Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (408)

Search Parameters:
Keywords = tibialis anterior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 470 KiB  
Article
Asymmetry in Muscle Activation and Co-Contraction Between Lower Limb During Zap-3 Flamenco Footwork
by Ningyi Zhang, Sebastián Gómez-Lozano, Ross Armstrong, Hui Liu, Ce Guo and Alfonso Vargas-Macías
Sensors 2025, 25(15), 4829; https://doi.org/10.3390/s25154829 - 6 Aug 2025
Abstract
This study aims to investigate asymmetries in muscle activation and co-contraction of main lower limb muscles during flamenco Zap-3 footwork with consideration of the footwork speed and dancer proficiency. Twelve flamenco dancers participated, including six professionals and six amateurs. Each participant performed the [...] Read more.
This study aims to investigate asymmetries in muscle activation and co-contraction of main lower limb muscles during flamenco Zap-3 footwork with consideration of the footwork speed and dancer proficiency. Twelve flamenco dancers participated, including six professionals and six amateurs. Each participant performed the Zap-3 sequence under three speed conditions: 160 beats per minute (bpm), 180 bpm and the fastest speed level (F). The normalized surface electromyography was recorded in the gastrocnemius medialis (GM), biceps femoris (BF), tibialis anterior (TA) and rectus femoris (RF) in the dominant (DL) and non-dominant leg (NDL). The co-contraction index was also calculated for selected muscle pairs. The results showed that significant asymmetries occurred only in professional dancers and exclusively at the F speed level. Specifically, the value of the GM in the NDL was higher than that of the DL (p < 0.05, d = 1.97); the value of the BF in the DL was higher than that of the NDL (p < 0.05, d = 1.86) and the co-contraction index of BF/RF in the DL was higher than that of the NDL (p < 0.05, d = 1.87). Understanding these asymmetries may help to inform individualized training strategies aimed at optimizing performance and reducing potential risks. Full article
Show Figures

Figure 1

17 pages, 5464 KiB  
Article
Association Between Stiffness of the Deep Fibres of the Tibialis Anterior Muscle and Seiza Posture Performance After Ankle Fracture Surgery
by Hayato Miyasaka, Bungo Ebihara, Takashi Fukaya, Koichi Iwai, Shigeki Kubota and Hirotaka Mutsuzaki
J. Funct. Morphol. Kinesiol. 2025, 10(3), 300; https://doi.org/10.3390/jfmk10030300 - 1 Aug 2025
Viewed by 78
Abstract
Background: Seiza, a traditional sitting posture requiring deep ankle plantarflexion and knee flexion, often becomes difficult after ankle fracture surgery because of restricted mobility. Increased stiffness of the tibialis anterior (TA) muscle, particularly in its deep and superficial fibres, may limit [...] Read more.
Background: Seiza, a traditional sitting posture requiring deep ankle plantarflexion and knee flexion, often becomes difficult after ankle fracture surgery because of restricted mobility. Increased stiffness of the tibialis anterior (TA) muscle, particularly in its deep and superficial fibres, may limit plantarflexion and affect functional recovery. This study aimed to investigate the relationship between TA muscle stiffness, assessed using shear wave elastography (SWE), and the ability to assume the seiza posture after ankle fracture surgery. We also sought to determine whether the stiffness in the deep or superficial TA fibres was more strongly correlated with seiza ability. Methods: In this cross-sectional study, 38 patients who underwent open reduction and internal fixation for ankle fractures were evaluated 3 months postoperatively. Seiza ability was assessed using the ankle plantarflexion angle and heel–buttock distance. The shear moduli of the superficial and deep TA fibres were measured using SWE. Ankle range of motion, muscle strength, and self-reported seiza pain were also measured. Multiple linear regression was used to identify the predictors of seiza performance. Results: The shear moduli of both deep (β = −0.454, p < 0.001) and superficial (β = −0.339, p = 0.017) TA fibres independently predicted ankle plantarflexion angle during seiza (adjusted R2, 0.624). Pain during seiza was significantly associated with reduced plantarflexion, whereas muscle strength was not a significant predictor. Conclusions: TA muscle stiffness, especially in the deep fibres, was significantly associated with limited postoperative seiza performance. Targeted interventions that reduce deep TA stiffness may enhance functional outcomes. Full article
(This article belongs to the Section Functional Anatomy and Musculoskeletal System)
Show Figures

