Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,490)

Search Parameters:
Keywords = theoretical formulations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 558 KB  
Article
New Jacobi Galerkin Operational Matrices of Derivatives: A Highly Accurate Method for Solving Two-Point Fractional-Order Nonlinear Boundary Value Problems with Robin Boundary Conditions
by Hany Mostafa Ahmed
Fractal Fract. 2025, 9(11), 686; https://doi.org/10.3390/fractalfract9110686 (registering DOI) - 24 Oct 2025
Abstract
A novel numerical scheme is developed in this work to approximate solutions (APPSs) for nonlinear fractional differential equations (FDEs) governed by Robin boundary conditions (RBCs). The methodology is founded on a spectral collocation method (SCM) that uses a set of basis functions derived [...] Read more.
A novel numerical scheme is developed in this work to approximate solutions (APPSs) for nonlinear fractional differential equations (FDEs) governed by Robin boundary conditions (RBCs). The methodology is founded on a spectral collocation method (SCM) that uses a set of basis functions derived from generalized shifted Jacobi (GSJ) polynomials. These basis functions are uniquely formulated to satisfy the homogeneous form of RBCs (HRBCs). Key to this approach is the establishment of operational matrices (OMs) for ordinary derivatives (Ods) and fractional derivatives (Fds) of the constructed polynomials. The application of this framework effectively reduces the given FDE and its RBC to a system of nonlinear algebraic equations that are solvable by standard numerical routines. We provide theoretical assurances of the algorithm’s efficacy by establishing its convergence and conducting an error analysis. Finally, the efficacy of the proposed algorithm is demonstrated through three problems, with our APPSs compared against exact solutions (ExaSs) and existing results by other methods. The results confirm the high accuracy and efficiency of the scheme. Full article
(This article belongs to the Section Numerical and Computational Methods)
29 pages, 4966 KB  
Article
Structure–Property Relationships in Epoxy–Anhydride Systems: A Comprehensive Comparative Study of Cycloaliphatic, Novolac, and Aromatic Prepolymers
by Stephane Patry, Alban Asseray, Mickaël Berne, Valéry Loriot, Luc Loriot and Jean-Pierre Habas
Polymers 2025, 17(21), 2843; https://doi.org/10.3390/polym17212843 (registering DOI) - 24 Oct 2025
Abstract
This study provides a comprehensive quantitative comparison of three structurally distinct epoxy prepolymers—cycloaliphatic, novolac, and bis-aromatic (BADGE)—cured with a single hardener, methyl nadic anhydride (MNA), and catalyzed by 1-methylimidazole under strictly identical stoichiometric and thermal conditions. Each formulation was optimized in terms of [...] Read more.
This study provides a comprehensive quantitative comparison of three structurally distinct epoxy prepolymers—cycloaliphatic, novolac, and bis-aromatic (BADGE)—cured with a single hardener, methyl nadic anhydride (MNA), and catalyzed by 1-methylimidazole under strictly identical stoichiometric and thermal conditions. Each formulation was optimized in terms of epoxy/anhydride ratio and catalyst concentration to ensure meaningful cross-comparison under representative cure conditions. A multi-technique approach combining differential scanning calorimetry (DSC), dynamic rheometry, and thermogravimetric analysis (TGA) was employed to jointly assess cure kinetics, network build-up, and long-term thermal stability. DSC analyses provided reaction enthalpies and glass transition temperatures (Tg) ranging from 145 °C (BADGE-MNA) to 253 °C (cycloaliphatic ECy-MNA) after stabilization of the curing reaction under the chosen thermal protocol, enabling experimental fine-tuning of stoichiometry beyond the theoretical 1:1 ratio. Isothermal rheology revealed gel times of approximately 14 s for novolac, 16 s for BADGE, and 20 s for the cycloaliphatic system at 200 °C, defining a clear hierarchy of reactivity (Novolac > BADGE > ECy). Post-cure thermomechanical performance and thermal aging resistance (100 h at 250 °C) were assessed via rheometry and TGA under both dynamic and isothermal conditions. They demonstrated that the novolac-based resin retained approximately 93.7% of its initial mass, confirming its outstanding thermo-oxidative stability. The three systems exhibited distinct trade-offs between reactivity and thermal resistance: the novolac resin showed superior thermal endurance but, owing to its highly aromatic and rigid structure, limited flowability, while the cycloaliphatic resin exhibited greater molecular mobility and longer pot life but reduced stability. Overall, this work provides a comprehensive and quantitatively consistent benchmark, consolidating stoichiometric control, DSC and rheological reactivity, Tg evolution, thermomechanical stability, and degradation behavior within a single unified experimental framework. The results offer reliable reference data for modeling, formulation, and possible use of epoxy–anhydride thermosets at temperatures above 200 °C. Full article
(This article belongs to the Special Issue Epoxy Resins and Epoxy-Based Composites: Research and Development)
Show Figures

