Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = thermocapillary

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 4142 KB  
Review
Advances in Wettability-Engineered Open Planar-Surface Droplet Manipulation
by Ge Chen, Jin Yan, Junjie Liang, Jiajia Zheng, Jinpeng Wang, Hongchen Pang, Xianzhang Wang, Zihao Weng and Wei Wang
Micromachines 2025, 16(8), 893; https://doi.org/10.3390/mi16080893 - 31 Jul 2025
Viewed by 1803
Abstract
Firstly, this paper reviews the fundamental theories of solid surface wettability and contact angle hysteresis. Subsequently, it further introduces four typical wettability-engineered surfaces with low hysteresis (superhydrophobic, superamphiphobic, super-slippery, and liquid-like smooth surfaces). Finally, it focuses on the latest research progress in the [...] Read more.
Firstly, this paper reviews the fundamental theories of solid surface wettability and contact angle hysteresis. Subsequently, it further introduces four typical wettability-engineered surfaces with low hysteresis (superhydrophobic, superamphiphobic, super-slippery, and liquid-like smooth surfaces). Finally, it focuses on the latest research progress in the field of droplet manipulation on open planar surfaces with engineered wettability. To achieve droplet manipulation, the core driving forces primarily stem from natural forces guided by bioinspired gradient surfaces or the regulatory effects of external fields. In terms of bioinspired self-propelled droplet movement, this paper summarizes research inspired by natural organisms such as desert beetles, cacti, self-aligning floating seeds of emergent plants, or water-walking insects, which construct bioinspired special gradient surfaces to induce Laplace pressure differences or wettability gradients on both sides of droplets for droplet manipulation. Moreover, this paper further analyzes the mechanisms, advantages, and limitations of these self-propelled approaches, while summarizing the corresponding driving force sources and their theoretical formulas. For droplet manipulation under external fields, this paper elaborates on various external stimuli including electric fields, thermal fields, optical fields, acoustic fields, and magnetic fields. Among them, electric fields involve actuation mechanisms such as directly applied electrostatic forces and indirectly applied electrocapillary forces; thermal fields influence droplet motion through thermoresponsive wettability gradients and thermocapillary effects; optical fields cover multiple wavelengths including near-infrared, ultraviolet, and visible light; acoustic fields utilize horizontal and vertical acoustic radiation pressure or acoustic wave-induced acoustic streaming for droplet manipulation; the magnetic force acting on droplets may originate from their interior, surface, or external substrates. Based on these different transport principles, this paper comparatively analyzes the unique characteristics of droplet manipulation under the five external fields. Finally, this paper summarizes the current challenges and issues in the research of droplet manipulation on the open planar surfaces and provides an outlook on future development directions in this field. Full article
(This article belongs to the Special Issue Advanced Microfluidic Chips: Optical Sensing and Detection)
Show Figures

