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Abstract: We investigate the dynamics and instabilities of a droplet that floats on a liquid substrate.
The substrate is cooled from below. In the framework of the slender droplet approximation and
the precursor model, the problem is studied numerically. Oscillatory and stationary regimes of
thermocapillary convection have been observed. The influence of a two-dimensional spatial inho-
mogeneity of temperature on the droplet dynamics is investigated. The two-dimensional spatial
temperature inhomogeneity can suppress oscillations, changing the droplet’s shape. In a definite
region of parameters, the two-dimensional spatial modulation can lead to the excitation of periodic
oscillations. The influence of the Biot number on the shape of the droplets is studied.
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1. Introduction

The motion of a viscous liquid droplet on a solid substrate, which contradicts the
nonslip condition, has been studied extensively during the past few decades [1,2]. The
exploration of the dynamic phenomena (specifically, the difference between the static and
dynamic contact angles and the existence of the dynamic contact angle hysteresis) led to
essential progress in the understanding of interfacial phenomena.

Droplets on a liquid substrate (“liquid lenses”) are very important in various branches
of engineering, including microfluidics [3], chemical engineering [4], environment protec-
tion [5], etc. Nevertheless, their dynamics has still attracted less attention.

The dynamics and instabilities of nonisothermal floating droplets are of special interest.
Oscillatory convective motions, generated by the thermocapillary effect and buoyancy,
have been observed in some experiments [6–8]. Recently, the influence of the homoge-
neous heating or cooling of the liquid substrate on the stability of a thin floating droplet
under microgravity conditions has been studied in [9]. A number of instability modes
leading to droplet oscillations, droplet decomposition or the substrate layer’s rupture were
revealed. The observed instabilities of droplets are reminiscent of longwave deformational
instabilities in two-layer films [10].

In various applications (e.g., in microfluidic devices), it can be necessary to move a
droplet in a controllable way. The simplest way to influence the dynamics of a droplet
is a temperature inhomogeneity that creates a thermocapillary motion. Typically, the
droplet is advected by the thermocapillary flow in a liquid layer in the direction opposite
to the surface temperature gradient, but there is a contribution to the droplet velocity
due to the thermocapillary stresses on the droplet interfaces and due to the shear in the
substrate liquid [11]. The direction of motion can be different depending on the details
of the generated convective flow [6] and the droplet shape [12]. Moreover, the direction
of the flow can change periodically with time due to the laser heating of a droplet [6,7].
Experiments on droplet evaporation where the buoyancy–thermocapillary convection
caused by the evaporative cooling creates hydrothermal waves [8] and leads to the droplet
disintegration [13] can also be mentioned.
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In the present work, the dynamics of a droplet on a liquid substrate cooled from below
under the action of a two-dimensional spatial temperature modulation is studied. The results
of numerical simulations carried out in the framework of the longwave approximation and
the precursor model are presented. The novelty of the present investigation is as follows.
We show that a two-dimensional spatial temperature modulation can significantly change
the shape of the droplet and oscillation features. Specifically, the two-dimensional spatial
inhomogeneity of the temperature can suppress oscillations, leading to the formation of
steady droplets. In a definite region of parameters, the two-dimensional spatial modulation
can lead to the excitation of the specific type of periodic oscillations. For the first time, the
influence of the Biot number on the shape of the droplet is studied.

The structure of this paper is as follows. We give the formulation of the problem
in Section 2. The action of the two-dimensional spatial modulation of temperature on
nonlinear stationary droplets is considered in Section 3. Droplet oscillations generated by
an oscillatory thermocapillary instability in the presence of two-dimensional temperature
modulation are described in Section 4. The influence of gravity on the droplet dynamics
is discussed in Section 5. The influence of the Biot number on the shape of droplets is
considered in Section 6. Some concluding remarks are presented in Section 7.

2. Formulation of the Problem

We consider a droplet of liquid 2 that floats on the layer of liquid 1, and both are in
contact with the gas phase 3 (see Figure 1). Later on, we do not consider any processes in
fluid 3: at the gas/liquid interface, the viscous stresses are neglected. The heat transfer is
described using the heat exchange coefficient q. The mth fluid has density ρm, dynamic
viscosity ηm and thermal conductivity κm, m = 1, 2.

The contact angles on the triple line surrounding the droplet are determined by the
balance of interfacial tensions σ12, σ23 and σ13 between the corresponding fluids according
to the Neumann triangle construction [14]. The droplet exists in two cases: (i) when the
spreading coefficient S = σ13 − σ12 − σ23 < 0 (partial wetting); (ii) when S > 0 but only a
small part of fluid 2 is spread between fluids 1 and 3 forming an ultrathin film (pseudo-partial
wetting) due to the attractive interaction of those fluids through the film of fluid 2 (positive
Hamaker constant A).

