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Abstract: We review recent advances in the understanding of the Quantum Chromodynamics (QCD)
transition and its nature, paying special attention to the analysis of chiral symmetry restoration
within different approaches based on effective theories. After presenting some of the main aspects of
the current knowledge of the phase diagram from the theoretical, experimental and lattice sides, we
discuss some recent problems where approaches relying on effective theories have been particularly
useful. In particular, the combination of ideas such as Chiral Perturbation Theory, unitarity and
Ward Identities allows us to describe successfully several observables of interest. This is particularly
relevant for quantities expected to be dominated by the light meson components of the hadron
gas such as the scalar and topological susceptibilities. In addition, ward identities and effective
Lagrangians provide systematic results regarding chiral and U(1)A partner degeneration properties
which are of great importance for the interplay between those two transitions and the nature of chiral
symmetry restoration. Special attention is paid to the connection of this theoretical framework with
lattice simulations.

Keywords: effective Lagrangians; QCD Phase Diagram; Chiral Perturbation Theory; resonances;
thermal field theory; hadron gas

1. Introduction and Motivation: Remarks on the QCD Phase Diagram

One of the most striking features of strongly interacting matter is its behaviour under extreme
external conditions. A prominent example is the physical system created in an ultrarelativistic heavy
ion collision and its subsequent expansion, which undergoes several phases and regimes, starting from
an initial nonequilibrium high-density state where the relevant degrees of freedom are deconfined
quarks and gluons, the Quark-Gluon Plasma (QGP), followed by a transition to a hadron gas through
a locally thermalized expansion [1]. During such expansion, the produced yields of particles and their
spectral properties carry useful information about the thermal system and the phases involved [2].
The main experimental heavy-ion programs are nowadays developed at the Relativistic Heavy Ion
Collider (RHIC) at Brookhaven National Laboratory and the Large Hadron Collider (LHC) at CERN.

The statistical variables of the system, namely temperature and chemical potentials, label the
phase diagram of Quantum Chromodynamics (QCD), depicted schematically in Figure 1 in the (T, µB)

plane, with µB the chemical potential associated to the conservation of baryon number.
As shown in the figure, a transition curve (Tc, µc) is expected, signaling deconfinement and chiral

symmetry restoration, two phenomena of very different nature but connected in a way still not totally
understood. Chiral symmetry restoration reflects the transition from an ordered phase of low T and
low µB (and hence low baryon density) where the chiral symmetry SUL(N f )× SUR(N f ) is broken
down to the vector one SUL+R(N f ) (isospin symmetry for N f = 2) with N f the number of light flavors,
to a disordered one where such symmetry is restored. The critical line corresponds very likely to a
first-order phase transition for large values of µB, presumably ending in the so called QCD critical
point where the transition would become a smooth crossover for low µB. The existence and properties
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of the QCD critical point is actually one of the major goals in the current research activity in this
field [3,4].
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Figure 1. Schematic representation of the Quantum Chromodynamics (QCD) phase diagram in the
plane of temperature and baryon chemical potential.

The region of high baryon density and small temperature is not so well understood and is
accessible nowadays only within the realms of astrophysical objects such as neutron stars. In that
region, novel phases of QCD such as Color Superconductivity (CS) appear, with different possibilities
for Cooper pairing quark states and for quark matter types [5].

The best explored region of the phase diagram is that of vanishing or low baryon density.
Our current knowledge in that region comes essentially from two complementary approaches to
hot and dense QCD matter: lattice simulations and direct experimental information extracted from
Heavy-Ion data.

Thus, on the one hand, lattice simulations have been over many years the only source of
information on the QCD phase diagram to compare with from theoretical models and analysis.
At µB = 0, the analysis of observables directly related to confinement and chiral symmetry restoration
has provided a very useful insight. That is the case of the Polyakov loop, thermodynamic pressure,
the entropy and the trace anomaly, all showing deconfinement features [3,6] and derived from the free
energy density at finite temperature T,

z(T) = − lim
V→∞

(βV)−1 log Z, (1)

with β = 1/T Z the QCD partition function. The thermodynamic pressure and the trace anomaly are
then given by

P(T) = z(T = 0)− z(T)

〈θ(T)− θ(0)〉 = T5 d
dT

(
P(T)

T4

)
where θ = Tµ

µ with Tµν the energy-momentum tensor. The trace anomaly, also denoted as interaction
measure, is a very interesting quantity from the point of view of the deconfinement transition.
It parameterizes, through the QCD conformal anomaly, the breaking of conformal invariance which is
meant to be enhanced when quarks and gluon degrees of freedom are liberated. In fact, the peak in the
trace anomaly observed in lattice simulations is a reflection of that mechanism [3].
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As for chiral symmetry restoration, the main observables to be considered are the light quark
condensate 〈q̄q〉l = 〈ūu + d̄d〉 and the scalar susceptibility χS:

〈q̄q〉l (T) =
∂

∂m̂
z(T), (2)

χS(T) = − ∂

∂m̂
〈q̄q〉l (T) =

∫
T

dx
[
〈ψ̄lψl(x)ψ̄lψl(0)〉 − 〈q̄q〉2l (T)

]
, (3)

where
∫

T
dx ≡

∫ β

0
dτ
∫

d3~x at finite temperature T = 1/β, 〈·〉 denote Euclidean finite-T correlators,

ψT
l = (u, d) is the fermion flavor doublet field and m̂ = mu = md is the light quark mass in the isospin

limit. Note that χS is the total susceptibility that can be separated into connected and disconnected
parts in terms of quark diagrams as χS = 2χcon + 4χdis for N f = 2, where χdis is expected to diverge at
chiral restoration [7].

The light quark condensate is the order parameter in the light chiral limit mu = md = 0, where
the transition is most likely a second-order one for µB = 0 [8]. In that limit, at the critical point
the quark condensate vanishes and the scalar susceptibility diverges [7]. In the physical quark
mass case, simulations show a crossover transition at Tc = 154± 9 MeV from the study of various
observables [3,9–12] corresponding to an inflection point of the quark condensate and a peak of
the scalar susceptibility. Recent simulations in the light chiral limit [13] show a reduction of the
transition temperature, as expected from the absence of explicit chiral symmetry breaking, down to
T0

c ' 132 MeV.
In Figure 2 we show the results for the lattice simulations in [11] regarding the subtracted

quark condensate and the disconnected part of the scalar susceptibility (which carries the critical
behaviour) for different choices of the lattice action and the number Nτ of points in the euclidean
time direction. We refer to that work for the definitions of those observables and their normalizations
used. In particular, ∆l,s is obtained by subtracting 〈q̄q〉l − (2m̂/ms)〈s̄s〉 with 〈s̄s〉 the strange quark
condensate, in order to avoid finite-size lattice divergences. Such subtracted condensates carry out the
expected transition behaviour and will play an important role for our discussion on chiral partners
and screening masses in Section 4.
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Figure 2. Subtracted quark condensate and disconnected scalar susceptibility from the lattice work [11]
plotted for different actions and lattice resolutions.

Simulations at µB 6= 0 present a strong technical limitation known as the sign problem, related
to the imaginary part added to the euclidean action which renders statistical weights complex.
Approaches to circumvent this problem include analytical continuation from imaginary µB [14,15],
reweighting methods [16], stochastic quantization [17] and Taylor expansions around µB = 0 [12].
The possible location and nature of the critical point is still under debate and is definitely one of the
major open problems regarding the QCD transition [4].
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On the other hand, very useful information can be extracted from the experimental analysis of
the evolution of particle yields and their ratios as the energy of the collision is varied, the so called
Beam Energy Scan (BES) program [18]. A crucial step in this direction has been the observation that
the physical conditions for the chemical freeze-out of net baryon number B, electric charge Q and
strangeness S conservation (i.e., when the system is dilute enough so that interactions conserve those
quantities and the corresponding chemical potentials are built out) overlap significatively with the
boundary of the phase diagram [12]. This is schematically depicted in the “BES” region in Figure 1.
In this context, hadron statistical models fit hadron yields from the STAR (at RHIC) and ALICE (at LHC)
experiments very well [19]. The result of such fits is consistent with the critical line obtained in the
recent lattice analysis within the Taylor expansion method [12]. Therefore, we are currently exploring
the phase diagram directly from experimental information, which represents a major advance in
this field.

In addition, the study of fluctuations of conserved charges has opened up interesting
possibilities [3]. In particular, certain combinations of crossed BS and QS susceptibilities provide a
relation between chemical potentials µB,S,Q which can be directly tested from experimental hadron
yields at chemical freeze-out [20]. Experimental data on fluctuations also offer an additional way to
explore the critical point [21].

With the above motivation in mind, the purpose of the present work is to review recent theoretical
approaches based on effective theories to describe the physics below the transition. We will be
particularly interested in observables related to chiral symmetry restoration for which the lightest
degrees of freedom provide the dominant effect. Thus, as we will show here, the light meson sector
offers already a very useful picture to understand crucial aspects of relevance in this context such as
the interplay between chiral and UA(1) symmetries and its relation with the nature of the transition,
chiral partners, screening masses, the scalar susceptibility peak, closely related to the role of thermal
resonances, and the topological susceptibility. The connection of these theoretical analyses and lattice
results will be specifically emphasized throughout this work.

The paper is structured as follows: In Section 2 we will review the main existing approaches to the
description of the physics below the transition in terms of effective theories. The rest of the paper deals
with specific topics where recent advance has been achieved in the understanding of the phase diagram
and their properties in this context. Thus, one the main effects needed to explain several important
physical results are the thermal bath interactions leading to corrections in the spectral properties of
hadrons, specifically thermal resonances, which will be analyzed in Section 3. In particular, the role of
the thermal f0(500) state for chiral symmetry restoration is analyzed in that section where thermal
unitarity will be a key ingredient. Section 4 is dedicated to another important topic in this context:
the nature or pattern of the transition and its connection with the degeneration of different partners
(meson states) under chiral and U(1)A transformations. The use of Ward Identities will be crucial in
that part of the discussion and the connection of those results with the description of screening masses
and the topological susceptibility will be analyzed in detail. Our main conclusions are presented
in Section 5.

2. Effective Theories below the Transition

Before going through the details of different approaches describing the physics below the QCD
transition, it is important to clarify our meaning of effective theories in this work. By that general
concept we will be referring to approaches where only a certain number of hadronic degrees of
freedom is considered under particular theoretical assumptions. A more restrictive case, included
in the above denomination, is that of Effective Field Theories (EFT) whose main ingredients are, on
the one hand, a well-defined power counting rendering the theory perturbative for energies below a
given scale, and, on the other hand, an effective Lagrangian constructed order by order in the most
general way compatible with the underlying symmetries, with low-energy parameters which ensure
renormalizability and can be fixed with experimental or phenomenological information. The most
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prominent example of EFT is Chiral Perturbation Theory (ChPT) which will play an essential role
within the present review. EFT constructed in this way are model-independent albeit limited to the
energy domain around which the perturbative scheme is well defined. On the contrary, although
effective theories are generally based on EFT, the additional assumptions incorporated will introduce
some model dependency. Examples of the latter will be also discussed throughout this work.