Figure 1

37 pages, 6674 KB  
Article
Marangoni Convection of Self-Rewetting Fluid Layers with a Deformable Interface in a Square Enclosure and Driven by Imposed Nonuniform Heat Energy Fluxes
by Bashir Elbousefi, William Schupbach and Kannan N. Premnath
Energies 2025, 18(13), 3563; https://doi.org/10.3390/en18133563 - 6 Jul 2025
Viewed by 592
Abstract
Fluids that exhibit self-rewetting properties, such as aqueous long-chain alcohol solutions, display a unique quadratic relationship between surface tension and temperature and are marked by a positive gradient. This characteristic leads to distinctive patterns of thermocapillary convection and associated interfacial dynamics, setting self-rewetting [...] Read more.
Fluids that exhibit self-rewetting properties, such as aqueous long-chain alcohol solutions, display a unique quadratic relationship between surface tension and temperature and are marked by a positive gradient. This characteristic leads to distinctive patterns of thermocapillary convection and associated interfacial dynamics, setting self-rewetting fluids apart from normal fluids (NFs). The potential to improve heat transfer using self-rewetting fluids (SRFs) is garnering interest for use in various technologies, including low-gravity conditions and microfluidic systems. Our research aims to shed light on the contrasting behaviors of SRFs in comparison to NFs regarding interfacial transport phenomena. This study focuses on the thermocapillary convection in SRF layers with a deformable interface enclosed inside a closed container modeled as a square cavity, which is subject to nonuniform heating, represented using a Gaussian profile for the heat flux variation on one of its sides, in the absence of gravity. To achieve this, we have enhanced a central-moment-based lattice Boltzmann method (LBM) utilizing three distribution functions for tracking interfaces, computing two-fluid motions with temperature-dependent surface tension and energy transport, respectively. Through numerical simulations, the impacts of several characteristic parameters, including the viscosity and thermal conductivity ratios, as well as the surface tension–temperature sensitivity parameters, on the distribution and magnitude of the thermocapillary-driven motion are examined. In contrast to that in NFs, the counter-rotating pair of vortices generated in the SRF layers, due to the surface tension gradient at the interface, is found to be directed toward the SRF layers’ hotter zones. Significant interfacial deformations are observed, especially when there are contrasts in the viscosities of the SRF layers. The thermocapillary convection is found to be enhanced if the bottom SRF layer has a higher thermal conductivity or viscosity than that of the top layer or when distributed, rather than localized, heating is applied. Furthermore, the higher the magnitude of the effect of the dimensionless quadratic surface tension sensitivity coefficient on the temperature, or of the effect of the imposed heat flux, the greater the peak interfacial velocity current generated due to the Marangoni stresses. In addition, an examination of the Nusselt number profiles reveals significant redistribution of the heat transfer rates in the SRF layers due to concomitant nonlinear thermocapillary effects. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

15 pages, 3855 KB  
Article
Thermocapillary Flow in Fluid Smectic Bubbles in Microgravity
by Eric Minor, Ravin Chowdhury, Cheol S. Park, Joseph E. Maclennan and Noel A. Clark
Crystals 2025, 15(5), 416; https://doi.org/10.3390/cryst15050416 - 29 Apr 2025
Viewed by 752
Abstract
Interfaces between two fluids exhibit an excess free-energy cost per unit area that is manifested as surface tension. This equilibrium property generally depends on temperature, which enables the phenomenon of thermocapillary flow, wherein application of a temperature gradient having a component parallel to [...] Read more.
Interfaces between two fluids exhibit an excess free-energy cost per unit area that is manifested as surface tension. This equilibrium property generally depends on temperature, which enables the phenomenon of thermocapillary flow, wherein application of a temperature gradient having a component parallel to the surface generates a net in-plane effective body force on the fluid and thereby causes flow. Here, we study the thermocapillary flow in fluid smectic liquid crystal films freely suspended in air and stabilized in thickness by the smectic layering. If such films are a single layer (~3 nm) or a few layers thick, they have the largest surface to volume ratio of any fluid preparation, making them particularly interesting in the context of thermocapillary flow, which is two-dimensional (2D) in the film plane. Five-layer thick films in the form of spherical bubbles were subjected to a north–south temperature gradient field along a polar axis, with flow fields mapped using inclusions on the film surface as tracers, where the inclusions were “islands”, small circular stacks of extra layers. These experiments were carried out on the International Space Station to avoid interference from thermal convention of the air. The flow field as a function of latitude on the bubble can be successfully modeled using Navier–Stokes hydrodynamics, modified to include permeative flow out of the background fluid into the islands. Full article
(This article belongs to the Section Liquid Crystals)
Show Figures