Graphical abstract

32 pages, 6328 KB  
Article
A Combined Experimental, Theoretical, and Simulation Approach to the Effects of GNPs and MWCNTs on Joule Heating Behavior of 3D Printed PVDF Nanocomposites
by Giovanni Spinelli, Rosella Guarini, Rumiana Kotsilkova, Evgeni Ivanov and Vladimir Georgiev
Polymers 2025, 17(21), 2835; https://doi.org/10.3390/polym17212835 (registering DOI) - 24 Oct 2025
Abstract
The thermal behavior of 3D-printed polyvinylidene fluoride (PVDF)-based composites enhanced with carbon nanotubes (CNTs), graphene nanoplatelets (GNPs), and their hybrid formulations was investigated under Joule heating at applied voltages of 2, 3, and 4 V. The influence of filler type and weight fraction [...] Read more.
The thermal behavior of 3D-printed polyvinylidene fluoride (PVDF)-based composites enhanced with carbon nanotubes (CNTs), graphene nanoplatelets (GNPs), and their hybrid formulations was investigated under Joule heating at applied voltages of 2, 3, and 4 V. The influence of filler type and weight fraction on both electrical and thermal conductivity was systematically assessed using a Design of Experiments (DoE) approach. Response Surface Methodology (RSM) was employed to derive an analytical relationship linking conductivity values to filler loading, revealing clear trends and interaction effects. Among all tested formulations, the composite containing 6 wt% of GNPs exhibited the highest performance in terms of thermal response and electrical conductivity, reaching a steady-state temperature of 88.1 °C under an applied voltage of just 4 V. This optimal formulation was further analyzed through multiphysics simulations, validated against experimental data and theoretical predictions, to evaluate its effectiveness for potential practical applications—particularly in de-icing systems leveraging Joule heating. The integrated experimental–theoretical–numerical workflow proposed herein offers a robust strategy for guiding the development and optimization of next-generation polymer nanocomposites for thermal management technologies. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