Figure 1

11 pages, 420 KiB  
Article
Differences in Lower Limb Muscle Activity and Gait According to Walking Speed Variation in Chronic Stroke
by Yong Gyun Shin and Ki Hun Cho
Appl. Sci. 2025, 15(15), 8479; https://doi.org/10.3390/app15158479 - 30 Jul 2025
Viewed by 153
Abstract
In this study, the effects of walking speed on lower limb muscle activity and gait parameters during over-ground walking were investigated in individuals with chronic stroke. Twenty-four patients with chronic stroke participated in a cross-sectional repeated-measures study, walking 20 m at three different [...] Read more.
In this study, the effects of walking speed on lower limb muscle activity and gait parameters during over-ground walking were investigated in individuals with chronic stroke. Twenty-four patients with chronic stroke participated in a cross-sectional repeated-measures study, walking 20 m at three different speeds: slow (80% of self-selected speed), self-selected, and maximal speed. Surface electromyography was used to measure muscle activity in five paretic-side muscles (rectus femoris, biceps femoris, tibialis anterior, gastrocnemius, and gluteus medius), while gait parameters, including stride length, stance and swing phases, single-limb support time, and the gait asymmetry index were assessed using a triaxial accelerometer. As walking speed increased, activity in the rectus femoris, biceps femoris, and gastrocnemius muscles significantly increased during the stance and swing phases (p < 0.05), whereas the gluteus medius activity tended to decrease. Stride length on the paretic and non-paretic sides significantly increased with faster walking speed (p < 0.05); however, no significant improvements were observed in other gait parameters or gait asymmetry. These findings suggest that although increasing walking speed enhances specific muscle activities, it does not necessarily improve overall gait quality or symmetry. Therefore, rehabilitation programs should incorporate multidimensional gait training that addresses speed and neuromuscular control factors such as balance and proprioception. Full article
Show Figures

Figure 1

12 pages, 1122 KiB  
Article
Neuromuscular Strategies in Novice and Advanced Taekwondo Athletes During Consecutive Roundhouse Kicks
by Mauricio Barramuño-Medina, Pablo Aravena-Sagardia, Pablo Valdés-Badilla, Jordan Hernandez-Martinez, Tomás Espinoza-Palavicino, Cristian Sandoval and Germán Gálvez-García
Appl. Sci. 2025, 15(15), 8356; https://doi.org/10.3390/app15158356 - 27 Jul 2025
Viewed by 265
Abstract
Background: This study investigates differences in muscle co-contraction and peak electromyography (EMG) activity between novice and advanced Taekwondo athletes during consecutive roundhouse (bandal chagui) kicks, examining the influence of body composition and experience level. Methods: Sixteen Taekwondo athletes (12 males, 4 [...] Read more.
Background: This study investigates differences in muscle co-contraction and peak electromyography (EMG) activity between novice and advanced Taekwondo athletes during consecutive roundhouse (bandal chagui) kicks, examining the influence of body composition and experience level. Methods: Sixteen Taekwondo athletes (12 males, 4 females; mean age: 20.5 ± 4.3 years) were divided into novice (n = 8) and advanced (n = 8) groups. Muscle co-contraction indices and peak EMG activity across 15 consecutive kicks were assessed in key lower limb muscles, including the biceps femoris (BF), lateral gastrocnemius (LG), rectus femoris (RF), soleus (SO), semitendinosus (ST), tibialis anterior (TA), vastus lateralis (VL), and vastus medialis (VM). Results: Advanced athletes exhibited significantly higher co-contraction indices in BF–RF, VM–BF, and SO–TA pairs (p < 0.05) and increased peak EMG trends in the BF and LG (p < 0.05). Novice athletes showed significantly reduced peak EMG increases in the RF, VM, and VL. EMG trends were influenced by body composition, with principal component analysis indicating that higher fat mass and lower muscle mass were associated with greater variations in muscle activation. Conclusions: These findings suggest that advanced athletes refine motor control through increased co-contraction, improving stability and efficiency, while novices exhibit less optimized coordination patterns. This study provides insights into the neuromechanical adaptations associated with expertise development in Taekwondo. Full article
(This article belongs to the Special Issue Application of Biomechanics in Sports Science)
Show Figures

