Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (104)

Search Parameters:
Keywords = thermally activated pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2828 KiB  
Article
A Novel Loss-Balancing Modulation Strategy for ANPC Three-Level Inverter for Variable-Speed Pump Storage Applications
by Yali Wang, Liyang Liu, Tao Liu, Yikai Li, Kai Guo and Yiming Ma
Electronics 2025, 14(15), 2944; https://doi.org/10.3390/electronics14152944 - 23 Jul 2025
Viewed by 189
Abstract
The non-uniform thermal distribution in the active neutral-point clamped (ANPC) topology causes significant thermal gradients during high-power operation, restricting its use in large-capacity power conversion systems like variable-speed pumped storage. This study introduces a novel hybrid fundamental frequency modulation strategy. Through a dynamic [...] Read more.
The non-uniform thermal distribution in the active neutral-point clamped (ANPC) topology causes significant thermal gradients during high-power operation, restricting its use in large-capacity power conversion systems like variable-speed pumped storage. This study introduces a novel hybrid fundamental frequency modulation strategy. Through a dynamic allocation mechanism based on a reference signal, this strategy alternates inner and outer power switches at the fundamental frequency, ensuring balanced switching frequency across devices. Consequently, it effectively mitigates the inherent loss imbalance in conventional ANPC topologies. Quantitative analysis using a power device loss model shows that, compared to conventional carrier phase-shift modulation, the proposed method reduces total system losses by 39.98% and improves the loss-balancing index by 18.27% over inner-switch fundamental frequency modulation. A multidimensional validation framework, including an MW-level hardware platform, numerical simulations, and test data, was established. The results confirm the proposed strategy’s effectiveness in improving power device thermal balance. Full article
Show Figures

Figure 1

9 pages, 1553 KiB  
Communication
Orthogonally Polarized Pr:LLF Red Laser at 698 nm with Tunable Power Ratio
by Haotian Huang, Menghan Jia, Yuzhao Li, Jing Xia, Nguyentuan Anh and Yanfei Lü
Photonics 2025, 12(7), 666; https://doi.org/10.3390/photonics12070666 - 1 Jul 2025
Viewed by 175
Abstract
A continuous-wave (CW) orthogonally polarized single-wavelength red laser (OPSRL) at 698 nm with a tunable power ratio within a wide range between the two polarized components was demonstrated using two Pr3+:LiLuF4 (Pr:LLF) crystals for the first time. Through control of [...] Read more.
A continuous-wave (CW) orthogonally polarized single-wavelength red laser (OPSRL) at 698 nm with a tunable power ratio within a wide range between the two polarized components was demonstrated using two Pr3+:LiLuF4 (Pr:LLF) crystals for the first time. Through control of the waist location of the pump beam in the active media, the output power ratio of the two polarized components of the OPSRL could be adjusted. Under pumping by a 20 W, 444 nm InGaN laser diode (LD), a maximum total output power of 4.12 W was achieved with equal powers for both polarized components, corresponding to an optical conversion efficiency of 23.8% relative to the absorbed pump power. Moreover, by a type-II critical phase-matched (CPM) BBO crystal, a CW ultraviolet (UV) second-harmonic generation (SHG) at 349 nm was also obtained with a maximum output power of 723 mW. OPSRLs can penetrate deep tissues and demonstrate polarization-controlled interactions, and are used in bio-sensing and industrial cutting with minimal thermal distortion, etc. The dual-polarized capability of OPSRLs also supports multi-channel imaging and high-speed interferometry. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