37 pages, 2260 KB  
Article
Traceability Decisions and Coordination Contracts in Agricultural Supply Chains Under Different Power Structures
by Weixia Xue, Xiongyong Zhou and Zhiduan Xu
Sustainability 2025, 17(21), 9460; https://doi.org/10.3390/su17219460 (registering DOI) - 24 Oct 2025
Abstract
Recent frequent food safety incidents have heightened consumer concern about agricultural product traceability, driving companies to build more robust supply chain traceability systems. However, enhancing traceability level is not only driven by consumer preferences but is also profoundly shaped by supply chain power [...] Read more.
Recent frequent food safety incidents have heightened consumer concern about agricultural product traceability, driving companies to build more robust supply chain traceability systems. However, enhancing traceability level is not only driven by consumer preferences but is also profoundly shaped by supply chain power structures and coordination mechanisms. In this study, we investigate how consumer preferences, power structures, and contractual mechanisms jointly shape traceability investment and coordination in agricultural supply chains. Using a two-tier supplier–retailer game-theoretic model, we compare traceability levels, pricing, and profit allocation under three governance structures: vertical Nash, supplier-led, and retailer-led. We also evaluate the effectiveness of cost-sharing and revenue-sharing contracts. The results reveal several key insights. First, consumer preference for traceable products serves as a critical market-driven force that enhances traceability investment across supply chain tiers. Second, power structures fundamentally determine traceability outcomes through threshold-dependent mechanisms: when consumer preference is weak, vertical Nash structures yield superior traceability via balanced cost-sharing; however, once preference intensity surpasses critical thresholds, retailer-led structures dominate in responsiveness, profit distribution, and capability building. In contrast, supplier-led structures deliver the weakest outcomes, as concentrated cost burdens suppress investment incentives, particularly in supply chains composed of small and medium-sized suppliers. Third, coordination contracts exhibit structure-specific efficacy. Cost-sharing contracts achieve full optimization in vertical Nash contexts and yield Pareto improvements in supplier-led chains, whereas traditional contracts exert minimal influence in retailer-led settings. These findings enrich our theoretical understanding of traceability governance and provide practical guidance for differentiated traceability design and contract formulation. Full article
(This article belongs to the Special Issue Design of Sustainable Supply Chain and Transportation Service Mode)
Show Figures

Figure 1

30 pages, 3150 KB  
Article
Zinc-Modified Mordenite Zeolite as a Molecular Carrier for Donepezil: A Framework for Drug Delivery Applications
by Diana Guaya, Lupe Carolina Espinoza, Ximena Jaramillo-Fierro, Dagmar Gualotuña Campoverde, Lilian Sosa and Ana Cristina Calpena
Molecules 2025, 30(21), 4174; https://doi.org/10.3390/molecules30214174 - 24 Oct 2025
Abstract
The development of advanced drug delivery systems is essential for improving therapeutic efficacy, particularly in the treatment of neurodegenerative disorders such as Alzheimer’s disease. This study investigates zinc-modified mordenite zeolite (MR-ZN) as a novel platform for the controlled delivery of donepezil (DPZ), a [...] Read more.
The development of advanced drug delivery systems is essential for improving therapeutic efficacy, particularly in the treatment of neurodegenerative disorders such as Alzheimer’s disease. This study investigates zinc-modified mordenite zeolite (MR-ZN) as a novel platform for the controlled delivery of donepezil (DPZ), a cholinesterase inhibitor. Natural mordenite was modified with zinc, enhancing its surface area from 62.1 to 85.4 m2/g and improving its adsorption properties. Donepezil was successfully loaded at two doses (10 mg and 23 mg), achieving high loading efficiencies of 95% and 94%, respectively. Adsorption kinetics followed a pseudo-second-order model (R2 > 0.99), indicating that chemisorption predominates through coordination between DPZ functional groups and Zn2+ sites, while complementary physisorption via hydrogen bonding and van der Waals interactions also contributes to molecular stabilization within the zeolite framework. In vitro release studies under simulated gastrointestinal conditions demonstrated sustained and pH-responsive release profile with 80% and 82% of donepezil released after 24 h for 10 mg and 23 mg formulations, respectively. Density Functional Theory (DFT) calculations revealed favorable adsorption energy (−26.4 kJ/mol), while Bader and Electron Localization Function (ELF) analyses confirmed hydrogen bonding and electrostatic interactions without compromising the zeolite framework. These findings validate MR-ZN as structurally stable, efficient, cost-effective and biocompatible matrix for oral drug delivery. The combination of experimental data and theoretical modeling supports its potential to improve bioavailability and therapeutic performance in neurodegenerative treatment. Full article
(This article belongs to the Special Issue Design, Synthesis, and Application of Zeolite Materials)
Show Figures