Figure 1

23 pages, 1711 KiB  
Case Report
Effect of Individualized Whole-Body Vibration Exercise on Locomotion and Postural Control in a Person with Multiple Sclerosis: A 5-Year Case Report
by Stefano La Greca, Stefano Marinelli, Rocco Totaro, Francesca Pistoia and Riccardo Di Giminiani
Appl. Sci. 2025, 15(15), 8351; https://doi.org/10.3390/app15158351 - 27 Jul 2025
Viewed by 393
Abstract
The present study aims to investigate the multi-year effects (5 years) of individualized whole-body vibration (WBV) on locomotion, postural control, and handgrip strength in a 68-year-old man with relapse remitting multiple sclerosis (PwRRMS). The dose–response relationship induced by a single session was quantified [...] Read more.
The present study aims to investigate the multi-year effects (5 years) of individualized whole-body vibration (WBV) on locomotion, postural control, and handgrip strength in a 68-year-old man with relapse remitting multiple sclerosis (PwRRMS). The dose–response relationship induced by a single session was quantified by determining the surface electromyographic activity (sEMG) of the participant. The participant wore an orthosis to limit the lack of foot dorsiflexion in the weakest limb during walking in daily life. The gait alteration during walking was assessed at 1, 2 and 3 km/h (without the orthosis) through angle–angle diagrams by quantifying the area, perimeter and shape of the loops, and the sEMG of leg muscles was recorded in both limbs. The evaluation of postural control was conducted during upright standing by quantifying the displacement of the center of pressure (CoP). The handgrip strength was assessed by measuring the force–time profile synchronized with the sEMG activity of upper arm muscles. The participant improved his ability to walk at higher speeds (2–3 km/h) without the orthosis. There were greater improvements in the area and perimeter of angle–angle diagrams for the weakest limb (Δ = 36–51%). The sEMG activity of the shank muscles increased at all speeds, particularly in the tibialis anterior of weakest limbs (Δ = 10–68%). The CoP displacement during upright standing decreased (Δ = 40–60%), whereas the handgrip strength increased (Δ = 32% average). Over the 5-year period of intervention, the individualized WBV improved locomotion, postural control and handgrip strength without side effects. Future studies should consider the possibility of implementing an individualized WBV in PwRRMS. Full article
(This article belongs to the Special Issue Recent Advances in Exercise-Based Rehabilitation)
Show Figures