Figure 1

18 pages, 6437 KB  
Article
Effect of a Uniform Axial Magnetic Field on the Spatiotemporal Evolution of Thermocapillary Convection in a High Prandtl Fluid Under Microgravity
by Shuo Yang, Pushi Ge, Yu Gao, Jintao Luo, Tianyu Wang, Zhe Liu, Yunyi Zheng, Wanqi Li and Jie Cui
Symmetry 2024, 16(12), 1645; https://doi.org/10.3390/sym16121645 - 12 Dec 2024
Cited by 1 | Viewed by 879
Abstract
In this paper, the semi-floating liquid bridge model with the silicone oil-based ferromagnetic fluid under microgravity was taken as the research object. The enhanced level set method was employed to numerically monitor the free surface flow characteristics, utilizing a staggered grid. The internal [...] Read more.
In this paper, the semi-floating liquid bridge model with the silicone oil-based ferromagnetic fluid under microgravity was taken as the research object. The enhanced level set method was employed to numerically monitor the free surface flow characteristics, utilizing a staggered grid. The internal flow, temperature, velocity and interface deformation of thermocapillary convection under a uniform axial magnetic field were studied by direct numerical simulation. The results show that the transverse development of thermocapillary convection is suppressed by the axial uniform magnetic field, and the cell flow is controlled near the free surface. The average axial velocity was increased by about three times, and the average radial velocity was increased by about two times. The average axial temperature near the free surface was much higher than that on other radii. The axial temperature level of the surface flow was improved under of the influence of a uniform axial magnetic field. The axial temperature gradient in the central area of the liquid bridge basically showed the same change rule. The closer to the hot disk of the liquid bridge, the larger the axial temperature gradient. In addition, the axial uniform magnetic field effectively suppressed the micro-deformation of the free interface, and the free surface micro-deformation was at an order of magnitude of 10−5 (the deformation of the free surface in thermocapillary convection within a liquid bridge without a magnetic field was at an order of magnitude of 10−4). Therefore, studying the influence of the axial magnetic field on the thermocapillary convection of a high Prandtl number fluid can provide the necessary theoretical support for the development of crystal preparation technology. Full article
(This article belongs to the Special Issue Symmetry and Its Application in Fluid Mechanics)
Show Figures

Figure 1

21 pages, 9459 KB  
Article
Development and Space Experiment Verification of Annular Liquid Flow Payload for China Space Station
by Jia Wang, Yi Chen, Di Wu, Liang Hu, Zhijun Ye, Li Duan, Xilin Zhao, Yongli Yin and Qi Kang
Symmetry 2024, 16(11), 1530; https://doi.org/10.3390/sym16111530 - 15 Nov 2024
Cited by 1 | Viewed by 1063
Abstract
The annular flow payload is among the first batch of space science experimental projects carried out on the Fluid Physics Rack of the China Space Station. This paper provides a detailed introduction to the development of the payload, ground validation, and in orbit [...] Read more.
The annular flow payload is among the first batch of space science experimental projects carried out on the Fluid Physics Rack of the China Space Station. This paper provides a detailed introduction to the development of the payload, ground validation, and in orbit experiments. The payload, sized 320 mm × 200 mm × 220 mm, includes an annular flow model and supports supply (24 V, 12 V, and 5 V), communication, and data transmission. A multi-functional heating column in the annular flow model was designed, allowing for the column to operate in fixed, rotating, and lifting scenarios. In the first round, 96 sets of space experiments covering volume ratio ranges from 0.45 to 1.06 were carried out. The annular flow liquid surface state, temperature oscillation, and infrared temperature field evolution were obtained. Mode decomposition shows the oscillatory convection of the m = 4 travelling wave, and contains m = 3, m = 6, and m = 8 waves. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

16 pages, 3586 KB  
Article
The Impact of Marangoni and Buoyancy Convections on Flow and Segregation Patterns during the Solidification of Fe-0.82wt%C Steel
by Ibrahim Sari, Menghuai Wu, Mahmoud Ahmadein, Sabbah Ataya, Nashmi Alrasheedi and Abdellah Kharicha
Materials 2024, 17(5), 1205; https://doi.org/10.3390/ma17051205 - 5 Mar 2024
Cited by 5 | Viewed by 2278
Abstract
Due to the high computational costs of the Eulerian multiphase model, which solves the conservation equations for each considered phase, a two-phase mixture model is proposed to reduce these costs in the current study. Only one single equation for each the momentum and [...] Read more.
Due to the high computational costs of the Eulerian multiphase model, which solves the conservation equations for each considered phase, a two-phase mixture model is proposed to reduce these costs in the current study. Only one single equation for each the momentum and enthalpy equations has to be solved for the mixture phase. The Navier–Stokes and energy equations were solved using the 3D finite volume method. The model was used to simulate the liquid–solid phase transformation of a Fe-0.82wt%C steel alloy under the effect of both thermocapillary and buoyancy convections. The alloy was cooled in a rectangular ingot (100 × 100 × 10 mm3) from the bottom cold surface to the top hot free surface by applying a heat transfer coefficient of h = 600 W/m2/K, which allows for heat exchange with the outer medium. The purpose of this work is to study the effect of the surface tension on the flow and segregation patterns. The results before solidification show that Marangoni flow was formed at the free surface of the molten alloy, extending into the liquid depth and creating polygonized hexagonal patterns. The size and the number of these hexagons were found to be dependent on the Marangoni number, where the number of convective cells increases with the increase in the Marangoni number. During solidification, the solid front grew in a concave morphology, as the centers of the cells were hotter; a macro-segregation pattern with hexagonal cells was formed, which was analogous to the hexagonal flow cells generated by the Marangoni effect. After full solidification, the segregation was found to be in perfect hexagonal shapes with a strong compositional variation at the free surface. This study illuminates the crucial role of surface-tension-driven Marangoni flow in producing hexagonal patterns before and during the solidification process and provides valuable insights into the complex interplay between the Marangoni flow, buoyancy convection, and solidification phenomena. Full article
(This article belongs to the Special Issue Advances in Multicomponent Alloy Design, Simulation and Properties)
Show Figures