Figure 1

32 pages, 1525 KB  
Article
Analysis of Acoustic Wave Propagation in Defective Concrete: Evolutionary Modeling, Energetic Coercivity, and Defect Classification
by Mario Versaci, Matteo Cacciola, Filippo Laganà and Giovanni Angiulli
Appl. Sci. 2025, 15(21), 11378; https://doi.org/10.3390/app152111378 - 23 Oct 2025
Abstract
This study introduces a theoretical and computational framework for modeling acoustic wave propagation in defective concrete, with applications to non-destructive testing and structural health monitoring. The formulation is based on a coupled system of evolutionary hyperbolic equations, where internal defects are explicitly represented [...] Read more.
This study introduces a theoretical and computational framework for modeling acoustic wave propagation in defective concrete, with applications to non-destructive testing and structural health monitoring. The formulation is based on a coupled system of evolutionary hyperbolic equations, where internal defects are explicitly represented as localized energetic sources or sinks. A key contribution is the definition of a coercivity coefficient, which quantifies the energetic effect of defects and enables their classification as stabilizing, neutral, or dissipative. The model establishes a rigorous relationship between defect morphology, spatial distribution, and the global energetic stability of the material. Numerical simulations performed with an explicit finite-difference time-domain scheme confirm the theoretical predictions: the normalized total energy remains above 95% for stabilizing defects (μi>0), decreases by about 10% for quasi-neutral cases (μi0), and drops below 50% within 200μs for dissipative defects (μi<0). The proposed approach reproduces the attenuation and phase behavior of classical Biot-type and Kelvin–Voigt models with deviations below 5% while providing a richer energetic interpretation of local defect dynamics. Although primarily theoretical, this study establishes a physically consistent and quantitatively validated framework that supports the development of predictive ultrasonic indicators for the energetic classification of defects in concrete structures. Full article
Show Figures

Figure 1

17 pages, 1308 KB  
Review
Developing Successful Intelligence in Global Academia: A Triarchic Framework for EAP Pedagogy
by Yang Yu, Yingying Xu and Yongkang Wu
J. Intell. 2025, 13(11), 134; https://doi.org/10.3390/jintelligence13110134 - 23 Oct 2025
Abstract
This review synthesizes research from cognitive psychology and English for Academic Purposes (EAP) to propose a new conceptual framework for understanding and fostering international student success. It argues that traditional EAP approaches, while effective in developing analytical intelligence—evidenced by a focus on critical [...] Read more.
This review synthesizes research from cognitive psychology and English for Academic Purposes (EAP) to propose a new conceptual framework for understanding and fostering international student success. It argues that traditional EAP approaches, while effective in developing analytical intelligence—evidenced by a focus on critical reading, argumentation, and source-based writing—provide an incomplete model for the multifaceted demands of global academia. Drawing on Robert Sternberg’s Triarchic Theory of Intelligence, this paper posits that “successful intelligence,” defined as the capacity to achieve one’s goals within a specific sociocultural context, is a more holistic and ecologically valid construct. It depends equally on creative intelligence (e.g., formulating novel research ideas, adapting to unfamiliar academic genres) and practical intelligence (e.g., navigating academic norms, acquiring tacit knowledge, demonstrating pragmatic competence in communication). This paper conducts a critical review of pedagogical practices within EAP that implicitly or explicitly cultivate these three interdependent intelligences. After providing a balanced overview of Sternberg’s theory, including its scholarly critiques, this review broadens its theoretical lens to incorporate complementary perspectives from sociocultural approaches to academic literacies. It systematically maps specific EAP tasks—such as source-based synthesis essays (analytical), research proposals for occluded genres (creative), and simulations of academic email communication (practical)—onto the components of the triarchic model. Drawing on this analysis, the paper concludes by proposing an integrated pedagogical framework, the “Triarchic EAP Model.” This model consciously balances the development of analytical, creative, and practical abilities through integrated tasks, explicit scaffolding, and a focus on transferability. It offers a more holistic approach to student support and strategically positions the EAP classroom as a unique environment for the cultivation and assessment of the multifaceted intellectual skills required for sustainable success in 21st-century global academia. Full article
(This article belongs to the Section Theoretical Contributions to Intelligence)
Show Figures