Figure 1

10 pages, 409 KiB  
Article
Electromyographic Analysis of Lower Limb Muscles During Multi-Joint Eccentric Isokinetic Exercise Using the Eccentron Dynamometer
by Brennan J. Thompson, Merrill Ward, Brayden Worley and Talin Louder
Appl. Sci. 2025, 15(15), 8280; https://doi.org/10.3390/app15158280 - 25 Jul 2025
Viewed by 227
Abstract
Eccentric muscle actions are integral to human movement, rehabilitation, and performance training due to their characteristic high force output (overload) and low energy cost and perceived exertion. Despite the growing use of eccentric devices, a gap in the research exists exploring multi-muscle activation [...] Read more.
Eccentric muscle actions are integral to human movement, rehabilitation, and performance training due to their characteristic high force output (overload) and low energy cost and perceived exertion. Despite the growing use of eccentric devices, a gap in the research exists exploring multi-muscle activation profiles during multi-joint eccentric-only, isokinetic exercise. This study aimed to quantify and compare surface electromyographic (EMG) activity of four leg muscles—vastus lateralis (VL), tibialis anterior (TA), biceps femoris (BF), and medial gastrocnemius (GM)—during a standardized (isokinetic) submaximal eccentric multi-joint exercise using the Eccentron dynamometer. Eighteen healthy adults performed eccentric exercise at 40% of their maximal eccentric strength. Surface EMG data were analyzed using root mean square (RMS) and integrated EMG (iEMG) variables. Repeated-measures ANOVAs and effect sizes (ES) were used to evaluate within-subject differences across muscles. Results showed significantly greater activation in the VL compared to all other muscles (p < 0.05; and ES of 1.28–3.17 versus all other muscles), with the TA also demonstrating higher activation than the BF (p < 0.05). The BF exhibited the lowest activation, suggesting limited hamstring engagement. These findings highlight the effectiveness of the multi-joint isokinetic eccentric leg press movement (via an Eccentron machine) in targeting the quadriceps and dorsiflexors, while indicating the possible need for supplementary hamstring and plantar flexor exercises when aiming for a comprehensive lower body training routine. This study provides important insights for optimizing eccentric training protocols and rehabilitation strategies. Full article
Show Figures

Figure 1

11 pages, 3023 KiB  
Article
Comparison of Lower Limb COP and Muscle Activation During Single-Leg Deadlift Using Elastic and Inelastic Barbells
by Jihwan Jeong and Ilbong Park
Sports 2025, 13(8), 242; https://doi.org/10.3390/sports13080242 - 24 Jul 2025
Viewed by 376
Abstract
Background: This study aimed to investigate how barbell type (elastic vs. inelastic) and lifting speed affect postural stability and lower limb muscle activation during the single-leg deadlift (SLDL), a common unilateral exercise in rehabilitation and performance training. Methods: Twenty-seven healthy adults performed SLDLs [...] Read more.
Background: This study aimed to investigate how barbell type (elastic vs. inelastic) and lifting speed affect postural stability and lower limb muscle activation during the single-leg deadlift (SLDL), a common unilateral exercise in rehabilitation and performance training. Methods: Twenty-seven healthy adults performed SLDLs using both elastic and inelastic barbells under three lifting speeds (normal, fast, and power). Center of pressure (COP) displacement in the anterior–posterior (AP) and medial–lateral (ML) directions and electromyographic (EMG) activity of eight lower limb muscles were measured. Results: COP displacement was significantly lower when using elastic barbells (AP: F = 6.509, p = 0.017, η2 = 0.200, ω2 = 0.164; ML: F = 9.996, p = 0.004, η2 = 0.278, ω2 = 0.243). EMG activation was significantly higher for the gluteus medius, biceps femoris, semitendinosus, and gastrocnemius (all p < 0.01), especially under power conditions. Significant interactions between barbell type and speed were found for the gluteus medius (F = 13.737, p < 0.001, η2 = 0.346, ω2 = 0.176), semitendinosus (F = 6.757, p = 0.002, η2 = 0.206, ω2 = 0.080), and tibialis anterior (F = 3.617, p = 0.034, η2 = 0.122, ω2 = 0.029). Conclusions: The findings suggest that elastic barbells improve postural control and enhance neuromuscular activation during the SLDL, particularly at higher speeds. These results support the integration of elastic resistance in dynamic balance and injury prevention programs. Full article
Show Figures