27 pages, 10394 KiB  
Article
Preparation of a Biomedical Scaffold from High-Molecular-Weight Poly-DL-Lactic Acid Synthesized via Ring-Opening Polymerization
by Geraldine Denise Bazan-Panana, Manuel J. Torres-Calla and María Verónica Carranza-Oropeza
Polymers 2025, 17(12), 1708; https://doi.org/10.3390/polym17121708 - 19 Jun 2025
Viewed by 449
Abstract
In this study, poly-DL-lactic acid (PDLLA) was synthesized via ring-opening polymerization (ROP) to develop a biomedical scaffold for tissue engineering. A rotary evaporator with a two-stage vacuum pump under an inert atmosphere and constant stirring was used. A factorial design with three factors [...] Read more.
In this study, poly-DL-lactic acid (PDLLA) was synthesized via ring-opening polymerization (ROP) to develop a biomedical scaffold for tissue engineering. A rotary evaporator with a two-stage vacuum pump under an inert atmosphere and constant stirring was used. A factorial design with three factors (oligomerization time, ROP time, and catalyst concentration) at two levels was applied. Polymers were characterized by FTIR, capillary viscometry, 1H-NMR, DSC, and TGA. The kinetic study revealed a first-order model, indicating that the polymerization rate depends linearly on monomer concentration. The activation energy (70.5 kJ/mol) suggests a moderate energy requirement, consistent with ring-opening polymerization, while the high pre-exponential factor (6.93 × 106 min−1) reflects a significant frequency of molecular collisions. The scaffold was fabricated via extrusion and 3D printing, and its morphology, porosity, mechanical properties, and contact angle were studied. The highest molecular weight PDLLA was obtained with 6 h of oligomerization, 4 h of ROP, and 1% catalyst concentration. The samples exhibited thermal stability below 40 °C, while the scaffold reached 71.6% porosity, an 85.97° contact angle, and a compressive strength of 4.24 MPa with an elastic modulus of 51.7 MPa. These findings demonstrate the scaffold’s potential for biomedical applications. Full article
(This article belongs to the Special Issue Advances in Functional Polymer Materials for Biomedical Applications)
Show Figures

Figure 1

22 pages, 3277 KiB  
Article
Power Oscillation Emergency Support Strategy for Wind Power Clusters Based on Doubly Fed Variable-Speed Pumped Storage Power Support
by Weidong Chen and Jianyuan Xu
Symmetry 2025, 17(6), 964; https://doi.org/10.3390/sym17060964 - 17 Jun 2025
Viewed by 337
Abstract
Single-phase short-circuit faults are severe asymmetrical fault modes in high renewable energy power systems. They can easily cause large-scale renewable energy to enter the low-voltage ride-through (LVRT) state. When such symmetrical or asymmetrical faults occur in the transmission channels of high-proportion wind power [...] Read more.
Single-phase short-circuit faults are severe asymmetrical fault modes in high renewable energy power systems. They can easily cause large-scale renewable energy to enter the low-voltage ride-through (LVRT) state. When such symmetrical or asymmetrical faults occur in the transmission channels of high-proportion wind power clusters, they may trigger the tripping of thermal power units and a transient voltage drop in most wind turbines in the high-proportion wind power area. This causes an instantaneous active power deficiency and poses a low-frequency oscillation risk. To address the deficiencies of wind turbine units in fault ride-through (FRT) and active frequency regulation capabilities, a power emergency support scheme for wind power clusters based on doubly fed variable-speed pumped storage dynamic excitation is proposed. A dual-channel energy control model for variable-speed pumped storage units is established via AC excitation control. This model provides inertia support and FRT energy simultaneously through AC excitation control of variable-speed pumped storage units. Considering the transient stability of the power network in the wind power cluster transmission system, this scheme prioritizes offering dynamic reactive power to support voltage recovery and suppresses power oscillations caused by power deficiency during LVRT. The electromagnetic torque completed the power regulation within 0.4 s. Finally, the effectiveness of the proposed strategy is verified through modeling and analysis based on the actual power network of a certain region in Northeast China. Full article
(This article belongs to the Special Issue Advances in Intelligent Power Electronics with Symmetry/Asymmetry)
Show Figures