Figure 1. Geometric configuration of the region and coordinate axes.

In the present paper, we consider the thermocapillary convection in a floating droplet.
The temperature of the gas phase is Tg = const, and the temperature of the solid substrate
is a function of horizontal coordinates, Ts = Ts(x, y). Assuming that the temperature
differences in the system are not too large, we disregard the dependence of liquid pa-
rameters on the temperature, with only one exception: because we are interested in the
investigation of the thermocapillary convection, we take into account the thermocapillary
stresses proportional to derivatives of the interfacial tensions with respect to the temper-
ature. The interfacial tension coefficients on the lower and upper surfaces of the droplet,
σ1 ≡ σ12 and σ2 ≡ σ23, are assumed to be linear functions of temperature T: σ1 = σ0

1 − α1T
and σ2 = σ0

2 − α2T, where α1 and α2 are constants. It is assumed that |α1T| � σ1 and
|α2T| � σ2; therefore, we disregard that dependence in the relations that contain the inter-
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facial tensions as a whole, i.e., in the stress balances on the triple line and in the expressions
for Laplace pressures.

The description of the temporal evolution of the triple line surrounding the droplet is
technically difficult (see [15]). In [16], the precursor model was suggested for the description
of a floating droplet: the interface between fluids 1 and 3 outside the droplet is replaced
by an ultrathin precursor layer of fluid 2 (see Figure 1). The latter model describes the
droplet on the liquid substrate as a two-layer film. The same equations are used in the whole
region, but outside the droplet, where the top layer is ultrathin, the corresponding disjoining
pressure is taken into account. Let us emphasize that the latter approach can be applied
both in the case of pseudo-partial wetting and partial wetting, because macroscopically
both cases are identical. In the present paper, we apply that approach for the description of
the dynamics of a nonisothermal floating droplet.

Far from the droplet, the equilibrium thickness of layer 1 is H0
1 , and the thickness of the

precursor film is H∞. The deformable interfaces are described by equations z = H1(x, y, t)
and z = H2(x, y, t). The gravity acceleration is g.

Later on, we consider a slender droplet, i.e., where the slopes of both droplet’s inter-
faces are small. Also, we assume that the characteristic horizontal scale of the interface
deformations is large as compared to the characteristic vertical size of the droplet and
the substrate. Those assumptions allow us to apply the mathematical model governing
the longwave dynamics of nonisothermal liquid layers that has been derived using the
lubrication approximation [17] (see also [10,18,19]). In the framework of the longwave
approach, the shapes of the interfaces z = H1 and z = H2 depend on the scaled horizontal
coordinates X = εx and Y = εy, ε� 1, rather than on x and y. Also, it is assumed that they
depend on the scaled time variable τ = ε2t. A comprehensive description of the longwave
approach can be found in the review paper [20].

We present the problem in the nondimensional form using the equilibrium thickness
of the lower layer, H0

1 , as the vertical length scale. The choice of the horizontal scale L∗ is
arbitrary [19]. We choose

τ∗ =
η1(L∗)4

σ0
1 (H0

1)
3

(1)

as a time scale and

p∗ =
σ0

1 H0
1

(L∗)2 (2)

as a pressure scale.
The nondimensional parameters of the problem are as follows. We define the local

Marangoni number as

M(X, Y) =
α1(Ts(X, Y)− Tg)

σ0
1

(
L∗

H0
1

)2

, (3)

which is a function of X and Y rather than a number. Also, we shall use the mean Marangoni
number

M̄ =
α1(T̄s − Tg)

σ0
1

(
L∗

H0
1

)2

, (4)

where T̄s is a characteristic mean temperature of the substrate.
The other nondimensional parameters of the problem are defined as follows:

Bi =
qH0

1
κ2

(5)

is the Biot number, η = η1/η2, κ = κ1/κ2, σ = σ0
2 /σ0

1 , α = α2/α1 and ρ = ρ2/ρ1.
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In the framework of the lubrication approximation, the velocity and pressure fields are
enslaved to the deformations of interfaces. The temporal evolution of those deformations is
governed by the volume conservation equations [18]:

h1τ +∇ · q1 = 0, h2τ +∇ · q2 = 0, (6)

q1 = f11∇p1 + f12∇p2 + qT
1 , q2 = f21∇p1 + f22∇p2 + qT

2 , (7)

where hj = Hj/H0
1 , pj = Pj/p∗ and j = 1, 2.