The theoretical effort to describe the region of the phase diagram around µB = 0 has been intense.
In that context, it is important to identify the relevant degrees of freedom for the description of
particular observables. In principle, below the transition, hadron states of increasing masses and their
interactions become more important as the temperature is increased, according to their characteristic
Boltzmann weight. In Figure 3 we plot the particle density of the pion and kaon component of
the hadron gas, compared with the rest of hadron states quoted by the Particle Data Group (PDG)
with masses below 2 GeV [22] where we use for simplicity the free particle density with vanishing
chemical potentials.
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Figure 3. Particle density for pions, kaons and the rest of states in the Particle Data Group (PDG) with
masses below 2 GeV.

It is clear that, generically, one should include as many hadrons as possible to describe correctly
the thermodynamics below the transition, at least for thermodynamic quantities such as the pressure
growing with the number of degrees of freedom. This is actually the spirit of the so called Hadron
Resonance Gas (HRG) approximation [23–30] where the free energy density and the pressure are
described as a free gas of all the relevant states and resonances up to a given mass, assuming that
hadron interactions can be encoded through the corresponding resonant channels, i.e.,

zHRG(T) = zM(T) + zB(T),

zM,B(T) = ±T ∑
M,B

di

∫ d3~p
(2π)3 log

[
1∓ e−βEi(p)

]
, (4)

where Ei =
√
|~k|2 + M2

i , M, B stand for the meson and baryon contributions, the upper sign is for
mesons and the lower one for baryons. The sum extends to hadron states with degeneracy di and mass
Mi. The HRG is not a proper EFT, since it lacks a Lagrangian description and relies on assumptions
like the dominance of resonant channels and the low-density regime (see below).

This simple HRG description already accounts for the description of many thermodynamical
observables below the transition, like the quark condensate, with proper parametrizations of the
dependence of hadron masses upon quark masses [26,30] the pressure and trace anomaly, with HRG
hadron masses adapted suitably to the lattice ones to reduce discretization effects [28], the Polyakov
loop [29] and µB 6= 0 Taylor expansion coefficients [3,24].
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There are, however, various examples of physically relevant issues in this context for which a
HRG-like description may not be enough or it is simply not applicable. This is the case of some of
the problems that we will consider here, such as chiral partners or thermal resonances. Actually,
for certain observables dominated by the lightest states, such as the scalar and the topological
susceptibilities, the essential physical behaviour is captured from an appropriate thermal description
of those states rather than by including higher mass ones. As a general rule, the HRG approach gives
rise to monotonically decreasing or increasing functions of temperature, not reproducing some of the
characteristic transition features, such as the inflection point of the quark condensate or the peaks
of the scalar susceptibility and the trace anomaly. This is intrinsic to the HRG approach, since it is
expected to work only below Tc by construction.

One particularly important aspect in that context is the effect of interactions, which may be
crucial for certain observables. As mentioned, the HRG only considers the interactions between
stable hadrons through their resonant channels, e.g., the ρ(770) I = J = 1 channel in ππ scattering.
However, this misses, on the one hand, non-resonant channels and, on the other hand, does not include
the width of the resonances, which is not negligible in some significant cases such as the f0(500)
(formerly known as σ) or the I = 1/2, J = 0 state K∗(700) (or κ) showing up in πK scattering [22].
These two states will actually play a significant role in chiral symmetry restoration, as we will discuss in
Sections 3 and 4. Actually, the effect of the width of the resonances has proven to be important within
thermal statistical models, for which the decay channels of those resonances feed the hadron yields at
chemical freeze-out [31]. Corrections to the HRG with repulsive interactions provided by excluded
hadron volume corrections also allows us to achieve a better description of lattice data [32,33].

A full consistent treatment of the thermodynamics of the hadron gas including interactions
would require the use of effective chiral Lagrangians [34] combined with the techniques of quantum
field theory at finite temperature and density, often denoted as thermal field theory [35]. Thus,
chiral symmetry dictates in principle the dynamics of hadron states under the general formalism of
ChPT, starting from the lightest octet of pseudoscalars (π, K, η) which corresponds to the would-be
Nambu-Goldstone bosons of the chiral symmetry SUL(N f )× SUR(N f ) → SUL+R(N f ) where N f is
the number of light flavors (N f = 2, 3) and SUL+R(2) is the isospin symmetry [36,37], which can be
suitably extended to higher mass states such as vector mesons or nucleons [38–43]. A very useful
extension for our present discussion is the U(3) ChPT framework, where the η0 (singlet) state is
included formally as ninth Goldstone Boson, combining the chiral low-energy expansion with the
large-Nc framework [44–47].

Thus, ChPT is a genuine EFT in the sense explained at the beginning of this section. The ChPT
chiral expansion consists generically in a combined expansion of, on the one hand, effective
Lagrangians up to a given order in masses and derivatives, and on the other hand higher order
loop contributions, which provide a systematic and model-independent framework where the loop
divergences can be consistently absorbed in the Low Energy Constants (LECs) multiplying the different
allowed operators in the chiral Lagrangian at a given order [34,36,37]. An updated review on the
determination and numerical values of those LECs, as well as many other low-energy parameters
involved in this framework, can be found in [48].

The chiral expansion is usually parametrized by powers pn where p is a generic energy scale
denoting particle masses, momenta or temperature. The lowest order Lagrangian isO(p2) and is given
by the familiar Non-linear Sigma Model, which for SU(3) in the absence of external sources reads

L2 =
F2

4
tr
[
∂µU†∂µU + 2B0M(U + U†)

]
(5)

where U = exp(iλaφa/F) with φa the Nambu-Goldstone Boson (NGB) fields,M = diag(mu, md, ms)

is the quark mass matrix, F is the pion decay constant in the chiral limit, i.e., to leading order (LO) in
the chiral expansion, B0 = M2

0π/(2m̂) = − 〈q̄q〉0l /(2F2) where M0π is the LO pion mass and 〈q̄q〉0l is
the LO light quark condensate. F, B0 are the only low-energy parameters at this order, while at the
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next order L4 contains different LECs named customarily as li for SU(2), where the NGB are just the
pion fields, and Li for SU(3).

Thus, the main advantage of ChPT is that it provides a model-independent and systematic
framework to calculate hadron observables. Its main limitation is of course that it is built as a
low-energy scheme, its range of validity being then restricted to energies not far from the corresponding
particle thresholds or temperatures below the excitation of new states. Considering higher orders
in the ChPT chiral expansion compensates partially for this limitation, although in principle at the
expense of introducing more new LECs and hence losing predictability.

Within that framework, it is worth mentioning that the thermodynamics of the pion gas
has been studied up to order O(T8), which implies a three-loop calculation for the free energy
density [49]. The pion gas reproduces, at least qualitatively, the main physical properties that would be
expected for the more general hadron gas. Thus, as the temperature approaches the transition region,
the thermodynamic pressure increases with respect to the free gas and the quark condensate decreases
also sharply. For nonzero quark masses, ChPT does not capture the inflection point of the condensate,
which tends to vanish at a given temperature. In the light chiral limit those effects are enhanced, as
expected, and the transition temperature, defined where the condensate vanishes, decreases with
respect to the massive case. In Figure 4 we show the different orders from the analysis in [49]. The LO
(ideal gas) and the next-to-leading order (NLO) one curves are close because the NLO interactions can
be absorbed in the renormalization of the physical parameters in the free gas expressions [49]. At the
next-to-next-to-leading order (NNLO), additional interactions set in, implying stronger restoration
effects, as seen clearly in the figure. We also compare the the ChPT results with a HRG analysis
where the quark mass dependence of hadrons is taken from [27,30], where the dependence of pseudo
Nambu-Goldstone Bosons, i.e., pion, kaon and eta masses, is extracted directly from the one-loop
ChPT calculation [37] while the masses of the rest of hadrons are taken to scale within a constituent
quark picture within a Nambu-Jona-Lasinio (NJL) approach. We also follow [30] for the assignments
of the hadron strangeness content for open and hidden strange mesons, as well as for singlet and octet
members. It is clear that including higher mass states is crucial in the case of the quark condensate, their
effect being to decrease the transition temperature towards values closer to the lattice results. Actually,
although one may first think that introducing massive states should increase the condensate due to
explicit chiral symmetry breaking, that sort of ferromagnetic-like effect is known to be overshadowed
by the paramagnetic-like disorder introduced by adding degrees of freedom to the system.

Another interesting result of the ChPT analysis is that to O(T8) the trace anomaly does actually
generate a peak around the transition region, which is neatly seen in the chiral limit [50]. That
peak is not seen at the O(T6) order, which reveals again, as commented above, the importance of
considering the relevant order of interactions to describe some of the transition features. These results
are also showed in Figure 4. Interestingly, the curve of the trace anomaly presents an additional, lower
temperature peak in the massive case at O(T8) which disappears in the massless case and turns out
to be directly related to the quark contribution of the conformal anomaly, that two-peak structure
being also directly correlated to the behaviour of the bulk viscosity at finite temperature in the pion
gas [51,52]. The numerical values of the LECs used in Figure 4 are the same as in [51,52]. In turn,
we remark that the analysis of transport coefficients of the hadron gas through different formalisms
within effective theories is another important field of research or which an accurate description of the
interactions is crucial to obtain results consistent with heavy-ion phenomenology [51–59].
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Figure 4. (Left): quark condensate in SU(2) Chiral Perturbation Theory (ChPT) (pion gas) at different
orders from [49] compared to the Hadron Resonance Gas approach in [30]. (Right): trace anomaly for
the pion gas at different orders in ChPT from the results in [49].

An interesting alternative to the effective Lagrangian framework has been the use of the virial
expansion, since the hadronic gas meets the conditions for the dilute gas regime to be applicable.
Thus, an expansion in fugacities ξ = exp [β(µi −Mi)] with µi and Mi generic chemical potentials
and masses, allows us to write the thermodynamic pressure to second order in the virial expansion,
as [49,60–64]

βP = ∑
i

(
B(1)

i ξi + B(2)
i ξ2

i + ∑
j≥i

Bint
ij ξiξ j

)
+O(ξ3), (6)

where the virial coefficients above are given, on the one hand, by (for simplicity we take µi = 0 but the
corresponding extension is straightforward)

B(n)
i =

di
2π2n

∫ ∞

0
dp p2e−nβ(

√
p2+M2

i −Mi), (7)

which are nothing but the coefficients of the expansion in fugacities of the free pressure given by the
HRG expression (4).