Figure 1

16 pages, 1767 KiB  
Article
Common Food-Wrap Film as a Cost-Effective and Readily Available Alternative to Thermoplastic Polyurethane (TPU) Membranes for Microfluidic On-Chip Valves and Pumps
by Huu Anh Minh Nguyen, Mark Volosov, Jessica Maffei, Dae Jung Martins Cruz and Roman Voronov
Micromachines 2025, 16(6), 657; https://doi.org/10.3390/mi16060657 - 30 May 2025
Viewed by 2921
Abstract
Microfluidic devices rely on precise fluid control to enable complex operations in diagnostics, chemical synthesis, and biological research. Central to this control are microvalves, which regulate on-chip flow but require flexible membranes for active operation. While the laser cutting of thermoplastics offers a [...] Read more.
Microfluidic devices rely on precise fluid control to enable complex operations in diagnostics, chemical synthesis, and biological research. Central to this control are microvalves, which regulate on-chip flow but require flexible membranes for active operation. While the laser cutting of thermoplastics offers a fast, automated method for fabricating rigid microfluidic components, integrating flexible elements like valves and pumps remains a key challenge. Thermoplastic polyurethane (TPU) membranes have been adopted to address this need but are costly and difficult to procure reliably. In this study, we present commercial food-wrap film (FWF) as a low-cost, widely available alternative membrane material. We demonstrate FWF’s compatibility with laser-cut thermoplastic microfluidic devices by successfully fabricating Quake-style valves and peristaltic pumps. FWF valves maintained reliable sealing at 40 psi, maintained stable flow rates of ~1.33 μL/min during peristaltic operation, and sustained over one million continuous actuation cycles without performance degradation. Burst pressure testing confirmed robustness up to 60 psi. Additionally, FWF’s thermal resistance up to 140 °C enabled effective thermal bonding with PMMA layers, simplifying device assembly. These results establish FWF as a viable substitute for TPU membranes, offering an accessible and scalable solution for microfluidic device fabrication, particularly in resource-limited settings where TPU availability is constrained. Full article
Show Figures

Figure 1

22 pages, 7971 KiB  
Article
A Numerical Investigation of Enhanced Microfluidic Immunoassay by Multiple-Frequency Alternating-Current Electrothermal Convection
by Qisheng Wu, Shaohua Huang, Shenghai Wang, Xiying Zhou, Yuxuan Shi, Xiwei Zhou, Xianwu Gong, Ye Tao and Weiyu Liu
Appl. Sci. 2025, 15(9), 4748; https://doi.org/10.3390/app15094748 - 24 Apr 2025
Viewed by 456
Abstract
Compared with traditional immunoassay methods, microfluidic immunoassay restricts the immune response in confined microchannels, significantly reducing sample consumption and improving reaction efficiency, making it worthy of widespread application. This paper proposes an exciting multi-frequency electrothermal flow (MET) technique by applying combined standing-wave and [...] Read more.
Compared with traditional immunoassay methods, microfluidic immunoassay restricts the immune response in confined microchannels, significantly reducing sample consumption and improving reaction efficiency, making it worthy of widespread application. This paper proposes an exciting multi-frequency electrothermal flow (MET) technique by applying combined standing-wave and traveling-wave voltage signals with different oscillation frequencies to a three-period quadra-phase discrete electrode array, achieving rapid immunoreaction on functionalized electrode surfaces within straight microchannels, by virtue of horizontal pumping streamlines and transverse stirring vortices induced by nonlinear electrothermal convection. Under the approximation of a small temperature rise, a linear model describing the phenomenon of MET is derived. Although the time-averaged electrothermal volume force is a simple superposition of the electrostatic body force components at the two frequencies, the electro-thermal-flow field undergoes strong mutual coupling through the dual-component time-averaged Joule heat source term, further enhancing the intensity of Maxwell–Wagner smeared structural polarization and leading to mutual influence between the standing-wave electrothermal (SWET) and traveling-wave electrothermal (TWET) effects. Through thorough numerical simulation, the optimal working frequencies for SWET and TWET are determined, and the resulting synthetic MET flow field is directly utilized for microfluidic immunoassay. MET significantly promotes the binding kinetics on functionalized electrode surface by simultaneous global electrokinetic transport along channel length direction and local chaotic stirring of antigen samples near the reaction site, compared to the situation without flow activation. The MET investigated herein satisfies the requirements for early, rapid, and precise immunoassay of test samples on-site, showing great application prospects in remote areas with limited resources. Full article
Show Figures