Figure 1

20 pages, 2651 KB  
Article
Evaluation of Rheological Properties of Warm Mix Flame-Retardant Asphalt (WMFRA) Binder Suitable for Tunnel Area
by Bo Zhang, Juan Liu, Qiaoli Le and Zhen Lu
Polymers 2025, 17(21), 2829; https://doi.org/10.3390/polym17212829 - 23 Oct 2025
Abstract
This study aimed to systematically evaluate the rheological properties of warm mix flame-retardant asphalt (WMFRA). First, conventional performance tests were conducted on the prepared warm mix rubberized asphalt (WMRA), incorporating different warm mix agents in order to screen out an agent with optimum [...] Read more.
This study aimed to systematically evaluate the rheological properties of warm mix flame-retardant asphalt (WMFRA). First, conventional performance tests were conducted on the prepared warm mix rubberized asphalt (WMRA), incorporating different warm mix agents in order to screen out an agent with optimum performance. Subsequently, limestone power (LP), aluminum trihydrate (ATH), OA composed of ATH and organically modified montmorillonite (OMMT), and zinc borate (ZK) were employed in the oxygen index (OI) test of WMFRA to determine the optimal dosage of flame retardants. Finally, a dynamic shear rheometer (DSR) and a bending beam rheometer (BBR) were used to evaluate the rheological properties of WMFRA. The results showed that the R-Type warm mix agent was superior to S-Type in reducing consistency and improving low-temperature cracking resistance but slightly weakened high-temperature stability. The OA composite flame retardant could enhance the OI from 20.16% to 24% at 15wt% dosage, thereby meeting the specified flame-retardant requirement. Furthermore, OA could markedly boost the high-temperature performance of WMFRA, exhibiting significantly higher complex modulus (G*) and rutting factor (G*/sinδ) compared to WMFRA with other flame retardants. In general, all flame retardants reduced the temperature sensitivity of WMFRA, with ZK being the most effective at 12.6%. Regarding low-temperature performance, LP and ATH improved stress relaxation of WMFRA, while ZK and OA impaired this capability. All flame retardants reduced low-temperature flexibility, but the low-temperature behavior was still dominated by the S(t). For fatigue performance, LP and ATH degraded the fatigue performance by advancing the damage time by 958.9 s and 669.7 s, respectively. In contrast, ZK improved fatigue performance by increasing the complex shear modulus, thereby extending the fatigue life (Nf50) by 3.2%. This study provided a theoretical basis for the formulation optimization of WMFRA. Full article
(This article belongs to the Special Issue Sustainable Polymer Materials for Pavement Applications)
Show Figures