Figure 1

12 pages, 753 KiB  
Article
The Effect of Sensory-Based Priming Using Repetitive Peripheral Magnetic Stimulation on Motor Skill Performance in Individuals with Stroke
by Rehab Aljuhni, Christina Sawa, Srinivas Kumar and Sangeetha Madhavan
Appl. Sci. 2025, 15(15), 8129; https://doi.org/10.3390/app15158129 - 22 Jul 2025
Viewed by 214
Abstract
The objective of this study was to investigate the temporal effectiveness of repetitive peripheral magnetic stimulation (rPMS) on lower-limb motor skill performance in individuals with chronic stroke. In this sham-controlled crossover study, we hypothesized that individuals with stroke who received rPMS would demonstrate [...] Read more.
The objective of this study was to investigate the temporal effectiveness of repetitive peripheral magnetic stimulation (rPMS) on lower-limb motor skill performance in individuals with chronic stroke. In this sham-controlled crossover study, we hypothesized that individuals with stroke who received rPMS would demonstrate improved motor skill performance after the stimulation and maintain this enhanced performance at 30 and 60 min after the stimulation. Sixteen participants performed a visuomotor ankle-tracking task at multiple time points following either rPMS or sham stimulation. rPMS, delivered to the tibialis anterior muscle, did not result in statistically significant changes in spatiotemporal (p = 0.725) or spatial error (p = 0.566) metrics at any post-stimulation time point. These findings suggest that a single session of rPMS does not lead to measurable improvements in lower-limb motor skill performance in individuals with stroke, underscoring the need to refine stimulation parameters and target populations in future protocols. Full article
(This article belongs to the Special Issue Current Advances in Rehabilitation Technology)
Show Figures

Figure 1

15 pages, 903 KiB  
Article
Neuromuscular Fatigue Profile of Prepubertal and Adult Female Handball Players
by Anastasia Papavasileiou, Eleni Bassa, Anthi Xenofondos, Panagiotis Meletakos, Konstantinos Noutsos and Dimitrios A. Patikas
Sports 2025, 13(7), 230; https://doi.org/10.3390/sports13070230 - 11 Jul 2025
Viewed by 291
Abstract
The investigation of the neuromuscular components of fatigue in team sports, especially in developmental ages, is limited. This study aimed to examine the neuromuscular fatigue and recovery patterns in prepubertal and adult female handball players, focusing on the soleus (SOL) and tibialis anterior [...] Read more.
The investigation of the neuromuscular components of fatigue in team sports, especially in developmental ages, is limited. This study aimed to examine the neuromuscular fatigue and recovery patterns in prepubertal and adult female handball players, focusing on the soleus (SOL) and tibialis anterior (TA) muscles. Fifteen prepubertal (11.1 ± 0.9 years) and fourteen adult (22.0 ± 3.4 years) females performed a sustained isometric plantar flexion at 25% of maximal voluntary contraction (MVC) until exhaustion. The electromyographic (EMG) activity of the SOL and TA, torque, and central activation ratio (CAR) were recorded throughout the experiment. Endurance time was similar between groups (girls: 104 ± 93.5 s; women: 94.4 ± 30.2 s, p > 0.05), and both demonstrated progressive increases in muscle activation, without significant group differences for SOL and TA EMG (p > 0.05). Following fatigue, the torque and soleus (SOL) EMG activity decreased significantly compared to the pre-fatigue values in both groups (p < 0.001) and recovered (p > 0.05) in prepubertal and adult females within the first 3 and 6 min, respectively. The CAR remained unchanged over time, without significant differences observed between age groups (p > 0.05). These findings suggest that neuromuscular responses to fatigue are comparable between prepubertal and adult females, but recovery is significantly faster in prepubertal girls. Consequently, these findings underscore the need for age-specific recovery strategies in training programs, with tailored exercise-to-rest ratios to enhance performance and reduce fatigue during handball-specific activities. Full article
Show Figures