On the other hand, the coefficients Bij account for the binary interactions occurring in the gas.
The interesting advantage of this method is that those interaction coefficients can be cast into the T = 0
scattering phase shifts of the particles considered, which could even be extracted from experiment
avoiding model dependency, without having to go through the thermal field theory calculation. For
meson interactions,

Bint
ij =

ξ−1
i ξ−1

j

2π3

∫ ∞

Mi+Mj

dE E2K1 (E/T)∆ij(E) (8)

where K1 is the first modified Bessel function and

∆ij(E) = ∑
I,J
(2I + 1)(2J + 1) δ

ij
I J(E), (9)

where the δ
ij
I J are the ij → ij elastic scattering phase shifts (chosen so that δ = 0 at threshold Eth =

Mi + Mj) of a state ij with quantum number I, J, (isospin, and angular momentum). The extension to
other hadron species such as baryons follows the same guidelines.

The virial expansion allows us then to obtain a fairly decent description of the thermodynamics
of the hadron gas including interactions and then correcting the HRG description. In fact, it was
already shown in [49] that the ChPT calculation up to O(T8) is equivalent to considering the virial
expansion with the T = 0 scattering amplitudes calculated up to O(p4) (i.e., up to one loop) for the
dominant channels in ChPT, namely I J = 00, 20, 11. One interesting feature of the pion gas is that
there is an almost exact cancellation in the sum in (9) between the scalar 00 and 02 contributions
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(attractive and repulsive respectively) which prevails even for unitarized interactions (see below)
in the relevant temperature range and holds both for the quark condensate and for the scalar
susceptibility [49,61,65,66]. A similar cancellation holds between the scalar attractive and repulsive
scalar channels in πK scattering, i.e., the channels I = 1/2, J = 0 and I = 3/2, J = 0 [61,66]. The 00 and
1/2, 0 channels correspond to the resonances f0(500) (σ) and K∗(700) (κ) respectively and therefore, this
cancellation arguments supports that those resonances are not included in the usual HRG description.
In fact, due to this argument, the pion gas component within the virial framework turns out to be
almost completely dominated by the ρ(770). However, as we will see in detail below, the inclusion of
thermal effects in the scattering amplitudes and then in the resonance parameters, changes this picture
close to the transition, at least for some particular observables like the scalar susceptibility, dominated
by the 00 channel. Actually, neither the HRG nor the ChPT or virial approaches reproduce a peak
for the scalar susceptibility, all those approaches giving a monotonically increasing function for that
quantity [65,67].

As it has become clear from our previous discussion, a proper treatment of interactions is crucial
for a correct description of the hadron gas thermodynamics. Based on chiral symmetry, resonances
can be consistently included at the Lagrangian level, as well as their interactions with other hadrons.
This is for instance the spirit of the Vector Meson Dominance (VMD) and resonance saturation
approaches [38,39] which provide an accurate description mostly for vector mesons. In that framework
one can estimate for instance the contribution to the LECs coming from integrating out those heavy
degrees of freedom, which allows us for useful determinations of those constants in terms of the
masses and widths of resonances. However, that picture is not adequate for scalar mesons. A clear
example is the lowest lying scalar resonance, the f0(500) (known simply as σ for many years) which
over recent years has been a subject of many analysis and certain dose of controversy about its nature
and main properties [68,69].

Attempts of modeling this state go back to the Linear Sigma Model (LSM) or vector O(4) model
in terms of (σ, πa) states [70] which indeed exhibits chiral restoration features, since the σ state tends
to degenerate with the pions in the limit of exact chiral restoration [71,72] and 〈σ〉 scales like the quark
condensate [73,74]. The scalar susceptibility calculated within the LSM shows also chiral restoration
features, since it increases with temperature as T approaches the transition [67]. Although the peak of
the transition is not reproduced either by the LSM, this model can be used as a suitable testbed, as we
will discuss in detail in Section 3.

The main drawback of the Lagrangian-based analysis of broad resonances such as the f0(500) or
the K∗(700) is that their strongly coupled nature reflects somehow in the parameters and couplings of
the theory, preventing from a consistent perturbative quantum field theory analysis. In fact, the f0(500)
is nowadays understood as a broad resonance showing up in the ππ scattering amplitude second
Riemann sheet (2RS), the main determinations of its position in the complex plane being quoted by
the PDG [22]. Thus, although within the LSM one can actually generate a pole in the complex plane
from the σ self-energy, it is not possible to accommodate the coupling constant λ of the theory to
get properly the real and imaginary parts of that state pole quoted in the PDG, the closest to those
values being obtained for λ ∼ 10–20 which as we have just commented, reflects the strong-interacting
regime [67,69,75].

A modern and phenomenologically reliable way to generate dynamically resonances and at the
same time enlarging the applicability range of ChPT is the so called Unitarized Chiral Perturbation
Theory (UChPT) framework [76–84]. This scheme relies on ChPT as the low-energy EFT, demanding
exact unitarity as an additional requirement, which introduces some model dependency, as we are
about to see. Thus, the general principle within this framework is to construct scattering amplitudes
which satisfy unitarity exactly while keeping its main analytical properties and being consistent at low
energies with the ChPT expansion. Such requirements allow us in most cases to generate resonances
in the 2RS of the unitarized amplitudes, whose spectral properties can be rendered in agreement with
the PDG values with suitable fits of the LECs involved. Since the resonant contributions are well
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captured by this method, it naturally allows us to enlarge considerably the range of energies to which
experimental data on phase shifts and inelasticities can be phenomenologically fitted.

A remarkable example, which we will be using extensively here, is the Inverse Amplitude Method
(IAM). Consider the simple case of elastic scattering of identical particles, say ππ pion scattering.
The condition of unitarity for the S matrix, i.e., S†S = 1, translates into the following condition for
partial waves tI J of well-defined isospin I and angular momentum J:

ImtI J(s + i0+) = σπ(s)|tI J(s)|2 (s ≥ 4M2
π) (10)

where σi(s) =
√

1− 4M2
i /s is the phase space for two identical particles of mass Mi. Note that the

ChPT expansion t = t2 + t4 + . . . only satisfies the unitarity condition perturbatively, i.e.,

Imt2(s) = 0, Imt4(s + i0+) = σπ(s) [t2(s)]
2 (s ≥ 4M2

π) (11)

and so on, where the diagrams contributing to t4 = O(p4) to one loop are those depicted in Figure 5.
The imaginary part contribution in (11) corresponds to the unitarity cut s ≥ 4M2

π arising from the
s-channel diagram (a) in Figure 5, whereas t and u channel diagrams (b) and (c) give rise to a left
cut s ≤ 0.

Figure 5. One-loop Feynman diagrams contributing to two-particle scattering to order O(p4) in Chiral
Perturbation Theory. The different diagrams correspond to (a): s-channel, (b): t-channel, (c): u-channel,
(d): tadpoles from six-point vertices, (e): tadpoles from external legs renormalization. All vertices come
from the L2 lagrangian.

The unitarity condition (10) can be written more conveniently in terms of the inverse amplitude as
Imt−1 = −σπ (we drop the I J indices for simplicity). Therefore, by construction, any amplitude of the

form tU =
[
Re
(

t−1
U

)
− iσπ

]−1
is automatically unitary. The different unitarization methods amount

essentially to different approximations for Re
(
t−1), which introduces certain model dependency.

When performing those approximations it is important to ensure that the full unitarized amplitude
remains analytic so that, in particular, it is meaningful to consider the amplitude in the different
Riemann sheets in terms of the unitarity cuts at different thresholds, in a general multichannel
case. The latter is particularly important for the determination of resonances and their parameters.
For instance, the 2RS amplitude tI I(s) for the single channel case is constructed as customary so that it
connects continuously with the first sheet t(s) across the unitarity cut, i.e., ImtI I(s− iε) = Imt(s + iε)
for s ≥ 4M2

π . The IAM is constructed by requiring that the unitarized amplitude matches the ChPT
expansion up to a given order. The most common choice is that it does up to fourth order, resulting in
the following unitarized amplitude:

tIAM
U (s) =

t2(s)2

t2(s)− t4(s)
(12)
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which incidentally corresponds to the [1, 1] Padé approximant. The IAM amplitude can also be
justified from the use of dispersion relations with proper subtractions, incorporating additional analytic
features of the amplitude such as Adler zeros [83]. This method can also be extended to multiple
scattering channels including the corresponding inelasticities, by considering a matrix formulation of
Equations (10) and (12) in the internal space of scattering states [81]. A complementary approach in
this context is the large NGB number expansion, which provides a resummation for NGB scattering
giving rise to a exact unitary amplitude in the I J = 00 channel in the chiral limit, consistent with the
phase shift and f0(500) pole experimental data [85–87]. This approach has also be used recently to
analyze the pion gas thermodynamics [88].

The key ingredients described in this section, namely, effective theories for the hadron gas and
unitarization, will be exploited in the rest of the paper in order to gain more insight into specific
problems pertaining chiral symmetry restoration such as the importance of thermal properties of
resonances and the interplay between chiral and UA(1) restoration.

3. The Role of Thermal Resonances

3.1. Spectral Properties of Hadrons in the Thermal Bath

One important consequence of considering the interactions among the thermal bath components
is that the spectral properties of both stable states and resonances are modified. Generally speaking,
self-energies receive thermal field theory corrections through loop contributions [35], which give rise
to important observable consequences, as we will discuss here.

Thus, within the pion gas, modifications to the pion dispersion relation can be calculated in the
ChPT framework. To one loop, the only modification is a tadpole-like thermal shift in the pion mass,
which gives a slowly growing function with T [89]. A two-loop analysis reveals a more complicated
dispersion relation [90] which includes an absorptive imaginary part defining a thermal collision
rate and hence a mean free path for pions in the thermal bath [91]. Actually, relating the pion pole
parameters and the forward pion scattering amplitude [90] allows us to include unitarized amplitudes
in the analysis, which introduce significant corrections near the transition, mostly for the damping rate.
Those spectral modifications have indeed physical consequences. For instance, the mean free path
can be used to estimate thermal freeze-out conditions and is crucial to describe transport coefficients
within the diagrammatic or Kubo formalism [52]. In addition, the absorptive part is actually related to
the imaginary part of the pion decay constant Fπ defined in the thermal environment, where Lorentz
covariance is lost so that the space and time components of Fπ generally differ [92].