Graphical abstract

26 pages, 5417 KB  
Article
The Influence of Two-Dimensional Temperature Modulation on Floating Droplet Dynamics
by Alexander Nepomnyashchy and Ilya Simanovskii
Fluids 2024, 9(1), 6; https://doi.org/10.3390/fluids9010006 - 25 Dec 2023
Viewed by 1827
Abstract
We investigate the dynamics and instabilities of a droplet that floats on a liquid substrate. The substrate is cooled from below. In the framework of the slender droplet approximation and the precursor model, the problem is studied numerically. Oscillatory and stationary regimes of [...] Read more.
We investigate the dynamics and instabilities of a droplet that floats on a liquid substrate. The substrate is cooled from below. In the framework of the slender droplet approximation and the precursor model, the problem is studied numerically. Oscillatory and stationary regimes of thermocapillary convection have been observed. The influence of a two-dimensional spatial inhomogeneity of temperature on the droplet dynamics is investigated. The two-dimensional spatial temperature inhomogeneity can suppress oscillations, changing the droplet’s shape. In a definite region of parameters, the two-dimensional spatial modulation can lead to the excitation of periodic oscillations. The influence of the Biot number on the shape of the droplets is studied. Full article
(This article belongs to the Topic Fluid Mechanics)
Show Figures

Figure 1

14 pages, 6044 KB  
Article
The Mechanism of Droplet Thermocapillary Migration Coupled with Multi-Physical Fields
by Zhijun Ye, Yi Chen, Chao Yang, Di Wu, Jia Wang, Liang Hu, Li Duan and Qi Kang
Symmetry 2023, 15(11), 2069; https://doi.org/10.3390/sym15112069 - 15 Nov 2023
Cited by 6 | Viewed by 1741
Abstract
In this paper, the coupling effect of multiphysical fields of droplet migration is deeply studied by constructing a physical model of droplet migration with multiphysical fields. Digital holographic interferometry and particle image velocimetry are used to simultaneously measure the temperature and velocity fields [...] Read more.
In this paper, the coupling effect of multiphysical fields of droplet migration is deeply studied by constructing a physical model of droplet migration with multiphysical fields. Digital holographic interferometry and particle image velocimetry are used to simultaneously measure the temperature and velocity fields of the mother liquor in the process of droplet migration for the first time. Due to the advancements of measuring, the zero-velocity region is also in the region where the thermal wake appears, four vortexes appear in the droplet migration and the off-axis behavior of double-droplet migration is found. The aim of this work is to analyze the coupling relationship of multiphysical fields, so as to reveal the physical laws of thermocapillary migration of single droplet and multiple droplets with the same phase and heterophase and to study the driving mechanism of the thermocapillary force and the flow of the mother liquor. Full article
(This article belongs to the Special Issue Symmetry and Its Applications in Experimental Fluid Mechanics)
Show Figures