The expressions for pressures,

p1 = −∇2h1 − σ∇2h2 + w1(h1, h2), (8)

p2 = −σ∇2h2 + w2(h1, h2), (9)

include the contributions of the Laplacian pressures, hydrostatic pressures and disjoin-
ing pressures. Because the thickness of liquid layer 1 is always macroscopic, we can neglect the
contribution of w1. In layer 2, we apply the following expression for the disjoining pressure:

w2 =
a

(h2 − h1)3

[
1−

(
h∞

h2 − h1

)3
]

, (10)

where a is the nondimensional Hamaker constant, which is related to the dimensional
Hamaker constant A as follows:

a =
A(L∗)2

6πσ0
1 (H0

1)
4

, (11)

and h∞ = H∞/H0
1 (for details, see [16,21]).

The expressions for mobilities fij, i, j = 1, 2, are

f11 = −1
3

h3
1, f12 = −1

2
h2

1(h2 − h1),

f21 =
1
6

h3
1 −

1
2

h2
1h2, f22 = (h2 − h1)

[
h2

1

(
1
2
− η

3

)
+ h1h2

(
−1 +

2η

3

)
− η

3
h2

2

]
.

The nondimensional expressions for the rates of the thermocapillary flows are

qT
1 = −

h2
1

2
∇{M[1 + d(ακ − Bih1)]}, (12)

qT
2 = −ηακ

2
h2

2∇(Md)+

(2h2 − h1)h1

2
∇{M[−1 + Bih1d− ακ(1− η)d]}, (13)

where
d = [κ + Bi(1− κ)h1 + Biκh2]

−1. (14)

Note that in the absence of gravity, a liquid layer with a deformable interface is
subject to a monotonic Marangoni instability for arbitrary M̄ > 0, i.e., by any heating from
below [22]. That instability is not saturable, and it leads to the rupture of the substrate
layer. The temperature disturbance caused by the droplet acts as “a seed” of instability.
Therefore, in the presence of the temperature gradient, one can expect the existence of a
stable configuration containing a droplet on a layer flat on the infinity only if M̄ < 0, i.e.,
by cooling from below.
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In the present work, we consider nonlinear regimes of the thermocapillary convection
in the case of a spatially periodic temperature modulation of the local Marangoni number,

M(X, Y) = M̄
(

1 + δX sin
2πX

L
+ δY sin

2πY
L

)
= M̄− ∆X sin

2πX
L
− ∆Y sin

2πY
L

, (15)

where M̄ < 0, δX ≥ 0, ∆X = |M̄|δX ≥ 0, δY ≥ 0 and ∆Y = |M̄|δY ≥ 0. Note that
the change in the sign of δX or δY is obtained by a translation X → X + L/2 or Y →
Y + L/2, correspondingly. Because of the symmetry of the problem with respect to the
transformations X → Y and Y → X, it is sufficient to consider the case δY ≥ δX .

The problem governed by Equations (6)–(10) and (12)–(15) has been solved numerically
with some initial conditions. The evolution equations were discretized using central
differences for spatial derivatives and solved using an explicit scheme. Periodic boundary
conditions have been applied on the boundaries of the computational region L× L.

The computations have been performed in the region L× L = 240× 240 using the
grid 80× 80. Some additional simulations on the grids 100× 100 and 120× 120 did not
reveal any qualitative changes.

Computations have been performed for the system of fluorinert FC70 (liquid 1) and
silicon oil 10 (liquid 2). This system was used in microgravity experiments (see, e.g., [23]).
We applied the following set of liquid parameters that was formerly used in simulations
of the thermocapillary instability in two-layer systems [19]: η = 3.04, κ = 0.522, α = 2,
ρ = 0.482, σ = 2.6. h− = 1.02, h+ = 1, R = 60, h∞ = 0.01, Bo = 0 and Bi = 20. The value
of a2 is chosen equal to 3× 10−6 (see [9]).

3. Manipulation by a Stationary Droplet

In this section, we describe the shape of a stationary droplet in the limit of large τ.