A very important physical example where thermal corrections to self-energies are crucial comes
from the description of the dilepton and photon spectra in heavy-ion collisions. Resonances decaying
within the thermal environment in the hadron phase undergo a substantial modification of their
spectral properties, which contribute to explain in particular the low-energy excess observed in the
dilepton spectrum mostly around the ρ(700) resonance peak, as seen in recent data from various
experimental collaborations at different collision energies [93–96]. In fact, both the dilepton and
photon yields are entirely encoded in the vector electromagnetic spectral function, whose thermal
modifications during the hadron phase give rise to observable consequences. Therefore, the calculation
of in-medium spectral functions is crucial for a realistic analysis of thermal dilepton rates at finite
temperature and density [97,98]. A significant in-medium broadening of the ρ meson is achieved from
all the theoretical analysis, which is a key ingredient to describe correctly the data on the dilepton
spectrum, which are also strongly correlated to the thermalization and time-evolution of the expanding
plasma [99].

The description of thermal photons, i.e., the part of the direct photon spectrum coming from
hadron decays inside the expanding plasmas, can also be rather accurately described through the use
of effective chiral theories for the determination of the relevant hadronic in-medium decays, combined
with suitable models for the hydrodynamic evolution [100,101]. The agreement with experimental
data is quite good both at RHIC and LHC energies.
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One interesting consequence of the analysis of the spectral properties of vector and axial-vector
states involved in dilepton and photon spectra is the connection with chiral symmetry restoration,
directly related to our present discussion. In particular, the thermal spectral functions of the ρ(770)
and the a1(1260) mesons shows that those states become degenerate at the chiral transition [97,98]
which is expected since the bilinear quark operators with their same quantum numbers are chiral
partners (see our discussion in Section 4).

The above discussion about thermal modifications confirms that for vector and axial-vector
resonances, it is fine to consider an effective Lagrangian treatment where those states are explicitly
included and their widths can be treated perturbatively within a Breit-Wigner (BW) approach, being
narrow resonances. However, as we have explained in Section 2, for the case of light scalar resonances,
such treatment is definitely not adequate. That is one of the main reasons motivating the recent
development of a program to analyze those thermal resonances and their properties as dynamically
generated from UChPT scattering at finite temperature and density [67,87,102–106].

Let us explain the main ideas and results of that approach. At finite temperature, one can consider
the same one-loop diagrams as for T = 0 scattering and include the temperature corrections carrying
out the standard Matsubara sums replacing the time-momentum integrals in the imaginary-time
formalism of thermal field theory [35]. The result is an analytic function which defines the thermal
amplitude by analytic continuation in the external line energies and application of the standard LSZ
reduction formula for the external asymptotic states [102]. Such thermal amplitude can be projected
as usual into partial waves tI J(s; T) in the reference frame ~p1 = −~p2 where the incoming particles
1,2 are at rest with the thermal bath. The corresponding ChPT series tI J

2 (s) + tI J
4 (s; T) + . . . tI J

2 is just
a tree-level amplitude and hence it gets no loop T-dependent corrections) satisfies a perturbative
unitarity relation, which in the case of one-channel elastic scattering is similar to (11) extended to the
finite-T case as

Imt2(s) = 0, Imt4(s + i0+) = σπ(s; T) [t2(s)]
2 (s ≥ 4M2

π) (13)

where
σπ(s; T) = σπ(s)

[
1 + 2nB(

√
s/2; T)

]
(14)

is the so-called thermal phase space and nB(x; T) = [exp(x/T)− 1]−1 is the Bose-Einstein distribution
function. The above contribution stems from loop integrals of the form

J
(

Mi; k0,~k, T
)
= T

∞

∑
n=−∞

∫ d3~p

(2π)3
1

p2 −M2
i

1

(p− k)2 −M2
i

, (15)

coming from the loop integrals (a,b,c) in Figure 5. It satisfies, once analytically continued to continuous
k0, ImJ(Mi, k0,~k =~0, T) = sgn(k0)θ(k0− 2Mi)σi(k2

0; T)/(16π) and so on for similar relations involving
loop integrals with different four-momenta combinations in the numerator of the integrand [102].
The equivalent loop integrals for different masses of the incoming particles receive additional imaginary
parts which are purely thermal, i.e., they vanish at T = 0, coming from the so called Landau
cuts [107,108]. The effect of those cuts has to be taken into account in addition to the standard
unitarity cuts, like that in (13), and the left cut s ≤ 0.

The thermal enhancement of the phase space in (14) can be interpreted as (1 + nB)
2 − n2

B which
corresponds to the difference between processes of “emission” (enhanced probability of the final
two-pion state by collisions of thermal pions) and “absorption” (of the initial two-pion state through
scattering with thermal pions) inside the thermal bath, pretty much in the same way as a particle
decaying in-medium [107].

The requirement of exact thermal unitarity, i.e.,

ImtI J(s + i0+; T) = σπ(s; T)|tI J(s; T)|2 (s ≥ 4M2
π) (16)



Symmetry 2020, 12, 945 13 of 34

plus the matching condition with the ChPT series yields then the IAM unitarized amplitude at finite
temperature, extending the T = 0 result in (12) as

tIAM
U (s; T) =

t2(s)2

t2(s)− t4(s; T)
(17)

The poles of this unitarized amplitude in the second Riemann sheet correspond to the thermal
resonances [103], whose parameters (corresponding to states at rest) are the real and imaginary part
of the pole position parametrized as customary as sp(T) =

[
Mp(T)− iΓp(T)/2

]2 so that Mp and Γp

correspond to the mass and width in the narrow resonance (BW) case. In Figures 6 and 7 we show
the results for the thermal poles in the I = J = 0 and I = J = 1 channels, obtained first in [103].
The corresponding resonances are the f0(500) in the scalar channel and the ρ(770) in the vector channel
and the LECs entering the IAM formula have been chosen so as to yield T = 0 values for those
resonances compatible with the PDG.

T=0

T=200 MeV

I=J=0

300 350 400 450

-300

-250

-200

-150

-100

-50

0

2mΠ

Mp HMeVL

-
G

p
�2
HM

e
V
L

T=0

T=200 MeV
I=J=1

300 400 500 600 700 800

-150

-100

-50

0

2mΠ

Mp HMeVL

-
G

p
�2
HM

e
V
L

Figure 6. Thermal evolution of the thermal poles sp = (Mp − iΓp/2)2 for the I J = 00 (left) and I J = 11
(right) channels in the complex s plane, from [52,103].
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Figure 7. Thermal evolution of the real and imaginary parts of the thermal pole sp = (Mp − iΓp/2)2

for the I J = 00 and I J = 11 channels, from [103,106]. (Left): real part Mp and the scalar mass
corresponding to the real part of the self-energy as explained in the text. (Right): imaginary part Γp,
compared to the thermal phase space in the vector channel.

In the vector channel Γp << Mp for the relevant temperature range and therefore the ρ can be
considered a narrow BW resonance with Mp and Γp its mass and width respectively. Actually, M2

p(T)
decreases very slightly with T. However, the thermal effect in Γp(T)/Γp(0) is much more sizable,
increasing with T as it can be clearly seen in the figures. Such broadening is dominated at low and
moderate temperatures by the increase of thermal phase space from the nB term in (14) evaluated close
to s = M2

ρ while for higher temperatures a significant increase with T of the effective ρππ coupling
explains the additional increase seen in Figure 7 [103]. The thermal broadening of the ρ obtained
through this approach is consistent with our discussion above regarding the dilepton spectrum.
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That connection is more clearly established through the analysis of the temperature dependence of
the electromagnetic form factor, whose squared modulus is directly related to the imaginary part
of the electromagnetic current-current correlator if only pion degrees of freedom are considered.
As mentioned before, such correlator encodes the physical information about the photon and the
dilepton thermal yield. The calculation of the form factor at finite temperature within ChPT and
UChPT has been performed in [109]. Once unitarized, the squared modulus of the thermal form factor
exhibits a significant broadening dictated again by the ρ thermal pole, which as stated, is consistent
with the expectations from the dilepton spectrum. That analysis is consistent with previous ones [110]
based on the VMD approach.

The scalar channel has a completely different behaviour. The f0(500) pole remains a broad state
also at finite temperature, since Mp and Γp remain comparable, so its BW interpretation does not apply,
as it also happens at T = 0. One immediate consequence of the finite-T analysis in this channel is
actually that the thermal contributions of the different diagrams involved becomes much stronger than
the ρ case because the energy scales involved, to be compared with the temperature, apart from the pion
mass, are Mp, Γp which are lower than the vector case. This is clearly seen in Figure 7. The behaviour
of Mp(T) is clearly decreasing, which might be thought of a signal of chiral restoration if one naively
identifies Mp with the σ mass, which as described above, would tend to become degenerate with the
pion and decrease as the quark condensate, for instance within a LSM approach. However, as we are
going to discuss in detail below, life is not that simple and the interpretation of the f0(500) thermal pole
is much more subtle, as we will see in Section 3.2. As for Γp(T), one can see in Figures 6 and 7 that it
develops non-monotonic behaviour, with a maximum around T ∼ 120 MeV. A qualitative explanation
for such behaviour is that there are two effects competing here. On the one hand, the increase of
thermal phase space provided by the nB contribution in (14) tends to increase Γp(T) (although as said
before, this is just qualitative because the BW approximation is not valid here). On the other hand,
as the would-be “mass” Mp(T) approaches the threshold 2mπ one expect a reduction of such phase
space, which is the dominant contribution for higher temperatures. The delicate balance between those
two effects turns out to be crucial for the discussion of the role of the thermal f0(500) state in chiral
symmetry restoration as will be discussed in detail in Section 3.2.

The calculation of the thermal scattering poles in the I = J = 0 channel within the large-NGB
approach in the chiral limit confirms the previous findings [87]. The resumation of diagrams provided
by that approach gives rise to an exactly unitary amplitude satisfying the unitarity condition (16),
namely, with a suitable choice of the renormalization scale µ, the partial wave in this channel can be
written as

t00(s; T) =
s f [Iβ]

32πF2
1

1− s f [Iβ ]

32π2F2

[
ln
(

µ2

−s

)
+ 16π2δJ(s; T)

] +O(1/N) (18)

where N is the number of NGB, Iβ = T2/12 is the NGB tadpole at finite temperature in the chiral limit,
δJ(s; T) = J(0,

√
s,~0, T)− J(0,

√
s,~0, 0) with the J integral defined in (15) and

f (Iβ) =
1

1− Iβ/F2 . (19)

The pole position within this approach follows a similar trajectory as the IAM one discussed
above, in the chiral limit, for different choices of the LECs involved [87].