Figure 1

27 pages, 1592 KB  
Article
Information-Theoretic Reliability Analysis of Consecutive r-out-of-n:G Systems via Residual Extropy
by Anfal A. Alqefari, Ghadah Alomani, Faten Alrewely and Mohamed Kayid
Entropy 2025, 27(11), 1090; https://doi.org/10.3390/e27111090 - 22 Oct 2025
Abstract
This paper develops an information-theoretic reliability inference framework for consecutive r-out-of-n:G systems by employing the concept of residual extropy, a dual measure to entropy. Explicit analytical representations are established in tractable cases, while novel bounds are derived for more complex [...] Read more.
This paper develops an information-theoretic reliability inference framework for consecutive r-out-of-n:G systems by employing the concept of residual extropy, a dual measure to entropy. Explicit analytical representations are established in tractable cases, while novel bounds are derived for more complex lifetime models, providing effective tools when closed-form expressions are unavailable. Preservation properties under classical stochastic orders and aging notions are examined, together with monotonicity and characterization results that offer deeper insights into system uncertainty. A conditional formulation, in which all components are assumed operational at a given time, is also investigated, yielding new theoretical findings. From an inferential perspective, we propose a maximum likelihood estimator of residual extropy under exponential lifetimes, supported by simulation studies and real-world reliability data. These contributions highlight residual extropy as a powerful information-theoretic tool for modeling, estimation, and decision-making in multicomponent reliability systems, thereby aligning with the objectives of statistical inference through entropy-like measures. Full article
(This article belongs to the Special Issue Recent Progress in Uncertainty Measures)
27 pages, 9649 KB  
Article
Vertical Deformation Calculation Method and In Situ Protection Design for Large-Span Suspended Box Culverts
by Heng Liu, Xihao Yan, Mingjie Xu, Dong Hu, Zhengwei Wang, Lei Guo and Peng Xi
Buildings 2025, 15(20), 3804; https://doi.org/10.3390/buildings15203804 - 21 Oct 2025
Viewed by 71
Abstract
Underground power pipelines are often encased in box culverts and buried in soil. When foundation pit excavation involves such existing pipelines, the buried box culverts can become partially suspended, risking excessive vertical deformation and requiring effective in situ protection. This study proposed analytical [...] Read more.
Underground power pipelines are often encased in box culverts and buried in soil. When foundation pit excavation involves such existing pipelines, the buried box culverts can become partially suspended, risking excessive vertical deformation and requiring effective in situ protection. This study proposed analytical methods to calculate the vertical deformation of large-span box culverts under both unprotected and protected conditions. A case study of the 112 m suspended power box culverts at Yunnan Road Station on Nanjing Metro Line 5 is presented, where the methods are applied to determine the maximum allowable unsupported span and to formulate specific support and suspension protection schemes, which include a number of protection points and their spacing. Validation through ABAQUS modeling shows strong agreement among theoretical predictions, numerical simulations, and field measurements. Parametric analysis further demonstrated that the height, width, and modulus of the reinforced soil around the buried section all have a significant influence on the deformation control effectiveness. This study provides a combined theoretical framework and practical design guidelines for deformation control of large-span suspended box culverts in engineering applications. Full article
Show Figures

Figure 1

14 pages, 12665 KB  
Article
Gamut Boundary Distortion Arises from Quantization Errors in Color Conversion
by Jingxu Li, Xifeng Zheng, Deju Huang, Fengxia Liu, Junchang Chen, Yufeng Chen, Hui Cao and Yu Chen
Appl. Sci. 2025, 15(20), 11278; https://doi.org/10.3390/app152011278 - 21 Oct 2025
Viewed by 59
Abstract
This paper undertakes an in-depth exploration into the issue of quantization errors that occur during color gamut conversion within LED full-color display systems. To commence, a CIE-xyY colorimetric framework, which is customized to the unique characteristics of LED, is constructed. This framework serves [...] Read more.
This paper undertakes an in-depth exploration into the issue of quantization errors that occur during color gamut conversion within LED full-color display systems. To commence, a CIE-xyY colorimetric framework, which is customized to the unique characteristics of LED, is constructed. This framework serves as the bedrock for formulating the principles governing the operation of LED color gamuts. Subsequently, the conversions among diverse color spaces are scrutinized with great meticulousness. The core emphasis then shifts to dissecting how discrete control systems, in conjunction with quantization errors at low grayscale levels, precipitate the distortion of color gamut boundaries during the conversion process. The Laplacian operator is deployed to furnish a geometric comprehension of the distortion points, thereby delineating the topological discrepancies between the target and actual points. The quantitative analysis precisely delineates the correlation between quantization precision and the quantity of distortion points. The research endeavors to disclose the intricate relationships among quantization, color spaces, and colorimetric fidelity. This paper is conducive to the prospective calibration and rectification of LED display systems, furnishing a theoretical underpinning for the further enhancement of color reproduction in LED displays. Consequently, LED monitors can be rendered capable of satisfying the stringent accuracy requisites of advanced imaging and media. Full article
Show Figures