3.1. The Case of Axisymmetric Initial Conditions

It is known that in the absence of gravity and the thermocapillary effect, both interfaces
of an equilibrium droplet are spherical caps. The exact formulas that follow from the balance
of interfacial tensions on the triple line are given in [24]. In the longwave limit, these
interfaces become paraboloids with constant values of d2h1/dr2 > 0 and d2h2/dr2 < 0,
where r is the radial coordinate. When a temperature gradient across the substrate layer is
applied, the temperature on both droplet interfaces becomes inhomogeneous; therefore,
the thermocapillary convection is developed both in the droplet and in the substrate. If
the initial conditions with an axisymmetric drop shape are applied and ∆X = ∆Y = 0,
for sufficiently small values of |M̄| the droplet is stationary and axisymmetric in the
limit τ → ∞. The shapes of isolines for h1(X, Y) and h2(X, Y), which are determined by
equations q1 = 0 and q2 = 0, look perfectly circular, despite the violation of the rotational
symmetry by the periodic boundary conditions [9]. Note that in contradistinction to the
case of an isothermal droplet, both d2h1/dr2 and d2h2/dr2 are negative, except the vicinity
of the triple line. Indeed, when the terms qT

1 and qT
2 caused by the inhomogeneities of the

interfacial temperatures are dominant in the expressions (7) for flow rates, the system tends
to minimize those inhomogeneities. The temperature of the interface between the substrate
and the droplet is nearly constant when the ratio h2(r)/h1(r) is nearly constant.

Let us take the steady round droplet [9] (M̄ = −2; ∆X = ∆Y = 0) as the initial
condition and consider its evolution under the action of two-dimensional temperature
modulation (M̄ = −2; ∆X = ∆Y = 0.1). In the case ∆X = ∆Y ≡ ∆, the Marangoni number
field (15) can be written as

M(X, Y) = M̄ + M̃(X, Y), M̃(X, Y) = −2∆ sin
π(X + Y)

L
cos

π(X−Y)
L

.

Thus, the substrate temperature inhomogeneity has the shape of a square pattern. The
function M̃(X, Y) is symmetric with respect to axes X = L/4, X = 3L/4, Y = L/4 and



Fluids 2024, 9, 6 6 of 26

Y = 3L/4. It changes its sign on the lines Y = L − X and Y = X ± L/2. Near the
diagonal Y = X, it is negative for X < L/2 and positive for X > L/2. Under the action of
the thermocapillary stresses, the liquid in the droplet moves slowly towards the region
X < L/2, Y < L/2, changing its shape and height. The intermediate stages of the evolution
of the initially round droplet are presented in Figure 2. A change in the droplet’s shape is
visible between Figure 2a,c. At τ ≥ 200,000, the equilibration takes place. Finally, we obtain
the steady droplet with the maximum, shifted along the axis Y = X to the region X < L/2,
where the local value of |M| is higher (i.e., into the cooler part of the region). Figure 3 shows
a snapshot of the fields of (a) h2(X, Y, τ) and (b) h1(X, Y, τ) at the equilibrium stage. The
droplet is not round anymore, but it keeps the symmetry with respect to the axis Y = X.
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Figure 2. The fields of h2(X, Y, τ) for M̄ = −2, ∆X = ∆Y = 0.1, Bo = 0 and Bi = 20: (a) τ = 750;
(b) τ = 1500; (c) τ = 4500; (d) τ = 10,000.

Let us consider now the action of an increased temperature modulation, ∆X = ∆Y = 0.5,
on the initially round steady droplet. The intermediate states of the evolution of the initially
round droplet under the action of two-dimensional temperature modulation are presented
in Figure 4. As in the previous case, in the early stages the liquid in the droplet moves
to the left bottom part of the computational region (Figure 4a,b). A visible change in the
droplet’s shape takes place between Figure 4a,c. One can see the division of the droplet
and the creation of two satellites that are symmetric with respect to the axes Y = X (see
Figure 4e,f). With an increase in time (at τ ≥ 100,000), the further evolution of the droplet
and the equilibration takes place. Finally, we obtain a steady droplet with the maximum
significantly shifted along the axis Y = X to the region X < L/2. A snapshot of the fields
of (a) h2(X, Y, τ) and (b) h1(X, Y, τ) at the equilibrium stage is shown in Figure 5 and
the corresponding shapes of interfaces are presented in Figure 6. The droplet keeps the
symmetry with respect to the axis Y = X. One can see that the droplet becomes much
shorter in the direction of the axis Y = X (see Figure 5). Let us note that the droplet is
significantly higher than that obtained in the case ∆X = ∆Y = 0.1 (cf. Figures 3 and 5).
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Figure 3. A snapshot of the fields of h2(X, Y, τ) and h1(X, Y, τ) for M̄ = −2, ∆X = ∆Y = 0.1, Bo = 0,
Bi = 20 and τ = 1× 106.
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Figure 4. The fields of h2(X, Y, τ) for M̄ = −2, ∆X = ∆Y = 0.5, Bo = 0 and Bi = 20: (a) τ = 500;
(b) τ = 1500; (c) τ = 2500; (d) τ = 5000; (e) τ = 8000 (f) τ = 9500.
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Figure 5. A snapshot of the fields of h2(X, Y, τ) and h1(X, Y, τ) for M̄ = −2, ∆X = ∆Y = 0.5, Bo = 0,
Bi = 20 and τ = 1× 106.