In this context, it is worth mentioning also a recent analysis of other scattering processes at
finite temperature and the corresponding evolution of thermal poles, performed recently in [111].
In particular, the f0(500), K∗(700), f0(980) and a0(980) states are analyzed, which require the finite-T
amplitudes for binary processes involving π, K, η states. Those amplitudes are not calculated fully
in ChPT at finite-T, only a subset of contributions is considered, essentially the loops giving rise to
thermal unitarity, i.e., diagrams of type (a) in Figure 5 as well as tadpole contributions of the type
(d) and (e) in that figure. Once the amplitudes are unitarized, the results show a behaviour of the
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K∗(700) pole quite similar to the f0(500), while the f0(980) and a0(980) are little affected by the thermal
corrections, as one could anticipate from their higher mass and small width.

3.2. The Thermal f0(500) and Chiral Symmetry Restoration

In this section we will review some recent work on the connection of the thermal f0(500) state
with chiral symmetry restoration. We will show that the properties of the thermal pole described
in the previous section have direct phenomenological implications, in particular, they allow for a
description of the scalar susceptibility χS(T) in accordance with lattice measurements, improving over
other effective theory descriptions around the transition. This connection with the scalar susceptibility
is somehow naturally expected since χS(T) in (3) appears as the correlator of the operator σl ∼ ψ̄lψl ,
which has the same quantum numbers as the f0(500), and indeed of the vacuum, and hence some
relation would be expected between χS and the f0(500) self-energy. Actually, in the discussion about
degeneration of chiral partners that we will present in Section 4, χS will play also a crucial role as it
becomes degenerated with χπ , the susceptibility corresponding to the pion-like operator πa ∼ ψ̄lτ

aψ.
The above mentioned connection can be better understood using as a testbed model the LSM.

Although, as mentioned in Section 2, this model does not provide a fully satisfactory low-energy
phenomenology, one can speak more properly about the self-energy of the σ pole and its temperature
dependence. Consider then the LSM Lagrangian,

LLSM =
1
2

∂µΦT∂µΦ− λ

4

[
ΦTΦ− v2

0

]2
+ hσ, (20)

with ΦT = (σ, ~π). The σ direction is the symmetry-broken one from O(4) → O(3), where O(4) ≈
SUL(2) × SUL(2) and O(3) ≈ SUL+R(2). The h term breaks explicitly the chiral symmetry, with
h proportional to the pion mass squared and the potential minima at Φ2 = v2 6= 0 implement
spontaneous chiral symmetry breaking. Following the standard procedure of shifting the field as
σ̃ = σ− v, one has 〈σ̃〉 (T) = v(T)− v 6= 0, which in particular implies that one-particle reducible (1PR)
diagrams enter in the calculation of correlators [67,74]. From the shifted Lagrangian, one can on the
one hand calculate the scalar susceptibility by taking derivatives with respect to the light quark mass m̂,
related to the tree-level pion mass as M2

0π = 2B0m̂ where 〈q̄q〉l (T = 0) = −2B0F2(1 +O(M2
π/M2

σ)).
Thus one gets,

χS(T) = 4B2
0

− 1
2B0M2

0σ

2M2
0σ − 3M2

0π

M2
0σ −M2

0π

〈q̄q〉l (T) + v2

(
M2

0σ

M2
0σ −M2

0π

)2

∆σ(k = 0; T)

 , (21)

where

∆σ(k; T) =
1

k2 + M2
0σ + Σ(k0,~k; T)

(22)

is the Euclidean propagator of the σ̃ field and Σ(k0,~k; T) is the self-energy, which depends separately
on the space and time components of the four-momentum k at finite T [35].

The first term in (21) is actually negligible near the transition with respect to the second one.
First, it vanishes proportionally to 〈q̄q〉l (T). Second, near the transition χS ∼ χπ , which can also be
related to the condensate using a Ward Identity that will be discussed in Section 4, namely (38). Thus,
replacing in the first term 〈q̄q〉l (T) → −M2

0πχS(T)/(2B0) yields a numerical suppression of order
O
(

M2
0π/M2

0σ

)
for that term with respect to the second one. Either way, we arrive to the conclusion

that near the transition,
χS(T)
χS(0)

'
M2

0σ + Σ (k = 0; T = 0)
M2

0σ + Σ (k = 0; T)
(23)
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This relation shows, within the LSM, the connection between the scalar susceptibility and the
σ self-energy around the transition, which one can interpret as a as saturation approach, where the
self-energy of the lightest thermal state, the σ in the LSM, saturates the k = 0 correlator defining the
scalar susceptibility, providing a first hint towards the corresponding saturated definition in the case
of the f0(500) described within UChPT. Note that the self-energy is real at k = 0.

On the other hand, in order to compare the LSM saturated scalar susceptibility (23) with a purely
perturbative calculation within that model, we need an explicit calculation of the self-energy, which
can be carried out within the λ expansion. Although, as mentioned before, the values of λ are large to
comply with phenomenology, the one-loop corrections to the self-energy lie around 15% at T = 0 [69],
which is still reasonably under control. Besides, this analysis serves to reach interesting theoretical
conclusions parametrically in λ. A detailed perturbative calculation of the σ self-energy at finite
temperature up to one-loop can be found in [67,74]. The renormalization of the pion and sigma
masses allows us to get a finite and scale-independent result for the self-energy within dimensional
regularization, namely,

∆−1
σ = M2

σ + Σ(k0,~k; T),

Σ(s, T = 0) =
3λ

16π2 (M2
σ −M2

π)

[
σπ(s) log

(
σπ(s) + 1
σπ(s)− 1

)
+ 3 σσ(s) log

(
σσ(s) + 1
σσ(s)− 1

)
+ log

(
M2

π

M2
σ

)
− 13

3

]
+O(λ2),

Σ(k0,~k; T) = Σ(s, T = 0) + 3λ

{
3M2

π − 2M2
σ

M2
σ

[g1(Mπ , T) + g1(Mσ, T)]

−
(

M2
σ −M2

π

) [
δJ(Mπ ; k0,~k, T) + 3δJ(Mσ; k0,~k, T)

]}
+O(λ2), (24)

where

g1(M, T) =
T2

2π2

∫ ∞

M/T
dx
[
x2 − (M/T)2]1/2

ex − 1
(25)

is the finite-T part of the pion tadpole and δJ stands forJ(T)− J(T = 0) with J the thermal integral
defined in (15).

From the self-energy, we can readily calculate the pole of the propagator and its temperature
dependence, namely sp = M2

σ + Σ(k2 = M2
σ) = (Mp − iΓp/2)2. For our purposes here we only need

the pole at~k =~0. Determining the pole position allows us to calibrate whether the model parameters
can be chosen so that such pole complies with the PDG values. As commented, this is a clear drawback
of the model. Fixing the pion decay constant and mass to their physical values, the coupling λ needs
to be kept in a range λ ∼ 10− 20 in order that Mp and Γp lie not far from the PDG. Outside that range
at least one of them deviates more than 200 MeV from their PDG value.

In Figure 8 we plot the result of the scalar susceptibility, properly normalized for an easier
comparison with lattice data, within the LSM in the saturated approach given by (23) and the strictly
perturbative one, which corresponds to retaining only the O(λ) in that expression. We have also
represented the lattice points obtained in [9]. The main conclusion, holding also in the UChPT approach
below, is that the saturated result grows must faster than the perturbative one near the transition,
actually it eventually diverges even in the massive case. The curve does not reproduce then the
transition peak, although the range of λ mentioned before lies reasonably close to lattice data. This
LSM description already provides support for the idea of a saturated thermal pole analysis, which
might account for the lattice values including only the lightest state, i.e., the f0(500). As we are
about to see, the UChPT framework based on the same idea shares this feature and actually improves
considerably the description around the transition. It is important to mention also that evaluating
the self energy at the pole position sp instead of k = 0 gives rise to the same qualitative behaviour
for the saturated susceptibility. This comment is relevant for the UChPT case, as we will see below.
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Note that M2
σ + Re Σ corresponds to the T-dependent scalar mass, which drops below the transition

approaching the pion mass [73].
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Figure 8. Comparison between the saturated and perturbative scalar susceptibility in the Linear Sigma
Model (LSM), from [67]. Lattice points and errors are taken from [9].

The previous ideas can be applied within the UChPT framework [67,106] as follows. As discussed
above, we expect the scalar susceptibility χS(T) to be proportional to the inverse of Σ(k = 0),
the self-energy of the f0(500) state at vanishing momentum. Although the thermal f0(500) state
generated within UChPT shows up as a pole in the 2RS of the corresponding partial wave rather than
from a thermal correlator, one can still think of the pole parameters in terms of an effective resonance
exchange. Thus, around the pole,

tI I =
1

16π

g2
σππ

s− sp
+ . . . , (26)

where the superscript “II" denotes the amplitude in the 2RS, the dots denote subdominant terms
around s ∼ sp and the effective σππ vertex is gσππ defined as the residue at the pole. We can then
interpret (26) as the exchange of a scalar f0 state with self-energy satisfying Σ f0(sp) = sp (including
in Σ the free mass). Since ImΣ f0(k = 0) = 0 due to the absence of decay channels at vanishing
momentum, there is some uncertainty in this approach on the sensitivity of Re Σ f0 from s = sp to s = 0.
Such uncertainty, as we will see below, can be reasonably kept under control, lying within the typical
uncertainty range of this method, which includes also the sensitivity to the unitarization method or the
uncertainties in the LECs, all of them analyzed in detail in [67]. With those ideas in mind, we define
the saturated (unitarized) scalar susceptibility as

χU
S (T) = A

M4
π

4m2
l

M2
S(0)

M2
S(T)

, (27)

normalized for a better comparison with lattice results, where now the scalar thermal pole mass is
defined as

M2
S(T) = Re sp(T) = M2

p(T)−
1
4

Γ2
p(T), (28)

Such thermal mass drops even faster than Mp(T), as seen in Figure 7, but more importantly, it
develops a minimum around the transition, which stems from the relative behaviour of Mp(T) and
Γp(T) explained in Section 3. The normalization constant A can be fixed to the T = 0 value of the
scalar susceptibility calculated within ChPT, giving AChPT ' 0.15 [106], which already provides an
excellent description around the transition region, as showed in Figure 9.
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Figure 9. Scalar susceptibility within the Unitarized Chiral Perturbation Theory (UChPT) saturated
approach [67]. The Low Energy Constant (LEC) band uncertainty corresponds to the lr

1 and lr
2 values

in [112]. Lattice points and errors are from [9].

An even more accurate picture can be obtained by fitting the A parameter in (27). The result of
such fits is showed in Figure 10. Once more, we see that the saturated description accounts rather
satisfactorily for lattice data, including the position of the transition peak, just with the thermal f0(500)
state. Note that the value of A obtained in the fits is compatible with the ChPT one.
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Figure 10. Scalar susceptibility within the UChPT saturated approach fitting the A parameter to
lattice data [67] with the central values of the LEC given in [112]. Fit 1 corresponds to fitting data
up to T ≤ Tc = 155 MeV while in fit 2 we include two more lattice points, up to T = 163 MeV.
The uncertainties in A and the bands correspond to the 95% confidence level of the fit. The lattice data
and errors are from [9]. The χ2/dof values are 6.2 and 4.9 for fits 1 and 2 respectively.