Figure 1

16 pages, 3666 KiB  
Article
Horse Meat Hydrolysate Ameliorates Dexamethasone-Induced Muscle Atrophy in C57BL/6 Mice via the AKT/FoxO3a/mTOR Pathway
by Hee-Jeong Lee, Dongwook Kim, Yousung Jung, Soomin Oh, Cho Hee Kim and Aera Jang
Cells 2025, 14(14), 1050; https://doi.org/10.3390/cells14141050 - 9 Jul 2025
Viewed by 489
Abstract
As life expectancy increases, muscle atrophy, characterized by a decline in muscle mass and strength that can impair mobility, has become a growing concern, highlighting the potential of protein supplementation as a promising intervention strategy. A horse meat hydrolysate, with a molecular weight [...] Read more.
As life expectancy increases, muscle atrophy, characterized by a decline in muscle mass and strength that can impair mobility, has become a growing concern, highlighting the potential of protein supplementation as a promising intervention strategy. A horse meat hydrolysate, with a molecular weight of less than 3 kDa, derived from m. biceps femoris and produced using the food-grade enzyme Alcalase® (A4 < 3kDa) was evaluated for its efficacy in mitigating dexamethasone-induced muscle atrophy, a widely accepted model for studying catabolic muscle loss. Administered orally to C57BL/6 mice at dosages of 200 mg/kg or 500 mg/kg body weight for 35 days, A4 < 3kDa effectively countered the weight loss induced by dexamethasone in the whole body, quadriceps, tibialis anterior, and gastrocnemius muscles. Moreover, it increased muscle fiber cross-sectional area and grip strength. These effects were attributed to increased protein synthesis via the protein kinase B (AKT)/forkhead box O3 (FoxO3a)/mammalian target of rapamycin (mTOR) signaling pathway. A4 < 3kDa augmented the phosphorylation of key components of the signaling pathways associated with muscle atrophy, resulting in reduced mRNA expression of Atrogin-1 and MuRF-1. These findings demonstrate the potential of A4 < 3kDa as a functional food ingredient for preventing muscle atrophy. Full article
Show Figures

Graphical abstract

17 pages, 4138 KiB  
Article
From Control Algorithm to Human Trial: Biomechanical Proof of a Speed-Adaptive Ankle–Foot Orthosis for Foot Drop in Level-Ground Walking
by Pouyan Mehryar, Sina Firouzy, Uriel Martinez-Hernandez and Abbas Dehghani-Sanij
Biomechanics 2025, 5(3), 51; https://doi.org/10.3390/biomechanics5030051 - 4 Jul 2025
Viewed by 304
Abstract
Background/Objectives: This study focuses on the motion planning and control of an active ankle–foot orthosis (AFO) that leverages biomechanical insights to mitigate footdrop, a deficit that prevents safe toe clearance during walking. Methods: To adapt the motion of the device to the user’s [...] Read more.
Background/Objectives: This study focuses on the motion planning and control of an active ankle–foot orthosis (AFO) that leverages biomechanical insights to mitigate footdrop, a deficit that prevents safe toe clearance during walking. Methods: To adapt the motion of the device to the user’s walking speed, a geometric model was used, together with real-time measurement of the user’s gait cycle. A geometric speed-adaptive model also scales a trapezoidal ankle-velocity profile in real time using the detected gait cycle. The algorithm was tested at three different walking speeds, with a prototype of the AFO worn by a test subject. Results: At walking speeds of 0.44 and 0.61 m/s, reduced tibialis anterior (TA) muscle activity was confirmed by electromyography (EMG) signal measurement during the stance phase of assisted gait. When the AFO was in assistance mode after toe-off (initial and mid-swing phase), it provided an average of 48% of the estimated required power to make up for the deliberate inactivity of the TA muscle. Conclusions: Kinematic analysis of the motion capture data showed that sufficient foot clearance was achieved at all three speeds of the test. No adverse effects or discomfort were reported during the experiment. Future studies should examine the device in populations with footdrop and include a comprehensive evaluation of safety. Full article
(This article belongs to the Section Injury Biomechanics and Rehabilitation)
Show Figures