Figure 1

18 pages, 4506 KB  
Article
Marangoni Bursting: Insight into the Role of the Thermocapillary Effect in an Oil Bath
by Michalina Ślemp and Andrzej Miniewicz
Fluids 2023, 8(9), 255; https://doi.org/10.3390/fluids8090255 - 20 Sep 2023
Cited by 2 | Viewed by 4437
Abstract
Marangoni bursting describes the spontaneous spread of a droplet of a binary mixture of alcohol/water deposited on a bath of oil, followed by its fast spontaneous fragmentation into a large number of smaller droplets in a self-similar way. Several papers have aimed to [...] Read more.
Marangoni bursting describes the spontaneous spread of a droplet of a binary mixture of alcohol/water deposited on a bath of oil, followed by its fast spontaneous fragmentation into a large number of smaller droplets in a self-similar way. Several papers have aimed to describe the physical phenomena underlying this spectacular phenomenon, in which two opposite effects, solutal and thermal Marangoni stresses, play competitive roles. We performed investigations of the Marangoni bursting phenomenon, paying attention to the surface temperature changes during bursting and after it. Fragmentation instabilities were monitored using a thermal camera for various initial alcohol/water compositions and at different stages of the process. We uncovered the role of thermocapillary Marangoni flows within the more viscous oil phase that are responsible for outward and inward shrinking of the periphery circle at the final stage of the phenomenon, enabling a more comprehensive understanding of the thermal Marangoni effect. Simulations of the Marangoni thermocapillary effect in an oil bath by solving coupled Navier–Stokes and heat transport equations using the COMSOL Multiphysics software platform support our experimental observations. Full article
(This article belongs to the Special Issue Stochastic Equations in Fluid Dynamics, 2nd Edition)
Show Figures

Figure 1

19 pages, 21957 KB  
Article
Numerical and Experimental Analysis of Dual-Beam Laser Polishing Additive Manufacturing Ti6Al4V
by Junyong Zeng, Wei Zhang, Ting Guo, Yan Lou, Wenqi Wang, Zhenyu Zhao and Chao Wang
Micromachines 2023, 14(9), 1765; https://doi.org/10.3390/mi14091765 - 13 Sep 2023
Cited by 5 | Viewed by 1784
Abstract
Laser polishing is an emerging efficient technique to remove surface asperity without polluting the environment. However, the insufficient understanding of the mechanism of laser polishing has limited its practical application in industry. In this study, a dual-beam laser polishing experiment was carried out [...] Read more.
Laser polishing is an emerging efficient technique to remove surface asperity without polluting the environment. However, the insufficient understanding of the mechanism of laser polishing has limited its practical application in industry. In this study, a dual-beam laser polishing experiment was carried out to reduce the roughness of a primary Ti6Al4V sample, and the polishing mechanism was well studied using simulation analysis. The results showed that the surface roughness of the sample was efficiently reduced from an initial 10.96 μm to 1.421 μm using dual-beam laser processing. The simulation analysis regarding the evolution of material surface morphology and the flow behavior of the molten pool during laser the polishing process revealed that the capillary force attributed to surface tension was the main driving force for flattening the large curvature surface of the molten pool at the initial stage, whereas the thermocapillary force influenced from temperature gradient played the key role of eliminating the secondary roughness at the edge of the molten pool during the continuous wave laser polishing process. However, the effect of thermocapillary force can be ignored during the second processing stage in dual-beam laser polishing. The simulation result is well in agreement with the experimental result, indicating the accuracy of the mechanism for the dual-beam laser polishing process. In summary, this work reveals the effect of capillary force and thermocapillary force on molten pool flows during the dual-beam laser polishing processes. Moreover, it is also proved that the dual-beam laser polishing process can further reduce the surface roughness of a sample and obtain a smoother surface. Full article
Show Figures