(a)

(b)

Figure 6. The shapes of (a) h2(X, Y, τ) and (b) h1(X, Y, τ) for M̄ = −2, ∆X = ∆Y = 0.5, Bo = 0,
Bi = 20 and τ = 1× 106.

Under the action of the asymmetric field M(X, Y) (∆X = 0.1; ∆Y = 0.5) on the steady
round droplet, the symmetry of the initially round droplet is broken. A snapshot of the
fields of (a) h2(X, Y, τ) and (b) h1(X, Y, τ) is shown in Figure 7, and the shapes of the
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interfaces are presented in Figure 8. Now, there is no symmetry with respect to the axis
Y = X (cf. Figures 3 and 7).
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Figure 7. A snapshot of the fields of h2(X, Y, τ) and h1(X, Y, τ) for M̄ = −2, ∆X = 0.1, ∆Y = 0.5,
Bo = 0, Bi = 20 and τ = 1× 106.

(a)

(b)

Figure 8. The shapes of (a) h2(X, Y, τ) and (b) h1(X, Y, τ) for M̄ = −2, ∆X = 0.1, ∆Y = 0.5, Bo = 0,
Bi = 20 and τ = 1× 106.

3.2. The Case of Nonaxisymmetric Initial Conditions

Let us take now the steady droplet with the maximum, shifted to the left part of
the computational region (see Figure 3 in [25]), as the initial conditions and consider
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its evolution under the action of two-dimensional temperature modulation (M̄ = −2;
∆X = ∆Y = 0.1). Despite the symmetry of the spatial temperature modulation, we obtain
an asymmetric steady state. A snapshot of the fields of (a) h2(X, Y, τ) and (b) h1(X, Y, τ) is
shown in Figure 9, and the shapes of the interfaces are presented in Figure 10.
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Figure 9. A snapshot of the fields of (a) h2(X, Y, τ) and (b) h1(X, Y, τ) for M̄ = −2, ∆X = ∆Y = 0.1,
Bo = 0, Bi = 20 and τ = 1× 106.

(a)

(b)

Figure 10. The shapes of (a) h2(X, Y, τ) and (b) h1(X, Y, τ) for M̄ = −2, ∆X = ∆Y = 0.1, Bo = 0,
Bi = 20 and τ = 1× 106.
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4. Droplet Oscillations

It has been shown in [9] that in the case of a homogeneous cooling from below, the
droplet becomes oscillatory unstable with an increase in M̄ (see Figure 11). That instability
is similar to that formerly found in a system of two flat liquid layers [10]. Let us note that
oscillatory Marangoni instabilities for cooling from below have also been observed in some
other problems (see [26]).

a

b

Figure 11. A snapshot of the fields of h2(X, Y, τ) for M̄ = −2.5, Bi = 20 and ∆X = ∆Y = 0:
(a) τ = 7× 105; (b) τ = 7.15× 105.

In the course of oscillations, the droplet keeps the symmetry with respect to the axis
Y = X. Also, the oscillations are characterized by the symmetry

hm(X, Y, τ + T/2) = hm(L−Y, L− X, τ), m = 1, 2, (16)

where T is the period of oscillations. In other words, after the half-period, the shape of the
droplet is reflected with respect to the axis X + Y = L. Therefore, the quantities

hmax,m(τ) = max hm(X, Y, τ)

and
hmin,m(τ) = min hm(X, Y, τ)

are periodic in time with the period T/2. The temporal evolution of hmax,1 and hmax,2 is
shown in Figure 12.
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Figure 12. The oscillations of hmax,2(τ) (solid line) and hmax,1(τ) (dashed line) for M̄ = −2.5 and
Bi = 20.

Below, we discuss the influence of the substrate temperature modulation on the
oscillatory regime.

4.1. Suppression of Oscillations

Let us take the oscillatory droplet (see Figures 11 and 12) (M̄ = −2.5; ∆X = ∆Y = 0)
as the initial conditions and consider its evolution under the action of two-dimensional
spatial temperature modulation (M̄ = −2.5; ∆X = ∆Y = 0.1). Under the action of the
symmetric field M(X, Y), the oscillations are suppressed and the steady state develops in
the system. The transient process from the periodic oscillations to the steady droplet is
shown in Figure 13, and the intermediate stages of the evolution at different instants of
time are presented in Figure 14. One can see that the symmetry of the droplet is broken.
Finally, a steady asymmetric droplet is observed in the system. A snapshot of the fields of
(a) h2(X, Y, τ) and (b) h1(X, Y, τ) at the equilibrium stage is shown in Figure 15, and the
corresponding shapes of the interfaces are presented in Figure 16.