Figure 1

15 pages, 1033 KiB  
Article
Detrended Fluctuation Analysis of Gait Cycles: A Study of Neuromuscular and Ground Force Dynamics
by Soumya Prakash Rana and Maitreyee Dey
Sensors 2025, 25(13), 4122; https://doi.org/10.3390/s25134122 - 2 Jul 2025
Viewed by 410
Abstract
Gait analysis provides crucial insights into neuromuscular coordination and postural control, especially in ageing populations and rehabilitation contexts. This study investigates the complexity of muscle activation and ground reaction force patterns during gait by applying detrended fluctuation analysis (DFA) to electromyography (EMG) and [...] Read more.
Gait analysis provides crucial insights into neuromuscular coordination and postural control, especially in ageing populations and rehabilitation contexts. This study investigates the complexity of muscle activation and ground reaction force patterns during gait by applying detrended fluctuation analysis (DFA) to electromyography (EMG) and force-sensitive resistor (FSR) signals. Data from a two-arm randomised clinical trial (RCT) supplemented with an observational control group were used in this study. Participants performed a single-task walking protocol, with EMG recorded from the tibialis anterior and lateral gastrocnemius muscles of both legs and FSR sensors placed under the feet. Gait cycles were segmented using heel-strike detection from the FSR signal, enabling analysis of individual strides. For each gait cycle, DFA was applied to quantify the long-range temporal correlations in the EMG and FSR time series. Results revealed consistent α-scaling exponents across cycles, with EMG signals exhibiting moderate persistence (α0.850.92) and FSR signals showing higher persistence (α1.5), which is indicative of stable and repeatable gait patterns. These findings support the utility of DFA as a nonlinear signal processing tool for characterising gait dynamics, offering potential markers for gait stability, motor control, and intervention effects in populations practising movement-based therapies such as Tai Chi. Future work will extend this analysis to dual-task conditions and comparative group studies. Full article
(This article belongs to the Special Issue Feature Papers in the 'Sensor Networks' Section 2025)
Show Figures

Figure 1

18 pages, 4212 KiB  
Article
Backward Locomotion as a Novel Strategy for Enhancing Obesity Management
by Mustafa Cebel Torun, Çağrı Çelenk, Alpaslan Yılmaz, Mehmet Behzat Turan, Soner Akkurt and Samet Torun
Appl. Sci. 2025, 15(13), 7099; https://doi.org/10.3390/app15137099 - 24 Jun 2025
Viewed by 259
Abstract
Obesity is associated with reduced cardiorespiratory fitness and altered metabolic responses. However, the acute effects of forward and backward locomotion training in individuals with a body mass index (BMI) ≥ 30 remain underexplored. This study investigated this population’s cardiorespiratory, metabolic–perceptual, and muscle electromyography [...] Read more.
Obesity is associated with reduced cardiorespiratory fitness and altered metabolic responses. However, the acute effects of forward and backward locomotion training in individuals with a body mass index (BMI) ≥ 30 remain underexplored. This study investigated this population’s cardiorespiratory, metabolic–perceptual, and muscle electromyography (EMG) responses to forward and backward locomotion at different speeds. Twenty-eight male participants were divided into four seven-member groups, following a randomized crossover design with a Latin Square-like counterbalancing approach. Participants completed four 10 min walking conditions (3 km/h forward, 3 km/h backward, 4 km/h forward, and 4 km/h backward) on separate days, with cardiorespiratory parameters (e.g., VO2, VCO2, and heart rate), metabolic responses (e.g., lactate and energy expenditure), and lower-limb muscle EMG activity measured. Statistical analysis using two-way repeated measures (MANOVA) revealed significant direction effects (p < 0.05) on VO2, VCO2, heart rate, energy expenditure, Borg RPE, final lactate, and the EMG activity of quadriceps, hamstrings, and tibialis anterior, but not on pre-lactate or soleus activity (p > 0.05). These findings provide valuable insights for optimizing exercise programs in obese individuals, supporting tailored movement strategies to enhance physiological outcomes. Full article
Show Figures