Figure 1

12 pages, 2116 KB  
Article
A Miniaturized System for Rapid, Isothermal Detection of SARS-CoV-2 in Human and Environmental Samples
by Jake Staples, Athanasia-Maria Dourou, Irene Liampa, Calvin Sjaarda, Emily Moslinger, Henry Wong, Prameet M. Sheth, Stilianos Arhondakis and Ravi Prakash
Biomedicines 2023, 11(7), 2038; https://doi.org/10.3390/biomedicines11072038 - 20 Jul 2023
Cited by 1 | Viewed by 3252
Abstract
We report a small-footprint cost-effective isothermal rapid DNA amplification system, with integrated microfluidics for automated sample analysis and detection of SARS-CoV-2 in human and environmental samples. Our system measures low-level fluorescent signals in real-time during amplification, while maintaining the desired assay temperature on [...] Read more.
We report a small-footprint cost-effective isothermal rapid DNA amplification system, with integrated microfluidics for automated sample analysis and detection of SARS-CoV-2 in human and environmental samples. Our system measures low-level fluorescent signals in real-time during amplification, while maintaining the desired assay temperature on a low power, portable system footprint. A unique soft microfluidic chip design was implemented to mitigate thermocapillary effects and facilitate optical alignment for automated image capture and signal analysis. The system-on-board prototype, coupled with the LAMP primers designed by BioCoS, was sensitive enough to detect large variations in viral loads of SARS-CoV-2 corresponding to a threshold cycle range of 16 to 39. Furthermore, tested samples consisted of a broad range of viral strains and lineages identified in Canada during 2021–2022. Clinical specimens were collected and tested at the Kingston Health Science Centre using a clinically validated PCR assay, and variants were determined using whole genome sequencing. Full article
(This article belongs to the Special Issue Nucleic Acid Based Sensing for Biomedical Applications)
Show Figures

Graphical abstract

23 pages, 6568 KB  
Article
Effects of Temperature Difference and Heat Loss on Oscillation Characteristics of Thermo-Solutocapillary Convection in Toluene/N-Hexane Mixed Solution
by Shuo Zhang, Ruquan Liang and Shuo Yang
Appl. Sci. 2023, 13(10), 6292; https://doi.org/10.3390/app13106292 - 21 May 2023
Viewed by 2157
Abstract
During the crystal growth process using the floating zone method, the uneven distribution of impurities on the surface of the melt can trigger a coupling mechanism between solutocapillary convection driven by the concentration gradient and thermocapillary convection driven by the temperature gradient, resulting [...] Read more.
During the crystal growth process using the floating zone method, the uneven distribution of impurities on the surface of the melt can trigger a coupling mechanism between solutocapillary convection driven by the concentration gradient and thermocapillary convection driven by the temperature gradient, resulting in the Marangoni convection at the free surface. When the temperature and concentration gradients reach certain values, the crystal surface and interior exhibit time-dependent, periodic oscillations, leading to the formation of micrometer-scale impurity stripes within the crystal. This study focuses on the effects of temperature difference and heat loss in a liquid bridge under microgravity on the structure and interface oscillation characteristics of thermo-solutocapillary convection, aiming to explore the coupling phenomenon of this oscillation and provide valuable information for crystal growth processes. An improved level set method is employed to accurately track every displacement of the interface, while the surface tension is addressed using the CSF model. In addition, the area compensation method is used to maintain simulation quality balance. A comprehensive analysis is performed on the oscillation characteristics of thermo-solutocapillary convection at the free surface, ranging from the temperature, concentration, deformation, and velocity distributions at the upper and middle heights of the liquid bridge. The results indicate that under small temperature differences (ΔT = 1 − 3), the transverse velocity at the upper end exhibits a single-periodic oscillation, while the longitudinal velocity presents a double-periodic oscillation. At the intermediate height, both the transverse and longitudinal velocities display a single-periodic oscillation. Under a large temperature difference (ΔT = 6), the oscillation of velocities at the upper end and the middle position become multi-periodic. In addition, heat loss has certain regular effects on the oscillatory flow of thermo-solutocapillary convection within a certain range. The velocity, amplitude, and frequency of the upper end and the middle position at the free surface decrease gradually, and the oscillation intensity also weakens with the increase in heat loss (Bi = 0.2 − 0.6). These new discoveries can provide a valuable reference for optimizing the crystal growth process, thereby enhancing the quality and performance of crystal materials. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