Figure 13. The oscillations of hmax,2(τ) (solid line) and hmax,1(τ) (dashed line) for M̄ = −2.5,
∆X = ∆Y = 0.1, Bo = 0 and Bi = 20.
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Figure 14. The fields of h2(X, Y, τ) for M̄ = −2.5, ∆X = ∆Y = 0.1, Bo = 0 and Bi = 20: (a) τ = 500;
(b) τ = 1500; (c) τ = 10,000; (d) τ = 20,000.
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Figure 15. A snapshot of the fields of (a) h2(X, Y, τ) and (b) h1(X, Y, τ) for M̄ = −2.5, ∆X = ∆Y = 0.1,
Bo = 0, Bi = 20 and τ = 1× 106.
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(a)

(b)

Figure 16. The shapes of (a) h2(X, Y, τ) and (b) h1(X, Y, τ) for M̄ = −2.5, ∆X = ∆Y = 0.1, Bo = 0,
Bi = 20 and τ = 1× 106.

Let us consider the influence of asymmetric field M(X, Y) on the oscillatory regime
presented in Figures 11 and 12—we take ∆X = 0.1 and ∆Y = 0.5 (M = −2.5). In this
case, the oscillations are also suppressed and the asymmetric steady droplet develops
in the system. A snapshot of the fields of (a) h2(X, Y, τ) and (b) h1(X, Y, τ) is presented
in Figure 17, and the shapes of the interfaces are shown in Figure 18. The sharp corners
in Figure 18 present the connection of the droplet with the neighbor droplet and are created
by the crossing of the interfaces with the plane X = 0, which cuts the droplet. One can see
that the shape of the droplet is rather smooth.

4.2. Excitation of Oscillations

Surprisingly, we observed an excitation of oscillations for M̄ = −2, i.e., in the case
where in the absence of modulation the round droplet is stable, when we apply an asym-
metric field M(X, Y) (∆X = 0.1, ∆Y = 0.5) on the asymmetric steady droplet with the
maximum, shifted to the left part of the computational region (see Figure 3 in [25]). In this
case, periodic oscillations with essentially different adjacent maxima develop in the system
(see Figure 19); the period of oscillations T = 69,420. Snapshots of the fields h2(X, Y, τ) at
different instants of time are presented in Figure 20. The small and big maxima of hmax,j(τ),
j = 1, 2, correspond to different spatial points. Let us note that because the different
maxima are in the points with different values of M(X, Y), there is no reason for them to
be equal. Since we consider the region with periodic boundary conditions, one can see
the appearance of a finger that meets the fingers of the neighbor drops at the boundary of
the computational region. The combination and the recombination of the droplet with its
neighbors could be the origin of the oscillations. The shapes of interfaces, corresponding
to Figure 20b, are shown in Figure 21. A diagram of the regimes in the plane (δX, δY) for
M̄ = −2 is presented in Figure 22. One can see that bistability takes place at several points.
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Figure 17. A snapshot of the fields of (a) h2(X, Y, τ) and (b) h1(X, Y, τ) for M̄ = −2.5, ∆X = 0.1,
∆Y = 0.5, Bo = 0, Bi = 20 and τ = 1 · 106.

(a)

(b)

Figure 18. The shapes of (a) h2(X, Y, τ) and (b) h1(X, Y, τ) for M̄ = −2.5, ∆X = 0.1, ∆Y = 0.5, Bo = 0,
Bi = 20 and τ = 1× 106.
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Figure 19. The oscillations of hmax,2(τ) (solid line) and hmax,1(τ) (dashed line) for M̄ = −2, ∆X = 0.1,
∆Y = 0.25, Bo = 0 and Bi = 20.
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Figure 20. The fields of h2(X, Y, τ) for M̄ = −2, ∆X = 0.1, ∆Y = 0.25, Bo = 0 and Bi = 20:
(a) τ = 9.15× 105; (b) τ = 9.3× 105; (c) τ = 9.35× 105; (d) τ = 9.5× 105.
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(a)

(b)

Figure 21. The shapes of (a) h2(X, Y, τ) and (b) h1(X, Y, τ) for M̄ = −2, ∆X = 0.1, ∆Y = 0.25, Bo = 0,
Bi = 20 and τ = 9.3× 105.

