Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = thermal perturbative QCD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 724 KiB  
Article
Non-Perturbative Quantum Yang–Mills at Finite Temperature Beyond Lattice: A Dyson–Schwinger Approach
by Marco Frasca, Anish Ghoshal and Stefan Groote
Symmetry 2025, 17(4), 543; https://doi.org/10.3390/sym17040543 - 2 Apr 2025
Viewed by 441
Abstract
Using a Dyson–Schwinger approach, we perform an analysis of the non-trivial ground state of thermal SU(N) Yang–Mills theory in the non-perturbative regime where chiral symmetry is dynamically broken by a mass gap. Basic thermodynamic observables such as energy density [...] Read more.
Using a Dyson–Schwinger approach, we perform an analysis of the non-trivial ground state of thermal SU(N) Yang–Mills theory in the non-perturbative regime where chiral symmetry is dynamically broken by a mass gap. Basic thermodynamic observables such as energy density and pressure are derived analytically, using Jacobi elliptic functions. The results are compared with the lattice results. Good agreement is found at low temperatures, providing a viable scenario for a gas of massive glue states populating higher levels of the spectrum of the theory. At high temperatures, a scenario without glue states consistent with a massive scalar field is observed, showing an interesting agreement with lattice data. The possibility is discussed that the results derived in this analysis open up a novel pathway beyond lattice to precision studies of phase transitions with false vacuum and cosmological relics that depend on the equations of state in strong coupled gauge theories of the type of Quantum Chromodynamics (QCD). Full article
(This article belongs to the Special Issue The Benefits That Physics Derives from the Concept of Symmetry)
Show Figures

Figure 1

13 pages, 403 KiB  
Article
Nuclear Modification Factor in Small System Collisions within Perturbative QCD including Thermal Effects
by Lucas Moriggi and Magno Machado
Physics 2022, 4(3), 787-799; https://doi.org/10.3390/physics4030050 - 18 Jul 2022
Cited by 3 | Viewed by 2929
Abstract
In this paper, the nuclear modification factors, RxA, are investigated for pion production in small system collisions, measured by PHENIX experiment at RHIC (Relativistic Heavy Ion Collider). The theoretical framework is the parton transverse momentum kT-factorization formalism for [...] Read more.
In this paper, the nuclear modification factors, RxA, are investigated for pion production in small system collisions, measured by PHENIX experiment at RHIC (Relativistic Heavy Ion Collider). The theoretical framework is the parton transverse momentum kT-factorization formalism for hard processes at small momentum fraction, x. Evidence for collective expansion and thermal effects for pions, produced at equilibrium, is studied based on phenomenological parametrization of blast-wave type in the relaxation time approximation. The dependencies on the centrality and on the projectile species are discussed in terms of the behavior of Cronin peak and the suppression of RxA at large transverse momentum, pT. The multiplicity of produced particles, which is sensitive to the soft sector of the spectra, is also included in the present analysis. Full article
(This article belongs to the Special Issue Jean Cleymans A Life for Physics)
Show Figures

Figure 1

25 pages, 530 KiB  
Article
Early Universe Thermodynamics and Evolution in Nonviscous and Viscous Strong and Electroweak Epochs: Possible Analytical Solutions
by Abdel Nasser Tawfik and Carsten Greiner
Entropy 2021, 23(3), 295; https://doi.org/10.3390/e23030295 - 28 Feb 2021
Cited by 9 | Viewed by 2957
Abstract
Based on recent perturbative and non-perturbative lattice calculations with almost quark flavors and the thermal contributions from photons, neutrinos, leptons, electroweak particles, and scalar Higgs bosons, various thermodynamic quantities, at vanishing net-baryon densities, such as pressure, energy density, bulk viscosity, relaxation time, and [...] Read more.
Based on recent perturbative and non-perturbative lattice calculations with almost quark flavors and the thermal contributions from photons, neutrinos, leptons, electroweak particles, and scalar Higgs bosons, various thermodynamic quantities, at vanishing net-baryon densities, such as pressure, energy density, bulk viscosity, relaxation time, and temperature have been calculated up to the TeV-scale, i.e., covering hadron, QGP, and electroweak (EW) phases in the early Universe. This remarkable progress motivated the present study to determine the possible influence of the bulk viscosity in the early Universe and to understand how this would vary from epoch to epoch. We have taken into consideration first- (Eckart) and second-order (Israel–Stewart) theories for the relativistic cosmic fluid and integrated viscous equations of state in Friedmann equations. Nonlinear nonhomogeneous differential equations are obtained as analytical solutions. For Israel–Stewart, the differential equations are very sophisticated to be solved. They are outlined here as road-maps for future studies. For Eckart theory, the only possible solution is the functionality, H(a(t)), where H(t) is the Hubble parameter and a(t) is the scale factor, but none of them so far could to be directly expressed in terms of either proper or cosmic time t. For Eckart-type viscous background, especially at finite cosmological constant, non-singular H(t) and a(t) are obtained, where H(t) diverges for QCD/EW and asymptotic EoS. For non-viscous background, the dependence of H(a(t)) is monotonic. The same conclusion can be drawn for an ideal EoS. We also conclude that the rate of decreasing H(a(t)) with increasing a(t) varies from epoch to epoch, at vanishing and finite cosmological constant. These results obviously help in improving our understanding of the nucleosynthesis and the cosmological large-scale structure. Full article
(This article belongs to the Special Issue Modified Gravity: From Black Holes Entropy to Current Cosmology III)
Show Figures