Figure 1

22 pages, 974 KiB  
Article
Limited Diversity of Thermal Adaptation to a Critical Temperature in Zymomonas mobilis: Evidence from Multiple-Parallel Laboratory Evolution Experiments
by Sornsiri Pattanakittivorakul, Shun Kato, Takashi Kuga, Tomoyuki Kosaka, Minenosuke Matsutani, Masayuki Murata, Morio Ishikawa, Kankanok Charoenpunthuwong, Pornthap Thanonkeo and Mamoru Yamada
Int. J. Mol. Sci. 2025, 26(7), 3052; https://doi.org/10.3390/ijms26073052 - 26 Mar 2025
Viewed by 530
Abstract
Laboratory evolution is an effective means of understanding microbial adaptation to the environment. We previously isolated four thermoadapted Zymomonas mobilis mutants, which showed a 2 °C rise in the critical high temperature (CHT), by performing multiple-parallel adaptation experiments. In the present study, the [...] Read more.
Laboratory evolution is an effective means of understanding microbial adaptation to the environment. We previously isolated four thermoadapted Zymomonas mobilis mutants, which showed a 2 °C rise in the critical high temperature (CHT), by performing multiple-parallel adaptation experiments. In the present study, the individual mutations in these mutants were intensively analyzed. Two mutations in each adapted mutant were found to primarily contribute to the increase in the upper temperature limit. RNA sequencing (RNA-seq) analysis revealed that the two mutations led to the upregulation of 79–185 genes and the downregulation of 242–311 genes. The findings from transcriptomic and physiological experiments suggest two common and primary mechanisms for thermal resistance: a decrease in the activity of diacylglycerol kinase, which may change the structure of lipopolysaccharide (LPS) probably to strengthen the membrane structure, and an increase in the expression of genes for GroEL/GroES or cell wall hydrolase to repair the protein or membrane damage that occurs at such critical temperatures. Additionally, transporters including efflux pumps may contribute to intracellular homeostasis by expelling toxic compounds such as ethanol and acetate or by maintaining the K+ concentration. The results of this study on four independently thermoadapted mutants led to the conclusion that the mutants have almost the same thermal adaptation strategies and thus their molecular diversity is limited. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 12450 KiB  
Article
Investigation and Evaluation of Geothermal Resources in Northern Shanxi Province, China
by Zhongxu Lu, Yang Yang, Yajun Mo, Haizhi Liao and Youlian Cai
Energies 2025, 18(6), 1494; https://doi.org/10.3390/en18061494 - 18 Mar 2025
Viewed by 402
Abstract
In this study, survey methods including seismic techniques and controlled-source audio-frequency magnetotelluric, drilling, and pumping tests were employed to investigate the geothermal systems and their formation mechanisms in northern Shanxi Province, China. The following characteristics were observed: (1) Geothermal resources in northern Shanxi [...] Read more.
In this study, survey methods including seismic techniques and controlled-source audio-frequency magnetotelluric, drilling, and pumping tests were employed to investigate the geothermal systems and their formation mechanisms in northern Shanxi Province, China. The following characteristics were observed: (1) Geothermal resources in northern Shanxi Province are primarily located in Archean metamorphic rocks and fracture zone aquifer groups. The direct heat source is likely uncooled magma chambers in the middle-upper crust, whereas the overlying layers consist of Quaternary, Neogene, and Paleogene deposits. (2) The high-temperature geothermal system is of the convective-conductive type: atmospheric precipitation and surface water infiltrate pore spaces and fault fractures to reach thermal storage, where they are heated. Hot water then rises along the fracture channels and emerges as shallow hot springs, and ongoing extensional tectonic activity has caused asthenospheric upwelling. The partial melting of the upper mantle forms basic basaltic magma, which ascends to the middle-upper crust and forms multiple magma chambers. Their heat is transferred to the shallow subsurface, causing geothermal anomalies. (3) Borehole YG-1 findings revealed that these geothermal resources are primarily static reserves. Our findings provide a foundation for further geothermal development in the region, including the strategic deployment of wells to improve geothermal energy extraction. Full article
Show Figures