Figure 22. Diagram of regimes on the plane (δX , δY) for M = −2, Bo = 0 and Bi = 20: empty square,
stationary pattern; asterisk, oscillatory flow.

Let us take the oscillatory flow presented in Figures 19 and 20a as the initial condition
and consider its evolution at the larger values of |M̄|. With an increase in |M̄|, periodic
oscillations with different adjacent maxima become of a rather complex form; the amplitude
of oscillations grows and the period of oscillations decreases (cf. Figure 23 (T = 52,940) and
Figure 19 (T = 69,420)). At M̄ ≤ −2.92, quasiperiodic oscillations develop in the system
(see Figure 24).
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Figure 23. The oscillations of hmax,2(τ) (solid line) and hmax,1(τ) (dashed line) for M̄ = −2.825,
∆X = 0.1, ∆Y = 0.25, Bo = 0 and Bi = 20.

Figure 24. The oscillations of hmax,2(τ) (solid line) and hmax,1(τ) (dashed line) for M̄ = −2.925,
∆X = 0.1, ∆Y = 0.25, Bo = 0 and Bi = 20.

5. The Influence of Gravity on the Droplet Dynamics

Now, let us consider the action of gravity on the droplets. If we take the stationary
droplet obtained under the action of the symmetric field M(X, Y) (M̄ = −2, ∆X = ∆Y = 0.1)
as the initial condition (see Figure 3), under the action of gravity (Bo = 0.1), the droplet is
essentially flattened. The intermediate stages of the evolution of the initially round droplet
are presented in Figure 25. Under the action of the thermocapillary flow in the substrate
directed along the axis Y = X, the droplet changes its shape and height. The isolines and
the shapes of the interfaces, corresponding to the final equilibrium state, are shown in
Figures 26 and 27 (cf. Figures 3 and 26). The droplet still keeps the symmetry with respect
to axis Y = X.
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Under the action of gravity (Bo = 0.05) on the asymmetric stationary droplet shown
in Figure 7 (M̄ = −2, ∆X = 0.1; ∆Y = 0.5), we obtain the asymmetric significantly flattened
droplet (cf. Figures 7 and 28).

Let us take as initial conditions the periodic oscillations presented in Figures 19 and 20a.
Under the action of sufficiently small gravity (Bo = 0.01), oscillations are suppressed and
the steady droplet develops in the system. A snapshot of the fields of (a) h2(X, Y, τ) and (b)
h1(X, Y, τ) is shown in Figure 29. The height of the droplet is essentially lower than that
obtained in the absence of gravity (cf. Figures 20a and 29a).
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Figure 25. The fields of h2(X, Y, τ) for M̄ = −2, ∆X = ∆Y = 0.1, Bo = 0.1 and Bi = 20: (a) τ = 250;
(b) τ = 450; (c) τ = 500; (d) τ = 650; (e) τ = 850 (f) τ = 2500.
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Figure 26. A snapshot of the fields of h2(X, Y, τ) and h1(X, Y, τ) for M̄ = −2, ∆X = ∆Y = 0.1,
Bo = 0.1, Bi = 20 and τ = 1× 106.

(a)

(b)

Figure 27. The shapes of (a) h2(X, Y, τ) and (b) h1(X, Y, τ) for M̄ = −2, ∆X = ∆Y = 0.1, Bo = 0.1,
Bi = 20 and τ = 1× 106.
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Figure 28. A snapshot of the fields of h2(X, Y, τ) and h1(X, Y, τ) for M̄ = −2, ∆X = 0.1, ∆Y = 0.5,
Bo = 0.05, Bi = 20 and τ = 1× 106.
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Figure 29. A snapshot of the fields of h2(X, Y, τ) and h1(X, Y, τ) for M̄ = −2, ∆X = 0.1, ∆Y = 0.25,
Bo = 0.01, Bi = 20 and τ = 1× 106.
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6. The Influence of the Biot Number on the Shape of the Droplet

Let us consider the influence of the Biot number Bi on the shape of droplets. We take
the stationary droplet obtained under the action of the symmetric field M(X, Y) (M̄ = −2,
∆X = ∆Y = 0.1) as the initial conditions (see Figure 3). With a decrease in Bi, under the
action of the thermocapillary flow in the substrate directed along the axis Y = X, the
droplet is completely destroyed, and we obtain a square pattern. A snapshot of the field
h2(X, Y, τ), corresponding to the final equilibrium state for a sufficiently small value of Bi,
is shown in Figure 30. The pattern keeps the symmetry with respect to axis Y = X. The
shape of the upper interface is presented in Figure 31. The similar patterns generated by
the bottom temperature modulation have been obtained in two-layer films [27].
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Figure 30. A snapshot of the field of h2(X, Y, τ) for M̄ = −2, ∆X = ∆Y = 0.1, Bo = 0, Bi = 0.1 and
τ = 1× 106.