19 pages, 1106 KB  
Article
The Role of Thermoviscous and Thermocapillary Effects in the Cooling and Gravity-Driven Draining of Molten Free Liquid Films
by Hani Alahmadi and Shailesh Naire
Fluids 2023, 8(5), 153; https://doi.org/10.3390/fluids8050153 - 14 May 2023
Viewed by 1488
Abstract
We theoretically considered two-dimensional flow in a vertically aligned thick molten liquid film to investigate the competition between cooling and gravity-driven draining, which is relevant in the formation of metallic foams. Molten liquid in films cools as it drains, losing its heat to [...] Read more.
We theoretically considered two-dimensional flow in a vertically aligned thick molten liquid film to investigate the competition between cooling and gravity-driven draining, which is relevant in the formation of metallic foams. Molten liquid in films cools as it drains, losing its heat to the surrounding colder air and substrate. We extended our previous model to include non-isothermal effects, resulting in coupled non-linear evolution equations for the film’s thickness, extensional flow speed and temperature. The coupling between the flow and cooling effect was via a constitutive relationship for temperature-dependent viscosity and surface tension. This model was parameterized by the heat transfer coefficients at the film–air free surface and film–substrate interface, the Péclet number, the viscosity–temperature coupling parameter and the slope of the linear surface tension–temperature relationship. A systematic exploration of the parameter space revealed that at low Péclet numbers, increasing the heat transfer coefficient and gradually reducing the viscosity with temperature was conducive to cooling and could slow down the draining and thinning of the film. The effect of increasing the slope of the surface tension–temperature relationship on the draining and thinning of the film was observed to be more effective at lower Péclet numbers, where surface tension gradients in the lamella region opposed the gravity-driven flow. At higher Péclet numbers, though, the surface tension gradients tended to enhance the draining flow in the lamella region, resulting in the dramatic thinning of the film in the later stages. Full article
(This article belongs to the Section Heat and Mass Transfer)
Show Figures

Figure 1

19 pages, 808 KB  
Review
Marangoni Patterns in a Non-Isothermal Liquid with Deformable Interface Covered by Insoluble Surfactant
by Alexander B. Mikishev and Alexander A. Nepomnyashchy
Colloids Interfaces 2022, 6(4), 53; https://doi.org/10.3390/colloids6040053 - 29 Sep 2022
Cited by 3 | Viewed by 2857
Abstract
Marangoni patterns are created by instabilities caused by thermocapillary and solutocapillary stresses on the deformable free surface of a thin liquid layer. In the present paper, we consider the influence of the insoluble surfactant on the selection and modulational instability of stationary Marangoni [...] Read more.
Marangoni patterns are created by instabilities caused by thermocapillary and solutocapillary stresses on the deformable free surface of a thin liquid layer. In the present paper, we consider the influence of the insoluble surfactant on the selection and modulational instability of stationary Marangoni patterns near their onset threshold. The basic governing parameters of the problem are the Biot number characterizing the heat-transfer resistances of and at the surface, the Galileo number indicating the role of gravity via viscous forces, and the elasticity number specifying the influence of insoluble surfactant on the interfacial dynamics of the liquid. The paper includes a review of the previous results obtained in that problem as well as new ones. Full article
(This article belongs to the Special Issue Feature Reviews in Colloids, Nanomaterials, and Interfaces)
Show Figures

Figure 1

14 pages, 16982 KB  
Article
Basic Mechanism of Surface Topography Evolution in Electron Beam Based Additive Manufacturing
by Christoph Breuning, Julian Pistor, Matthias Markl and Carolin Körner
Materials 2022, 15(14), 4754; https://doi.org/10.3390/ma15144754 - 7 Jul 2022
Cited by 11 | Viewed by 2882
Abstract
This study introduces and verifies a basic mechanism of surface topography evolution in electron beam additive manufacturing (E-PBF). A semi-analytical heat conduction model is used to examine the spatio-temporal evolution of the meltpool and segment the build surface according to the emerging persistent [...] Read more.
This study introduces and verifies a basic mechanism of surface topography evolution in electron beam additive manufacturing (E-PBF). A semi-analytical heat conduction model is used to examine the spatio-temporal evolution of the meltpool and segment the build surface according to the emerging persistent meltpool domains. Each persistent domain is directly compared with the corresponding melt surface, and exhibits a characteristic surface morphology and topography. The proposed underlying mechanism of topography evolution is based on different forms of material transport in each distinct persistent domain, driven by evaporation and thermocapillary convection along the temperature gradient of the emerging meltpool. This effect is shown to be responsible for the upper bound of the standard process window in E-PBF, where surface bulges form. Based on this mechanism, process strategies to prevent the formation of surface bulges for complex geometries are proposed. Full article
Show Figures

Graphical abstract

Back to TopTop