Figure 1

9 pages, 2536 KiB  
Proceeding Paper
Integrated Power and Thermal Management System in a Parallel Hybrid-Electric Aircraft: An Exploration of Passive and Active Cooling and Temperature Control
by Zeyu Ouyang, Theoklis Nikolaidis, Soheil Jafari and Evangelia Pontika
Eng. Proc. 2025, 90(1), 36; https://doi.org/10.3390/engproc2025090036 - 13 Mar 2025
Viewed by 607
Abstract
Hybrid-electric aircraft (HEAs) represent a promising solution for reducing fuel consumption and emissions. However, the additional heat loads generated by the electrical propulsion systems in HEAs can diminish these benefits. To address this, an integrated power and thermal management system (IPTMS) is essential [...] Read more.
Hybrid-electric aircraft (HEAs) represent a promising solution for reducing fuel consumption and emissions. However, the additional heat loads generated by the electrical propulsion systems in HEAs can diminish these benefits. To address this, an integrated power and thermal management system (IPTMS) is essential to mitigate these challenges by optimizing the interaction between thermal management and power management. This paper presents a preliminary IPTMS design for a parallel HEA operating under International Standard Atmosphere (ISA) conditions. The design includes an evaluation of active cooling, passive cooling, and active temperature control strategies. The IPTMS accounts for heat loads from the engine system, including the generators, shaft bearings, and power gearboxes, as well as from the electrical propulsion system, such as motors, batteries, converters, and the electric bus. This study investigates the impact of battery power (BP) contribution to cooling power on required coolant pump power and induced ram air drag. A comparison of IPTMS performance under 0% and 100% BP conditions revealed that the magnitude of battery power contribution to cooling power does not significantly impact the thermal management system (TMS) performance due to the large disparity between the total battery power (maximum 950 kW) and the required cooling power (maximum 443 W). Additionally, it was determined that the motor-inverter loop accounts for 95% of the pump power and 97% of the ram air drag. These findings suggest that IPTMS optimization should prioritize the thermal domain, particularly the motor-inverter loop. This study provides new insights into IPTMS design for HEAs, paving the way for further exploration of IPTMS performance under various operating conditions and refinement of cooling strategies. Full article
Show Figures