Figure 31. The shape of the interface h2(X, Y, τ) for M̄ = −2, ∆X = ∆Y = 0.1, Bo = 0, Bi = 0.1 and
τ = 1× 106.

Let us note that the same steady regime has been obtained from the other initial
conditions when a droplet of liquid 2 with a Gaussian shape was imposed on a flat layer of
liquid 1.

The redistribution of the liquids in the droplet and in the substrate along the axis
Y = X with the maximum shifted to the region X < L/2 also takes place for sufficiently
small values of M̄ (M̄ = −0.1, ∆X = ∆Y = 0.1, Bi = 0.5). The intermediate stages of the
evolution of the field h2(X, Y, τ) at different instants of time are presented in Figure 32. A
snapshot of the field h2(X, Y, τ) and the corresponding shape of the upper interface at the
final equilibrium state are shown in Figures 33 and 34.



Fluids 2024, 9, 6 23 of 26

0 50 100 150 200

0

50

100

150

200

0.5

1

1.5

2

2.5

0 50 100 150 200

0

50

100

150

200

0.5

1

1.5

2

2.5

0 50 100 150 200

0

50

100

150

200

0.5

1

1.5

2

2.5

0 50 100 150 200

0

50

100

150

200

1

1.5

2

2.5

b

c d

a

Figure 32. The fields of h2(X, Y, τ) for M̄ = −0.1, ∆X = ∆Y = 0.1, Bo = 0 and Bi = 0.5:
(a) τ = 10,000: (b) τ = 25,000; (c) τ = 40,000; (d) τ = 80,000.
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Figure 33. A snapshot of the field of h2(X, Y, τ) for M̄ = −0.1, ∆X = ∆Y = 0.1, Bo = 0, Bi = 0.5 and
τ = 1× 106.

Now, let us take as initial conditions the periodic oscillations presented in Figures 19
and 20a. With a decrease in Bi (at Bi ≤ 18.95), oscillations are suppressed and the steady
asymmetric droplet develops in the system. A snapshot of the field of h1(X, Y, τ) is shown
in Figure 34. Let us note that the asymmetric droplet has also been obtained for sufficiently
small values of M̄ and Bi (M̄ = −0.17, ∆X = 0.1, ∆Y = 0.25, Bi = 0.95). The isolines and
the shape of the upper interface, corresponding to the final equilibrium state, are shown in
Figures 35 and 36. One can see that the symmetry with respect to axis Y = X is broken.
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Figure 34. The shape of the interface h2(X, Y, τ) for M̄ = −0.1, ∆X = ∆Y = 0.1, Bo = 0, Bi = 0.5 and
τ = 1× 106.
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Figure 35. A snapshot of the field of h2(X, Y, τ) for M̄ = −0.17, ∆X = 0.1, ∆Y = 0.25, Bo = 0,
Bi = 0.95 and τ = 1× 106.

Figure 36. The shape of the interface h2(X, Y, τ) for M̄ = −0.17, ∆X = 0.1, ∆Y = 0.25, Bo = 0,
Bi = 0.95 and τ = 1× 106.

7. Conclusions

The dynamics of a droplet on a liquid substrate in the case of an inhomogeneous
cooling from below has been investigated. The problem is studied numerically in the
framework of the longwave approximation and the precursor model.
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It is shown that a two-dimensional spatial inhomogeneity of the substrate temperature
creates more diverse flow regimes than a one-dimensional temperature inhomogeneity.

The nonhomogeneous cooling creates a disbalance of thermocapillary stresses that
leads to the redistribution of the liquids in the droplet and in the substrate. It is found that
the droplet can be stationary or subject to oscillations caused by an oscillatory Marangoni
instability. The two-dimensional spatial inhomogeneity of the temperature enhances the
oscillatory instability threshold, and it can suppress oscillations, leading to the formation of
steady droplets. In a definite region of parameters, the two-dimensional spatial modulation
can lead to the excitation of the specific type of periodic oscillations with different adjacent
maxima. A diagram of regimes in the plane (δX , δY) has been constructed. The bistability
in several points has been obtained. The gravity flattens the droplet and suppresses oscilla-
tions.

The influence of the Biot number on the shape of the droplet has been studied. The
smaller the Bi, the stronger the inhomogeneities of the temperature on the free surface and,
thus, the stronger the action of the thermocapillary effect. Square patterns similar to those
generated by the bottom temperature modulation in two-layer films have been obtained.
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