Figure 1

34 pages, 1839 KiB  
Review
Aspects on Effective Theories and the QCD Transition
by Angel Gómez Nicola
Symmetry 2020, 12(6), 945; https://doi.org/10.3390/sym12060945 - 3 Jun 2020
Cited by 5 | Viewed by 3746
Abstract
We review recent advances in the understanding of the Quantum Chromodynamics (QCD) transition and its nature, paying special attention to the analysis of chiral symmetry restoration within different approaches based on effective theories. After presenting some of the main aspects of the current [...] Read more.
We review recent advances in the understanding of the Quantum Chromodynamics (QCD) transition and its nature, paying special attention to the analysis of chiral symmetry restoration within different approaches based on effective theories. After presenting some of the main aspects of the current knowledge of the phase diagram from the theoretical, experimental and lattice sides, we discuss some recent problems where approaches relying on effective theories have been particularly useful. In particular, the combination of ideas such as Chiral Perturbation Theory, unitarity and Ward Identities allows us to describe successfully several observables of interest. This is particularly relevant for quantities expected to be dominated by the light meson components of the hadron gas such as the scalar and topological susceptibilities. In addition, ward identities and effective Lagrangians provide systematic results regarding chiral and U ( 1 ) A partner degeneration properties which are of great importance for the interplay between those two transitions and the nature of chiral symmetry restoration. Special attention is paid to the connection of this theoretical framework with lattice simulations. Full article
Show Figures

Figure 1

4 pages, 2023 KiB  
Proceeding Paper
Insight into Thermal Modifications of Quarkonia From a Comparison of Continuum-Extrapolated Lattice Results to Perturbative QCD
by Anna-Lena Kruse, H.-T. Ding, O. Kaczmarek, H. Ohno and H. Sandmeyer
Proceedings 2019, 10(1), 45; https://doi.org/10.3390/proceedings2019010045 - 5 May 2019
Cited by 2 | Viewed by 1794
Abstract
In this work, we strive to gain insight into thermal modifications of charmonium and bottomonium bound states as well as the heavy quark diffusion coefficient. The desired information is contained in the spectral function which can not be calculated on the lattice directly. [...] Read more.
In this work, we strive to gain insight into thermal modifications of charmonium and bottomonium bound states as well as the heavy quark diffusion coefficient. The desired information is contained in the spectral function which can not be calculated on the lattice directly. Instead, the correlator given by an integration over the spectral function times an integration kernel is obtained. Extracting the spectral function is an ill-posed inversion problem and various different solutions have been proposed. We focus on a comparison to a spectral function obtained from combining perturbative and pNRQCD calculations. In order to get precise results, continuum extrapolated correlators originating from large and fine lattices are used. We first analyze the pseudoscalar channel since the absence of a transport peak simplifies the analysis. The knowledge gained from this is then used to extend the analysis to the vector channel, where information on heavy quark transport is encoded in the low frequency regime of the spectral function. The comparison shows a qualitatively good agreement between perturbative and lattice correlators. Quantitative differences can be explained by systematic uncertainties. Full article
Show Figures

Figure 1

25 pages, 505 KiB  
Article
Perturbative Peculiarities of Quantum Field Theories at High Temperatures
by Ingolf Bischer, Thierry Grandou and Ralf Hofmann
Universe 2019, 5(3), 81; https://doi.org/10.3390/universe5030081 - 14 Mar 2019
Cited by 2 | Viewed by 3199
Abstract
Revisiting the fast fermion damping rate calculation in a thermalized QED and/or QCD plasma in thermal equilibrium at four-loop order, focus is put on a peculiar perturbative structure which has no equivalent at zero-temperature. Not surprisingly, and in agreement with previous [...] Read more.
Revisiting the fast fermion damping rate calculation in a thermalized QED and/or QCD plasma in thermal equilibrium at four-loop order, focus is put on a peculiar perturbative structure which has no equivalent at zero-temperature. Not surprisingly, and in agreement with previous C -algebraic analyses, this structure renders the use of thermal perturbation theory more than questionable. Full article
(This article belongs to the Special Issue Heavy Ion Collisions)
Show Figures

Figure 1

10 pages, 340 KiB  
Article
On Quantum Fields at High Temperature
by Ingolf Bischer, Thierry Grandou and Ralf Hofmann
Universe 2019, 5(1), 26; https://doi.org/10.3390/universe5010026 - 15 Jan 2019
Cited by 1 | Viewed by 3185
Abstract
Revisiting the fast fermion damping rate calculation in a thermalized momentum scale eT (QED) and/or momentum scale gT (QCD) plasma at 4-loop order, focus is put on a peculiar perturbative structure which has no equivalent at zero-temperature. Not surprisingly, and in agreement with [...] Read more.
Revisiting the fast fermion damping rate calculation in a thermalized momentum scale eT (QED) and/or momentum scale gT (QCD) plasma at 4-loop order, focus is put on a peculiar perturbative structure which has no equivalent at zero-temperature. Not surprisingly, and in agreement with previous C -algebraic analyses, this structure renders the use of thermal perturbation theory quite questionable. Full article
Show Figures

Figure 1

Back to TopTop