Figure 1

20 pages, 2740 KiB  
Article
Thermal Conductivity Modeling for Liquid-Phase-Sintered Silicon Carbide Ceramics Using Machine Learning Computational Methods
by Sami M. Ibn Shamsah
Crystals 2025, 15(2), 197; https://doi.org/10.3390/cryst15020197 - 19 Feb 2025
Viewed by 776
Abstract
Silicon carbide is a covalently bonded engineering material and structural ceramic with excellent mechanical properties, high resistance to oxidation, corrosion, and wear, and tunable thermal conductivity. The exceptional thermal conductivity of silicon carbide ceramic promotes its candidature in many industrial applications, such as [...] Read more.
Silicon carbide is a covalently bonded engineering material and structural ceramic with excellent mechanical properties, high resistance to oxidation, corrosion, and wear, and tunable thermal conductivity. The exceptional thermal conductivity of silicon carbide ceramic promotes its candidature in many industrial applications, such as nuclear fuel capsule materials, substrate materials employed in semiconductor devices, heater plates, and heaters for processing semiconductor and gas seal rings employed in compressor pumps, among others. The synthesis of polycrystalline silicon carbide through the liquid-phase sintering approach results in lower thermal conductivity due to the presence of structural defects associated with grains, lattice impurities, grains’ random orientations, and the presence of secondary phases in polycrystalline silicon carbide ceramic. The conventional experimental method of enhancing thermal conductivity is laborious and expensive. This present work modeled the thermal conductivity of liquid-phase silicon carbide ceramic via intelligent approaches involving genetic algorithm-optimized support vector regression (SVR-GA), an extreme learning machine with a sine activation function (ELMS), and random forest regression (RFR). The descriptors for the models included the nature of sintering additives as well as their weights, sintering conditions, applied pressure, sintering temperature, and time. Using the mean absolute error (MAE) and root mean square error (RMSE) for performance assessment, it was observed that the ELMS outperformed the RFR and SVR-GA models with improvements of 40.50% and 25.76%, respectively, using the MAE metric and improvements of 16.57% and 24.43%, respectively, using the RMSE metric. The developed models were further used to investigate the effect of the weight of sintering additives and sintering time on the thermal conductivity of silicon carbide ceramic. The precision of the developed models facilitated a comprehensive investigation of the effect of sintering factors on thermal conductivity while hidden connections that exist between the factors are uncovered for enhancing application domains for silicon carbide ceramics. Full article
Show Figures

Figure 1

14 pages, 1234 KiB  
Article
Effect of Nutrient Solution Activated with Non-Thermal Plasma on Growth and Quality of Baby Leaf Lettuce Grown Indoor in Aeroponics
by Martina Puccinelli, Giulia Carmassi, Damiano Lanza, Rita Maggini, Paolo Vernieri and Luca Incrocci
Agriculture 2025, 15(4), 405; https://doi.org/10.3390/agriculture15040405 - 14 Feb 2025
Viewed by 756
Abstract
Innovation in cultivation methods is essential to address the growing challenges in agriculture, including abiotic and biotic stress, soil degradation, and climate change. Aeroponics, a particular type of hydroponics, presents a promising solution by improving yield and resource use efficiency, especially in controlled [...] Read more.
Innovation in cultivation methods is essential to address the growing challenges in agriculture, including abiotic and biotic stress, soil degradation, and climate change. Aeroponics, a particular type of hydroponics, presents a promising solution by improving yield and resource use efficiency, especially in controlled environments such as plant factories with artificial lighting (PFALs). Additionally, non-thermal plasma (NTP), a partially ionized gas containing reactive oxygen and nitrogen species, can affect plant development and physiology, further enhancing crop production. The objective of this study was to explore the potential of NTP as an innovative method to enhance crop production by treating the nutrient solution in aeroponic systems. During this study, three experiments were conducted to assess the effects of NTP-treated nutrient solutions on baby leaf lettuce (Lactuca sativa L.) aeroponically grown indoors. The nutrient solution was treated with ionized air in a treatment column separated from the aeroponic system by making the ionized air bubble from the bottom of the column. After 2 min of NTP application, a pump took the nutrient solution from the treatment column and sprayed it on the roots of plants. Various frequencies of NTP application were tested, ranging from 2.5% to 50% of irrigation events with nutrient solution activated with NTP. Results indicated that low-frequency NTP treatments (up to 5% of irrigations) stimulated plant growth, increasing leaf biomass (+18–19%) and enhancing the concentration of flavonoids (+16–18%), phenols (+20–21%), and antioxidant capacity (+29–53%). However, higher NTP frequencies (25% and above) negatively impacted plant growth, reducing fresh and dry weight and root biomass, likely due to excessive oxidative stress. The study demonstrates the potential of NTP as a tool for improving crop quality and yields in aeroponic cultivation, with optimal benefits achieved at lower treatment frequencies. Full article
(This article belongs to the Special Issue Nutritional Quality and Health of Vegetables)
Show Figures