It is instructive to compare the thermal f0(500) description with one based on the HRG, i.e.,
including many more resonant states, as explained in Section 2, but with their T = 0 masses, not
including the T = 0 f0(500) for the reasons explained there. For that purpose, we consider the
HRG free energy given in (4) and the quark mass dependence considered in [27,30] and explained in
Section 2. We include also a normalization fit parameter z→ Bz in that case. The results are showed
in Figure 11.

Although the HRG fit improves over the thermal f0(500) one for fit 1, i.e., including lattice points
only up to the transition, the situation changes drastically when adding two more lattice points around
Tc (fit 2) where the saturated f0(500) becomes clearly more competitive. Besides, as showed in [67],
fitting the quark condensate lattice data with the HRG gives B = 1.06 ± 0.12 with χ2/dof = 3.8,
that value of B being incompatible with those in Figure 11. Thus, the HRG description of the quark
condensate and the scalar susceptibility are difficult to reconcile with each other.
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Figure 11. HRG fits for the scalar susceptibilty [67]. Fit 1 corresponds to fitting data up to T ≤ Tc = 155
MeV while in fit 2 we include two more lattice points, up to T = 163 MeV. The uncertainties in B and
the bands correspond to the 95% confidence level of the fit. The lattice data and errors are from [9].
The χ2/dof values are 1.3 and 10.3 for fits 1 and 2 respectively.

The above analysis, both in the LSM and UChPT approaches, emphasizes the importance of
the thermal f0(500) state as far as chiral symmetry restoration is concerned. In the case of the scalar
susceptibility, the saturated approach allows for a description of lattice data competitive with respect
to the HRG, accounting therefore for the most relevant part of the hadronic spectrum with the lightest
thermal state. We would like to remark here that χS is quite appropriate for that description, because
of its expected M−2

S dependence, so that clearly a similar description for other thermodynamical
observables such as the quark condensate would not be adequate. Another important comment is that
the inclusion here of the thermal corrections to the ππ scattering amplitude is ultimately responsible
for the importance of the f0(500) state, which is perfectly compatible with our discussion in Section 2
regarding the virial expansion and the cancellation of the I = J = 0 contribution at T = 0 which
justifies not to include the T = 0 f0(500) state within the HRG framework.

4. The Nature of the Transition: Partners and Patterns

We address in this section an interesting open problem within the context of chiral symmetry
restoration, which involves its very nature, namely to determine what is the universality class
(or pattern) of the transition. This is not merely a theoretical question, since, as we will comment below,
it has phenomenological consequences which can be observed in lattice analysis.

The transition pattern depends strongly on whether the U(1)A anomalous symmetry is sufficiently
restored at Tc, which may even affect the order of the transition itself [8,113–115]. Thus, in the regime
where U(1)A and chiral restoration are effective, a SUL(N f )× SUR(N f )×U(1)A symmetry breaking
pattern would be expected, which corresponds to O(4)×U(1)A for two light flavors. Thus, for N f = 2
a second-order transition in the O(4) universality class would be preferred in a scenario with U(1)A
breaking at Tc, while a second-order one in the U(2)×U(2) universality class would correspond to a
U(1)A restored situation. The latter may even degenerate into a first order transition for strong enough
U(1)A restoration.

The U(1)A symmetry restoration is theoretically possible at finite temperature, at least
asymptotically for high enough T. Early proposals in this directions suggested a mechanism for
such asymptotic restoration driven by the vanishing of the instanton density [116]. Some additional
consequences of a sizable U(1)A restoration at the critical point include the position and properties of
the µB 6= 0 critical point [117] and effects related to the expected reduction of the η′ mass, which would
then become a ninth Goldstone Boson in that regime with implications in particular on the dilepton
and diphoton spectra [118]. Such reduction of the η′ mass in the hot medium has been actually been
observed experimentally [119] and in the lattice [120].
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A useful way to analyze the interplay between chiral and U(1)A restoration is through the study
of the degeneration of the corresponding partners under those symmetries. We have seen already a
significant example in Section 3 regarding the ρ− a1 degeneracy.

A sector which has been analyzed in detail and will be of great importance for our present analysis
is the pseudoscalar/scalar nonet one, namely,

Pa → I = 0 : ηl = iψ̄lγ5ψl , ηs = is̄γ5s, I = 1 : πa = iψ̄lγ5τaψl (a = 1, 2, 3),

I = 1/2 : Ka = iψ̄γ5λaψ (a = 4, 5, 6, 7), (29)

Sa → I = 0 : σl = ψ̄lψl , σs = s̄s, I = 1 : δa = ψ̄lτ
aψl (a = 1, 2, 3),

I = 1/2 : κa = iψ̄λaψ (a = 4, 5, 6, 7). (30)

with ψT
l = (u, d), ψT = (u, d, s). The above states correspond to the quantum numbers of the pion

(πa), a0(980)(δa), light (ηl) and strange (ηs) component of the η/η′(958), light (σl)and strange (σs)
components of the f0(500)/ f0(980), kaon (Ka) and K(800) or κ (κa). For the isospin I = 0, 1 sectors,
chiral and U(1)A transformations connect the bilinears as

πa SU(2)A←−−−→ σ, δa SU(2)A←−−−→ ηl , (31)

πa U(1)A←−−→ δa, σ
U(1)A←−−→ ηl . (32)

The U(1)A symmetry restoration at finite temperature including implications for partner
degeneration has been actually studied in different theoretical works. In [121,122] it was already
proposed, through analysis of the spectral properties of the quark propagator and related ideas,
that U(1)A partners can degenerate in an ideal chiral restoring scenario. In the massive case, gauge
configurations responsible for a residual U(1)A breaking are analyzed in [123]. Further analyses
have been carried out within the LSM famework [124], the renormalization group [125] and the NJL
model [126]. At high enough temperatures, the degeneration of additional partners connected not only
by chiral and U(1)A transformations has been proposed as an indication of restoration of the so-called
chiralspin symmetry of QCD [127].

A complementary recent line of research, which we will discuss in more detail in Section 4.1 is the
use of Ward Identities (WIs) [128–130] to establish useful conclusions regarding partner degeneration
in terms of the susceptibilities associated to the relevant quark bilinears, namely,

χab
P (T) =

∫
T

dx〈Pa(x)Pb(0)〉, (33)

χ̃ab
S (T) =

∫
T

dx
[
〈Sa(x)Sb(0)〉 − 〈Sa〉

〈
Sb
〉]

, (34)

where P (S) denotes a pseudoscalar (scalar) operator, similarly to the definition (3), where χS(T) =
χ̃ll(T). A full analysis within the ChPT framework, which requires the use of the U(3) extension to
incorporate properly the η′ state and its properties, has been developed in [128,131] including the
ChPT realization of those WIs. We will present the results of that analysis in Section 4.2.

Most of the above theoretical analyses, although not conclusive, are compatible with U(1)A
restoration around Tc in the light chiral limit mud → 0 while the situation is not so clear in the physical
massive case with respect to whether the U(1)A breaking strength around the transition is enough to
generate observable effects.

Similar conclusions are reached in lattice analysis: for N f = 2 + 1 flavors and physical quark
masses, the analysis of [132] shows degeneracy of U(1)A partners well above the O(4) ones. On the
other hand, N f = 2 works [133–136] point to U(1)A restoration at Tc in the chiral limit, while for
massive quarks in those works the strength of U(1)A breaking increases with the volume [137]. In [138]
U(1)A restoration above Tc is obtained for two flavors and two colors in terms of screening masses.
The effect of U(1)A restoration including baryon matter has been also investigated in the lattice in [139]
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where the phase diagram and the critical point are studied. Degeneration of chiral partners in the
lattice for the nucleon sector has been considered in [140,141].

4.1. Ward Identities, O(4) vs. U(1)A Restoration and Screening Masses

The use of WIs to establish symmetry constraints on the theory is a powerful
and model-independent tool, which was first suggested to play a role regarding chiral
restoration in [142,143] within the lattice context. Recently, a full program for the study of relevant
WIs for pseudoscalar and scalar operators, including the U(1)A anomaly operator, and their properties
has been carried out in [128,130,131]. Those identities are obtained generically by taking suitable axial
and vector transformations over pseudoscalar and scalar QCD bilinears. Thus, one gets the following
generic WI for expectation values involving pseudoscalar and scalar operators OP and OS:〈

δOP (x1,··· ,xn)
δαa

A(x)

〉
= −

〈
OP (x1, · · · , xn)ψ̄(x)

{
λa

2 ,M
}

γ5ψ(x)
〉
+ i δa0√

6
〈OP (x1, · · · , xn)A(x)〉 , (35)

〈
δOS (x1, · · · , xn)

δαa
V(x)

〉
=

〈
OS (x1, · · · , xn)ψ̄(x)

[
λa

2
,M

]
ψ(x)

〉
. (36)

where

A(x) =
3g2

32π2 Ga
µνG̃µν

a , (37)

is the anomaly (pseudoscalar) operator entering the anomalous divergence of the U(1)A current, with
the gluon fields Ga

µ, Ga
µν = ∂µGa

ν − ∂νGa
µ − g fabcGb

µGc
ν and G̃a

µν = εµναβGαβ,a the dual gluon tensor.
Thus, setting in the above equations n-point functions for the OP,S operators, the WI relates n

and n + 1 operators. In particular, replacing for OP → Pa in (29) and the A operator in (37), as well as
OS → Sa in (30), we get the more relevant set of identities for our present discussion:

χπ
P (T) = −〈

q̄q〉l (T)
m̂

, (38)

χK
P(T) = −〈q̄q〉l (T) + 2〈s̄s〉(T)

m̂ + ms
, (39)

χss
P (T) = −〈s̄s〉(T)

ms
− 1

m2
s

χtop(T), (40)

χκ
S(T) =

〈q̄q〉l (T)− 2〈s̄s〉(T)
ms − m̂

, (41)

χls
P (T) = −2

m̂
ms

χ5,disc(T) = −
2

m̂ms
χtop(T), (42)

where χ5,disc(T) = 1
4

[
χπ

P (T)− χll
P(T)

]
is one of the possible parameters measuring O(4) ×U(1)A

restoration, since it should vanish if both symmetries are realized, according to (31) and (32), and χtop

is the topological susceptibility

χtop(T) ≡ −
1

36
χAA

P (T) = − 1
36

∫
T

dx〈A(x)A(0)〉. (43)

which will be dealt with in detail in Section 4.3.
The identity (38) is the one obtained first in [142,143] and it was used in [106] to check the π-σ

degeneration at chiral restoration straight from lattice data on the light quark condensate and the
scalar susceptibility. The validity of that identity, as well as that of (40), have been recently checked in
the lattice [132] correcting for finite-size effects. We will discuss below an important application of the
identities (38)–(41) in terms of lattice screening masses. Before that, let us examine the consequences of



Symmetry 2020, 12, 945 22 of 34

those identities for our previous discussion about U(1)A and chiral restoration. In particular, consider
the identity (42) and the following SU(2)A transformation acting on the ηl bilinear:

ηl(x)→ iψ̄l(x)γ5eiγ5αaτa
ψl(x) = iψ̄l(x)γ5 cos(αaτa)ψl(x)− ψ̄l(x) sin(αaτa)ψl(x), (44)

with
αb = π/2 and αa 6=b = 0 (45)

so that
ηl(x)→ −ψ̄l(x)τbψl(x) = −δb(x)⇒ χls

P → −
∫

T
dx
〈

δb(x)ηs(0)
〉
= 0, (46)

where we have used that ηs is invariant under SU(2)A transformations and the last correlator vanishes
by parity invariance of the vacuum, being a product of P-even and P-odd operators.

