti-blocking knife group (NAKG), the straw was thrown into the spiral discharging mechanism (SDM) behind the NAKG. The chopped straw was discharged to the non-sowing area to reach the effect of seed strip cleaning through the interaction between the SDM and the row-sorting of straw mechanism (RSM). Based on a theoretical analysis for determining the parameters of crucial components, the quadratic rotation orthogonal combination test method was adopted, and the operating velocity of machines (OVM), the rotary velocity of the spiral shaft (RVSS), and the height of the holding hopper from the ground (HHHG) were selected as the test factors. The straw cleaning rate (SCR) was taken as the test index. The discrete element simulation test was carried out, the regression model of the SCR was established, and parameters optimization and field test were carried out. The results show that the significant order of the three influencing factors on the SCR was HHHG > OVM > RVSS. The optimal combination of operating parameters was that OVM was 5 km/h, RVSS was 80 r/min, and HHHG was 10 mm. Under the optimal parameter combination, the average SCR was 84.49%, which was 15.5% higher than the no-till planter without the device, and the passing capacity of machines was great, which met the agronomic requirements of no-tillage sowing of wheat in annual double cropping areas. This study could provide a reference for the design of no-tillage machines. Full article
(This article belongs to the Special Issue Design and Application of Agricultural Equipment in Tillage System)
Show Figures

Figure 1

21 pages, 3619 KiB  
Article
Soil Management Systems to Overcome Multiple Constraints for Dryland Crops on Deep Sands in a Water Limited Environment on the South Coast of Western Australia
by David J. M. Hall, Stephen L. Davies, Richard W. Bell and Tom J. Edwards
Agronomy 2020, 10(12), 1881; https://doi.org/10.3390/agronomy10121881 - 27 Nov 2020
Cited by 25 | Viewed by 4274
Abstract
Deep sands on the south coast sandplain of Western Australia (WA) have multiple soil constraints including water repellence, high soil strength, low nutrient levels and subsoil acidity. The aim of the study was to test contrasting methods of managing water repellence and to [...] Read more.
Deep sands on the south coast sandplain of Western Australia (WA) have multiple soil constraints including water repellence, high soil strength, low nutrient levels and subsoil acidity. The aim of the study was to test contrasting methods of managing water repellence and to assess their impacts on one or more soil constraints to crop production. These methods included seeding tyne design (knife point, winged points, paired row), soil wetting agent addition, strategic inversion tillage (rotary spading, mouldboard ploughing to 0.35 m) and clay-rich subsoil addition (170 t ha−1 with incorporation by spading to 0.20 or 0.35 m). Limesand (2 t ha−1) was applied as a split plot treatment prior to tillage. Cumulative crop yields were increased by 2.1–2.6 t ha−1 over five years by the strategic deep tillage and clay application treatments compared to the control. Water repellence was reduced by the inversion ploughing and subsoil clay addition treatments only. The effect of water repellence on crop establishment was expressed only in low rainfall years (Decile < 4) and mitigated by the paired row, wetting agent, spader and clay-amended treatments. In all years, plant numbers were adequate to achieve yield potential regardless of treatment. Soil K and plant tissue K and B were increased where clay had been applied. Inversion tillage reduced soil pH, organic carbon (OC) and macro nutrients in the 0–0.1 m layer although in most years there was no significant decline in plant tissue macro nutrient levels. Soil strength was reduced as a result of the inversion tillage to a depth of 0.35 m. However, the alleviation of soil strength and the crop yield responses diminished with time due to re-compaction. No crop response to the applied lime was found over five years at this site since the soil pHCaCl2 exceeded 4.7 within the root zone. In terms of soil constraints, we conclude that compaction was the dominant constraint at this site followed by water repellence and K deficiency. Full article
Show Figures

Figure 1

Back to TopTop