Figure 1

7 pages, 2884 KiB  
Proceeding Paper
Experimental Study of Amorphous Photovoltaic Systems in Indoor Performance with Different Coolants
by Dessy Ade Pratiwi, Andi Ibrahim Soumi, Gumilang Wicaksono, Nurmuntaha Agung Nugraha, Azizah Fatmawati, Rizki Nurilyas Ahmad, Wafiq Kurniawan and Cahyo Jawoto Anggoro
Eng. Proc. 2025, 84(1), 24; https://doi.org/10.3390/engproc2025084024 - 29 Jan 2025
Viewed by 481
Abstract
The aim of this research is to investigate the performance of indoor amorphous photovoltaic systems with PVC water cooling and compare them with those using heatsink cooling. The amorphous approach used in this study involves water flowing through a PVC pipe and a [...] Read more.
The aim of this research is to investigate the performance of indoor amorphous photovoltaic systems with PVC water cooling and compare them with those using heatsink cooling. The amorphous approach used in this study involves water flowing through a PVC pipe and a heatsink cooler. The circular heatsink that was used has fins all around it. The water flow through the pipe is pumped from the reservoir to the PVC pipe. The study found that a PVC water flow-based active cooling system is the most effective at preserving thermal stability and improving the performance of amorphous PV modules under high light intensity circumstances, providing insights for future advancements. Full article
Show Figures

Figure 1

20 pages, 3669 KiB  
Article
Studies of a Mechanically Pumped Two-Phase Loop with a Pressure-Controlled Accumulator Under Pulsed Evaporator Heat Loads
by Nicholas Truster, Jamie S. Ervin, Abdeel Roman and Jeff Monfort
Energies 2024, 17(24), 6347; https://doi.org/10.3390/en17246347 - 17 Dec 2024
Viewed by 998
Abstract
As avionics become more power dense, electronic device cooling has become a significant barrier to aircraft integration. A mechanically pumped two-phase loop (MPTL) is a thermal subsystem that enables near isothermal evaporator operation, which is desirable for electronics cooling. The goal of this [...] Read more.
As avionics become more power dense, electronic device cooling has become a significant barrier to aircraft integration. A mechanically pumped two-phase loop (MPTL) is a thermal subsystem that enables near isothermal evaporator operation, which is desirable for electronics cooling. The goal of this study was to integrate an MPTL with a pressure-controlled accumulator and model a predictive control technique to demonstrate improvements for transient, isothermal evaporator operation for MPTLs under pulsed evaporator heat loads. The model predictive controller enables active control of MPTL compressible volume, which has not been demonstrated for pulsed evaporator heat loads. Experimental data were collected to validate a representative numerical model. A pressure-controlled accumulator was added to an MPTL to experimentally characterize the system thermodynamic response for three pulsed evaporator heat loads. Two statistical methods were used to assess the numerical model agreement with the experimental results. Under pulsed evaporator heat loads, the mean percent error agreed within 3.45% and the mean average percent error agreed within 0.74% for the three pulsed evaporator heat loads. Finally, a traditional proportional–integral (PI) controller and an advanced model predictive controller were developed and integrated into the validated numerical model. Both control methods were evaluated for an expanded set of evaporator heat load profiles to analyze transient behavior. For evaporator heat profiles with high heat transfer rates, the model predictive controller can maintain a target ±2 K refrigerant temperature at the evaporator exit throughout the evaporator heat load duration, whereas the PI-controlled MPTL cannot. Through this work, active control of a pressure-controlled accumulator within an MPTL is shown to improve refrigerant isothermal (±2 K) operation when compared to a traditional control technique. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