Figure 1

22 pages, 1476 KiB  
Article
Wearable Ultrasound-Imaging-Based Visual Feedback (UVF) Training for Ankle Rehabilitation of Chronic Stroke Survivors: A Proof-of-Concept Randomized Crossover Study
by Yu-Yan Luo, Chen Huang, Zhen Song, Vaheh Nazari, Arnold Yu-Lok Wong, Lin Yang, Mingjie Dong, Mingming Zhang, Yong-Ping Zheng, Amy Siu-Ngor Fu and Christina Zong-Hao Ma
Biosensors 2025, 15(6), 365; https://doi.org/10.3390/bios15060365 - 6 Jun 2025
Viewed by 615
Abstract
This study investigated the effect of wearable ultrasound-imaging-based visual feedback (UVF) on assisting paretic ankle dorsiflexion training of chronic stroke survivors. Thirty-three participants with unilateral hemiplegia performed maximal isometric contractions on an isokinetic dynamometer in randomized conditions with and without UVF that provided [...] Read more.
This study investigated the effect of wearable ultrasound-imaging-based visual feedback (UVF) on assisting paretic ankle dorsiflexion training of chronic stroke survivors. Thirty-three participants with unilateral hemiplegia performed maximal isometric contractions on an isokinetic dynamometer in randomized conditions with and without UVF that provided by a wearable ultrasound imaging system. Torque parameters (mean, peak, percentage of maximal voluntary contraction) and tibialis anterior muscle thickness were analyzed across different contraction phases. Statistical comparisons were conducted using paired t-tests or Wilcoxon tests. Correlation analyses were performed using Pearson’s or Spearman’s tests. Results demonstrated that UVF significantly improved torque output, as evidence by the increased percentage of maximal voluntary contraction (%MVC) during entire contractions (p = 0.007), increased mean (p ≤ 0.022) and peak (p ≤ 0.044) torque and the %MVC (p ≤ 0.004) during mid and end phases, and larger muscle thickness during mid contraction (p = 0.045). Moderate correlations were found between torque and muscle thickness (r ≥ 0.30, p ≤ 0.049). These findings preliminarily supported the positive outcomes of real-time wearable UVFs in enhancing paretic ankle dorsiflexion strength and force control during isometric contractions in chronic stroke survivors. While the developed and validated new training protocol may potentially serve as a practical adjunct to existing rehabilitation approaches, further investigations emphasizing the functional outcomes and clinical translations are still needed to verify the clinical utility. Full article
(This article belongs to the Special Issue Innovative Biosensing Technologies for Sustainable Healthcare)
Show Figures

Figure 1

17 pages, 2716 KiB  
Review
Morphological Variability and Clinical Significance of the Fibularis Tertius Muscle: An Extensive Literature Review
by Marta Pośnik, Andrzej Węgiel, Nicol Zielinska, Kacper Ruzik, Łukasz Olewnik, George Triantafyllou, Maria Piagkou and Michał Podgórski
J. Clin. Med. 2025, 14(11), 3991; https://doi.org/10.3390/jcm14113991 - 5 Jun 2025
Viewed by 637
Abstract
Background: The muscles and their tendons exhibit considerable morphological variations. While the anterior leg compartment may seem uniform, several well-documented variants of the tibialis anterior, extensor hallucis longus (EHL) and extensor digitorum longus (EDL) exist. In contrast, little is known about the fibularis [...] Read more.
Background: The muscles and their tendons exhibit considerable morphological variations. While the anterior leg compartment may seem uniform, several well-documented variants of the tibialis anterior, extensor hallucis longus (EHL) and extensor digitorum longus (EDL) exist. In contrast, little is known about the fibularis tertius muscle (FT). This literature review aims to compile existing data on the FT and its variations and assess this structure’s clinical significance. Material and Methods: This comprehensive literature review is based on scientific articles obtained from PubMed. All relevant papers were included, and citation tracking was conducted to ensure a thorough examination of the topic. Results: This detailed literature review synthesizes the latest scientific findings regarding the FT, exploring its variable morphology, functional anatomy, evolutionary significance and clinical relevance. A high morphological variability of the FT is described including its origin, insertion and accessory form. Nevertheless, the FT has been described in cadaveric studies between adults and fetuses, while few classification systems have been proposed. Conclusions: The FT is an intriguing structure that has garnered interest from researchers across various fields, including medicine, clinical practice and biological sciences. There are few clinical implications of the muscle such as FT syndrome or tendon tear. Adequate knowledge of its anatomy is of paramount importance for clinicians. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

Back to TopTop