Therefore, from (42), the conclusion is that for exact chiral restoration, i.e., when the axial SU(2)A
symmetry is realized in the particle spectrum, χls would vanish according to (46). Then, the WI (42)
implies that χ5,disc should vanish as well so that the O(4) × U(1)A pattern is realized. Of course,
the regime of ideal SU(2)A symmetry is never realized for physical quark masses, but it should be the
case in the chiral limit for two massless flavors at Tc, consistently with the lattice results in [133–137].
For N f = 2 + 1 flavors and physical masses, the strangeness contribution and the large uncertainties
for δ− ηl degeneration [132] might explain a stronger U(1)A breaking, consistently also with the chiral
limit analysis of that collaboration [12].

Very interesting consequences for chiral and U(1)A restoration can also be extracted from the
previous WI in the I = 1/2 sector, which has been much less explored by lattice collaborations.
Actually, the difference between (39) and (41) yields

χκ
S(T)− χK

P(T) =
2

m2
s − m̂2 [ms 〈q̄q〉l (T)− 2m̂〈s̄s〉(T)] , (47)

The interest of the above equation is the following: first, it proves that in the chiral limit and at
exact chiral restoration, i.e., where both m̂ and 〈q̄q〉l vanish, the kaon and the κ states degenerate and
then become chiral partners. Interestingly, they can be showed also to degenerate under U(1)A, by
choosing again a suitable transformation [130]. On the other hand, the light and strange combination
showing up in (47) is precisely the so-called subtracted quark condensate ∆l,s thoroughly analyzed
in lattice collaborations as the order parameter of the chiral transition, defined in that way to avoid
finite-size divergences of the form 〈q̄iqi〉 ∼ mi/a2, with a the lattice spacing [3,11,132]. Therefore, (47)
allows us to describe through a measurable lattice quantity the relative strength of O(4) ×U(1)A
breaking near Tc. All the above results for the I = 1/2 channel provide very useful predictions to be
confronted by lattice data, which so far are not available in this channel for susceptibilities, only for
screening masses as we are about to discuss below.

We will finish this section by discussing another useful application of the previous WI when
trying to make contact with lattice analyses. Among the properties that can be measured in the
lattice for individual channels, i.e., physical states, is the variation of the screening masses with the
medium parameters (essentially temperature). Such screening masses are nothing but the measure
of the spatial falloff of euclidean propagators K ∼ exp(−Msc|z|), corresponding to taking the limit
K(ω = 0,~p → ~0) in Fourier space. On the other hand, the susceptibilities in the same channel

correspond to the inverse of squared pole masses, typically χP(T) ∼
[

Mpole
]−2

as we have seen for
instance in Section 3.2 regarding the saturated behaviour of the scalar susceptibility, where K can
be generically parametrized as K−1(ω,~p) ∼ −ω2 + A2(T)|~p|2 + Mpole(T)2 around p = 0 with with
A(T) = Mpole(T)/Msc(T) [144]. The difference between screening and pole masses parametrized by
A(T) stems from the different spatial and temporal dependence of self-energies in the thermal bath
and is expected to change smoothly, at least below the transition [90,145]. Assuming such smooth
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dependence also for possible residue contributions of the corresponding correlators leads to the
following proposal of dominant scaling with temperature for screening masses,

Msc
i (T)

Msc
i (0)

∼
[

χi(0)
χi(T)

]−1/2

(48)

for the different meson channels i = π, K, . . . .
Now, combining (48) with the WIs (38)–(41), one gets a prediction for the temperature scaling

of screening masses in terms of that of different combinations of light 〈q̄q〉l and strange 〈s̄s〉 quark
condensates. In the following, for simplicity, we neglect the second contribution in the right-hand side
of (40) which is suppressed numerically by a m̂/ms factor consistently with the lattice verification of
that WI [128,132].

In order to establish a measurable comparison with lattice data, one must translate that prediction
into properly subtracted lattice quark condensates ∆i [128,131]. This allows for two fitting parameters
related to those subtraction. In Figure 12 we show the result of such comparison, using the lattice data
for screening masses in [146], which is the most complete screening mass analysis so far where all the
channels of interest here are calculated within the same lattice setup. Consequently, we have used the
quark condensate data in [147] using that very same setup. Nevertheless, using more recent screening
masses data, like those in [148], the conclusions are similar, as discussed in [128]. The fitted parameters
corresponding to the results in Figure 12 are obtained by minimizing the sum of squared differences
for the different channels, below the transition, and are given in [128,131].
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Figure 12. Comparison of lattice data for screening masses with those for the combinations of quark
condensates predicted by the scaling law (48) and the WIs (38)–(41), from [131]. The lattice data are
taken from [146] (masses) and [147] (condensates) with the same lattice action and resolution and
T0 = 145 MeV. the definition of the subtracted condensates ∆i can be found in [128,131].

Thus, the main conclusion in view of the results in Figure 12 is that the combination of the
assumed scaling law (48) and the WIs (38)–(41) is indeed a very good approximation to describe the
temperature evolution of screening masses below and up to the transition. Apart from the quantitative
agreement showed in that figure, there is also a very important qualitative consequence regarding
the comparative behaviour of the different channels from their dependence on the different quark
condensate combinations from the WI-based scaling. Namely, the stronger increase of Msc

π (T) can
be understood from its dependence on the light quark condensate in (38), since 〈q̄q〉l is meant to
decrease strongly at the transition so its (subtracted) inverse would grow strongly as well. Similarly,
the softer behaviour of Msc

K (T) would be explained by its 〈s̄s〉 contribution, which is supposed to
present a much soft temperature decreasing behaviour around Tc [11,30]. Therefore, the inverse of the
combination in (39) would still increase but at a softer rate than the pion channel. Likewise, the s̄s
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channel, according to (40), is only dependent on 〈s̄s〉 once the second term is neglected, which again
would justify the even softer growing behavious of Msc

s̄s(T). The case of the κ channel is even more
interesting. The combination of light and strange condensates in (41) involves its difference rather than
its sum. Thus, below Tc, the decreasing behaviour of 〈q̄q〉l (T) while 〈s̄s〉(T) remains almost constant
is the dominant effect which makes their difference larger and then the inverse of such difference
decreases with T. However, after the inflection point of 〈q̄q〉l (T) around Tc, it remains softly changing
while the decreasing behaviour of 〈s̄s〉(T) starts taking over, which explains the minimum around Tc

of Msc
κ (T).

4.2. U(3) ChPT Analysis of the Scalar and Pseudoscalar Nonet

In the previous sections we have discussed the utility of the WIs regarding different aspects of the
chiral transition. In particular, the connection with U(1)A restoration and the qualitative understanding
of the screening mass behaviour. Those are general results independent of the particular physical
realization of those WIs in terms of the particle spectrum. However, in many instances one needs to
know in addition the particular temperature evolution of, say, the different susceptibilities involved
in those identities, which allows us to extract further useful conclusions and asks for a particular
theoretical framework describing the relevant degrees of freedom.

A recent calculation in this direction has been performed within the U(3) ChPT formalism,
up to NLO in the combined 1/Nc and chiral expansion, for the quark condensates and all the
susceptibilities of the scalar/pseudoscalar nonets [128,131], as well as the topological susceptibility
and the fourth-order cumulant of the topological charge distribution [149]. The latter will be discussed
in more detail in Section 4.3. The role of the η′ regarding O(4) vs. U(1)A restoration has become clear
from the previous sections and therefore a proper U(3) ChPT analysis is mandatory to explore those
issues properly and to understand the meson realization of the different correlators involved.

In fact, the U(3) ChPT analysis carried out in [128,131] has allowed us to verify explicitly in that
formalism the WIs discussed in Section 4.1. As for the nonet susceptibilites, the main results of that
calculation is shown in Figures 13 and 14.
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Figure 13. U(3) ChPT results from [131] where the bands correspond to the LEC uncertainties given
in [150]. (Left): I = 0, 1 susceptibilities for the πa, δa, σl , ηl states in (29), (30), where Br

0 is the
renormalized chiral B0 parameter. (Right): I = 1/2 susceptibilities for K and κ states.

The susceptibilities shown in Figure 13 show the restoration pattern expected for massive quarks.
Thus, setting Tc as the chiral partner matching χπ

P (Tc) = χll
S (Tc) in ChPT (although it does not

reproduce a true degeneration above that temperature) the matching temperature χπ
P (Tc2) = χδ

S(Tc2),
which would correspond to U(1)A restoration is given by Tc2 ' 1.07 Tc for the central values of the LEC
used and given in [150]. Therefore, such U(1)A restoration effect takes place only slightly above Tc and
within the LEC uncertainty range. Besides, the difference between the π − ηl indicating O(4)×U(1)A
restoration, as commented above, through χ5,disc(Tc3) = 0 gives Tc3 ' 1.13Tc, again within the same
range. Finally, in the I = 1/2 sectors the partner susceptibilities match at χK

P(Tc4) = χκ
S(Tc4) with

Tc4 ' Tc2. Recall that in the massive case, K-κ degeneration would require U(1)A restoration as
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well, as discussed in Section 4.1. The conclusion is then that ChPT would be consistent with U(1)A
restoration, in terms of partner degeneration, not much above from chiral restoration, typically around
10%. However, one must keep in mind the usual caveats of the ChPT framework regarding the critical
region, since its applicability range is limited to low and moderate temperatures. Recall also that in
the physical mass case it is consistent that different partner degeneration temperatures take different
values, since we do not expect a sharp chiral transition.
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Figure 14. U(3) ChPT result for the chiral limit behaviour of different chiral and U(1)A restoration
temperatures, from [131].