17 pages, 10436 KiB  
Article
Multirod Pumping Approach with Fresnel Lens and Ce:Nd:YAG Media for Enhancing the Solar Laser Efficiency
by Joana Almeida, Hugo Costa, Cláudia R. Vistas, Bruno D. Tibúrcio, Ana Matos and Dawei Liang
Energies 2024, 17(22), 5630; https://doi.org/10.3390/en17225630 - 11 Nov 2024
Viewed by 1083
Abstract
A multirod Ce:Nd:YAG solar laser approach, using a Fresnel lens as a primary concentrator, is here proposed with the aim of considerably increasing the efficiency of solar-pumped lasers. Fresnel lenses are cost-effective, rendering solar lasers more economically competitive. In this work, solar-pumped radiation [...] Read more.
A multirod Ce:Nd:YAG solar laser approach, using a Fresnel lens as a primary concentrator, is here proposed with the aim of considerably increasing the efficiency of solar-pumped lasers. Fresnel lenses are cost-effective, rendering solar lasers more economically competitive. In this work, solar-pumped radiation collected and concentrated using the Fresnel lens is received by a secondary three-dimensional compound parabolic concentrator which transmits and funnels the light toward the Ce:Nd:YAG laser rods within a water-cooled tertiary conical concentrator that enables efficient multipass pumping of the rods. To explore the full potential of the proposed approach, the performance of various multirod configurations is numerically evaluated. Through this study, configurations with three and seven Ce:Nd:YAG rods are identified as being the most efficient. A maximum continuous wave total laser power of 122.8 W is reached with the three-rod configuration, marking the highest value from a Ce:Nd:YAG solar laser, leading to solar-to-laser conversion and collection efficiencies of 7.31% and 69.50 W/m2, respectively. These results represent enhancements of 1.88 times and 1.79 times, respectively, over the previous experimental records from a Ce:Nd:YAG/YAG single-rod solar laser with a Fresnel lens. Furthermore, the above results are also 1.58 times and 1.68 times, respectively, greater than those associated with the most effective three-rod Ce:Nd:YAG solar laser utilizing a parabolic mirror as the main concentrator. The present study also shows the great usefulness of the simultaneous pumping of multiple laser rods in terms of reducing the thermal stress effects in active media, being the seven-rod configuration the one that offered the best compromise between maximum efficiency and thermal performance. This is crucial for the applicability of this sustainable technology, especially if we wish to scale our system to higher power laser levels. Full article
Show Figures

Figure 1

18 pages, 4921 KiB  
Article
Optimisation of Integrated Heat Pump and Thermal Energy Storage Systems in Active Buildings for Community Heat Decarbonisation
by Zaid Al-Atari, Rob Shipman and Mark Gillott
Energies 2024, 17(21), 5310; https://doi.org/10.3390/en17215310 - 25 Oct 2024
Cited by 2 | Viewed by 1395
Abstract
The electrification of residential heating systems, crucial for achieving net-zero emissions, poses significant challenges for low-voltage distribution networks. This study develops a simulation model to explore the integration of heat pumps within active building systems for community heating decarbonisation. The model optimises heat [...] Read more.
The electrification of residential heating systems, crucial for achieving net-zero emissions, poses significant challenges for low-voltage distribution networks. This study develops a simulation model to explore the integration of heat pumps within active building systems for community heating decarbonisation. The model optimises heat pump operations in conjunction with thermal energy storage units to reduce peak demand on low-voltage networks by using real-time measured electricity demand data and modelled heat demand data for 76 houses. The study employs an algorithm that adjusts thermal storage charging and discharging cycles to align with off-peak periods. Three scenarios were simulated: a baseline with unoptimised heat pumps, a fixed threshold model, and an active building model with daily optimised thresholds. The results demonstrate that the active building model achieves a 21% reduction in peak demand on the low-voltage substation compared to the baseline scenario; it also reduces the total electrical energy consumption by 12% and carbon emissions by 17%. The fixed threshold scenario shows a 16% improvement in peak demand reduction, but it also shows an increase in energy consumption and emissions. These findings highlight the potential of active buildings to enhance the efficiency and sustainability of residential energy systems, marking a significant step toward decarbonising residential heating while maintaining grid stability. Full article
(This article belongs to the Special Issue Novel Energy Management Approaches in Microgrid Systems)
Show Figures

Figure 1

Back to TopTop