More insight can be gained by taking the chiral limit, where ChPT is meant to provide more robust
predictions. Thus, in Figure 14 we show the evolution of the different partner matching temperatures,
as well as the vanishing condensate one T0. The results show clearly that all those temperatures
converge to the same value, which is consistent with the O(4) ×U(1)A pattern in the chiral limit
predicted also by the WI analysis in Section 4.1. Moreover, the fact that all pseudocritical Tci coincide
is also consistent with the transition properties expected in the chiral limit and discussed in Section 1.

The analytic behaviour of those Tci in the chiral limit is also revealing and can be found in [131].
The gap between the U(1)A pseudocritical temperatures Tc3 and Tc2 is O(m2

π), which is also the
gap between them and T0. On the other hand, the gap between T0, Tc2 or Tc3 and the O(4) Tc is
O(mπ), i.e., larger in the chiral limit expansion. This is consistent with our previous claims about
the separation of chiral and U(1)A restoration, both gaps vanishing in the chiral limit. In addition,
the hierarchy Tc3 > T0 > Tc2 > Tc is maintained for all masses, as seen in Figure 14. Note that
Tc3 > Tc2, Tc2 > Tc and T0 > Tc are expected from our previous arguments. For I = 1/2 , we see from
Figure 14 that Tc4 remains almost identical to Tc2, consistently with our discussion in Section 4.1 on
kaon-kappa degeneration.

4.3. The Topological Susceptibility

As discussed in Section 4.1, the topological susceptibility plays a direct role in the discussion
about O(4) and U(1)A restoration. In particular, from the WI (42) and the discussion in that section,
the vanishing of χtop signals also O(4)×U(1)A restoration, as noted also in [129]. Apart from that,
χtop has itself a considerable relevance in different instances and, more importantly for the present
work, its analysis through the ChPT formalism, both at T = 0 and at finite temperature, provides a
robust description when compared with lattice results, as we will see below.

An important context where χtop plays an important role is the cosmological one, from the direct
relation of χtop with the axion mass, while the axion self-coupling is directly related to the fourth-order
cumulant of the topological charge distribution, whose second-order cumulant is the topological
susceptibility (43). Updated theoretical results in that context, including estimates based on ChPT, can
be found for instance in [151].



Symmetry 2020, 12, 945 26 of 34

Another important topic, relevant for the present work, where the topological susceptibility
has played a crucial role, arises precisely from the WIs discussed in Section 4.1. In particular,
combining (38) and (42) yields

χtop = −1
4

[
mq 〈q̄q〉l + m2

qχll
P

]
(49)

which establishes that near the chiral limit the topological susceptibility is proportional to the light
quark condensate. That feature has been actually used extensively to extract the quark condensate in
the lattice [152–154] and is actually shared by the lowest order chiral Lagrangian calculation, which in
U(3) incorporates the η′ and is given by [149]

χ
U(3),LO
top = −1

2
〈q̄q〉0l

M2
0m̄

M2
0 + 6B0m̄

(50)

with 〈q̄q〉0l = −2B0F2 the quark condensate in the chiral limit, M0 the anomalous part of the η′ mass
and m̄−1 = ∑

i=u,d,s
m−1

i . Taking the limit M0 → ∞ in (50) reproduces the SU(2, 3) results in [155].

The fact that the topological susceptibility remains proportional to the quark masses through the
m̄ combination, vanishing in particular the chiral limit, supports the idea that a description based
on ChPT is appropriate for this quantity. The situation is similar in some respect to the case of the
scalar susceptibility analyzed in Section 3.2 in terms of the lightest f0(500) state, in the sense that
the dominant dependence comes from inverse masses of light states. Moreover, the meson loop
contributions giving rise to the quark mass dependence in the above expression for χtop are crucial
corrections to the quenched gluodynamics limit, obtained as mi → ∞, where χtop ∼ M2

0F2/6 [44,156].
The NLO corrections in SU(N f ) ChPT can be found in [152,157], while the U(3) calculation

up to NLO is provided in [149] including the temperature dependence of χtop. The dominant
contribution comes from the SU(2) analysis, thus confirming the previous claim about the accuracy of
the low-energy description of χtop, while the contribution of η′ loops and η − η′ mixing corrections
provided by the U(3) formalism are of the same order as the K, η SU(3) ones. The numerical predictions
at T = 0 are consistent with recent lattice analysis, like that in [158]. The U(3) calculation provides as
an additional advantage a consistent way to analyze the dominant and subdominant contributions of
the large-Nc expansion of both the topological susceptibility and the fourth-order cumulant [149,159]
which are consistent with the lattice results provided at different large-Nc values in [160].

As for the temperature evolution, the result of the U(3) analysis including the uncertainty bands
coming from the LEC used, is shown in Figure 15.
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Figure 15. U(3) ChPT results for the T-dependence of the topological susceptibility [149]. (Left): result
of the U(3) calculation compared to the lattice results in [158,161], where the band corresponds to the
LEC uncertainty. (Right): comparison of the U(3) χtop temperature scaling with the quark condensate
in different approximations.
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The CHPT prediction is remarkably compatible with lattice results, even for temperatures close to
the transition, which confirms once again the special characteristics of this observable which makes
it suitable for an EFT description. As mentioned above, the dominant part comes from the SU(2)
contribution, even at finite temperature, and in fact the scaling with T of χtop(T) remains close to that
of 〈q̄q〉l (T) calculated to the same order in ChPT. However, an important comment is in order here.
While we expect that χtop(T) does not deviates much from the ChPT curve, that is clearly not the case
for the quark condensate, where, as discussed in Section 2 we do expect sizable differences when all
hadron states are taken into account. To highlight this fact, we have represented in Figure 15 the quark
condensate calculated in the HRG description as described also in Section 2. This question on whether
the topological susceptibility follows the quark condensate evolution for all temperatures is intimately
connected with the importance of the second term in the WI (49) and actually with our discussion
about chiral and U(1)A restoration in terms of WI performed in Section 4.1. Thus, as we have seen in
that section, the vanishing of χtop signals O(4)×U(1)A restoration since it is proportional to χ5,disc
according to (42). Therefore, the second term in (49), or in other words the deviations of χtop from
the quark condensate scaling, measure the strength of U(1)A breaking around the transition in the
physical limit of massive quarks. The topological susceptibility and its thermal dependence is then a
suitable observable to connect the various ideas around chiral restoration and its nature that we have
been discussing in this work.

5. Conclusions and Discussion

Over recent years our knowledge on the QCD phase diagram has considerably improved.
The physical phenomena of deconfinement and chiral symmetry restoration, predicted theoretically
long time ago are nowadays realized both in experimental programs such as those carried out in
Heavy-Ion Collisions and in lattice simulations. The precision achieved in those two fields has allowed
us to test many theoretical developments and explore the main features of the transition, including
the analysis of the critical curve in the (T, µB) plane, the possible existence of a critical point and the
nature of the transition in terms of its universality class. Those are however still open problems and
they concentrate the main efforts of current theoretical, experimental and lattice research in this field.

Effective theories have played recently a very important role regarding chiral symmetry
restoration. In this review, we have offered a current perspective of some of the main aspects for which
this technique can be useful. After discussing general aspects of this framework, we have concentrated
on some particularly relevant problems as far as chiral symmetry restoration is concerned. Namely,
the importance of in-medium effects for resonances and the nature of the transition from the point of
view of partner degeneration.

The basic principle behind effective theories is to incorporate the appropriate degrees of freedom
required for particular in-medium observables of interest, relying on the QCD chiral symmetry
breaking pattern as a guiding principle to construct their properties and interactions. Thus, for many
thermodynamical observables signaling the transition, such as the quark condensate or the pressure,
accounting for all the possible hadron states that can be excited, within the Hadron Resonance Gas
framework, is crucial. That line of approach has proved very successful for many observables and
corrections due to interactions and lattice masses have even improved the predictions.

However, there are important issues for which that description is not the more adequate one.
In certain cases of interest, it is preferable to provide an accurate treatment of the lightest degrees of
freedom and their interactions rather than to incorporate heavier states. In that sense, it is sometimes
crucial to account correctly for the spectral modifications of hadron states, including resonances,
within the thermal environment. That is the case for instance of the relevant states and interactions
needed to describe correctly the hadron contributions to the direct photon and dilepton spectrum
observed in heavy-ion collisions. Other prominent examples are those described in detail in this
work and pertaining the scalar or the topological susceptibilities, for which an analysis based on
Chiral Perturbation Theory complemented with additional physical requirements such as unitarity,



Symmetry 2020, 12, 945 28 of 34

allow us to achieve an accurate description of lattice results. Thus, the main expected properties
of the scalar susceptibility, like its peak around the chiral transition, can be reproduced through a
saturation approach by the thermal f0(500) state, which we have described trough the pole generated
by Unitarized Chiral Perturbation Theory at finite temperature in the I = J = 0 channel. Likewise,
the topological susceptibility, which carries important information about chiral and U(1)A restoration,
can be accurately described through a ChPT approach, both at zero and finite temperature, which
eventually can be understood from its dependence with inverse quark masses.

The problem of the transition nature is also one of the main goals in the current research on
this field and is intimately connected to the strength of U(1)A restoration around the QCD transition.
Our understanding of this problem is clearly improving over recent years, although lattice and
theoretical analysis are not still fully conclusive. We have reviewed here in detail recent progress made
on this particular issue through the use of Ward Identities combined with the U(3) ChPT framework.
Within that approach, it can be proved that in the limit of exact chiral restoration, for instance for two
massless flavors, the U(1)A symmetry is also restored in terms of chiral partner degeneration for the
scalar/pseudoscalar nonets. The use of these techniques is actually very powerful and give rise to
other physically relevant predictions. Thus, in the I = 1/2 sector where the lightest chiral partners
are the kaon and kappa states, Ward Identities establish a quantitative way to measure the strength
of U(1)A breaking in terms of a subtracted light quark condensate, measured in the lattice. Actually,
this analysis motivates future lattice calculations for I = 1/2. Another important application that we
have discussed here is the temperature dependence of lattice screening masses, for which a WI-based
scaling provides a good quantitative and qualitative description. A detailed U(3) ChPT calculation
has allowed us to verify the above predictions of the WI framework, thus providing further support to
this approach.

Summarizing, the framework of effective theories constitutes a modern, consistent and powerful
theoretical tool to investigate several important problems regarding the QCD transition, especially
concerning chiral symmetry restoration. The various techniques and results reviewed here in that
context are meant to shed light on the present understanding of the QCD phase diagram, thus joining
efforts with the experimental and lattice current programs.
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