Figure 1

19 pages, 1977 KB  
Article
Research on the Evaluation Model for Natural Gas Pipeline Capacity Allocation Under Fair and Open Access Mode
by Xinze Li, Dezhong Wang, Yixun Shi, Jiaojiao Jia and Zixu Wang
Energies 2025, 18(20), 5544; https://doi.org/10.3390/en18205544 - 21 Oct 2025
Viewed by 129
Abstract
Compared with other fossil energy sources, natural gas is characterized by compressibility, low energy density, high storage costs, and imbalanced usage. Natural gas pipeline supply systems possess unique attributes such as closed transportation and a highly integrated upstream, midstream, and downstream structure. Moreover, [...] Read more.
Compared with other fossil energy sources, natural gas is characterized by compressibility, low energy density, high storage costs, and imbalanced usage. Natural gas pipeline supply systems possess unique attributes such as closed transportation and a highly integrated upstream, midstream, and downstream structure. Moreover, pipelines are almost the only economical means of onshore natural gas transportation. Given that the upstream of the pipeline features multi-entity and multi-channel supply including natural gas, coal-to-gas, and LNG vaporized gas, while the downstream presents a competitive landscape with multi-market and multi-user segments (e.g., urban residents, factories, power plants, and vehicles), there is an urgent social demand for non-discriminatory and fair opening of natural gas pipeline network infrastructure to third-party entities. However, after the fair opening of natural gas pipeline networks, the original “point-to-point” transaction model will be replaced by market-driven behaviors, making the verification and allocation of gas transmission capacity a key operational issue. Currently, neither pipeline operators nor government regulatory authorities have issued corresponding rules, regulations, or evaluation plans. To address this, this paper proposes a multi-dimensional quantitative evaluation model based on the Analytic Hierarchy Process (AHP), integrating both commercial and technical indicators. The model comprehensively considers six indicators: pipeline transportation fees, pipeline gas line pack, maximum gas storage capacity, pipeline pressure drop, energy consumption, and user satisfaction and constructs a quantitative evaluation system. Through the consistency check of the judgment matrix (CR = 0.06213 < 0.1), the weights of the respective indicators are determined as follows: 0.2584, 0.2054, 0.1419, 0.1166, 0.1419, and 0.1357. The specific score of each indicator is determined based on the deviation between each evaluation indicator and the theoretical optimal value under different gas volume allocation schemes. Combined with the weight proportion, the total score of each gas volume allocation scheme is finally calculated, thereby obtaining the recommended gas volume allocation scheme. The evaluation model was applied to a practical pipeline project. The evaluation results show that the AHP-based evaluation model can effectively quantify the advantages and disadvantages of different gas volume allocation schemes. Notably, the gas volume allocation scheme under normal operating conditions is not the optimal one; instead, it ranks last according to the scores, with a score 0.7 points lower than that of the optimal scheme. In addition, to facilitate rapid decision-making for gas volume allocation schemes, this paper designs a program using HTML and develops a gas volume allocation evaluation program with JavaScript based on the established model. This self-developed program has the function of automatically generating scheme scores once the proposed gas volume allocation for each station is input, providing a decision support tool for pipeline operators, shippers, and regulatory authorities. The evaluation model provides a theoretical and methodological basis for the dynamic optimization of natural gas pipeline gas volume allocation schemes under the fair opening model. It is expected to, on the one hand, provide a reference for transactions between pipeline network companies and shippers, and on the other hand, offer insights for regulatory authorities to further formulate detailed and fair gas transmission capacity transaction methods. Full article
(This article belongs to the Special Issue New Advances in Oil, Gas and Geothermal Reservoirs—3rd Edition)
Show Figures

Figure 1

19 pages, 4576 KB  
Article
Study on Engineering Geopolymer Composites (EGCs) Under Sustained Thermal Environment: Linking Strain-Hardening Characteristics, Static/Impact Load Mechanical Properties, and Evolution Mechanism
by Shuo Wang, Wei Wang, Haoxing Liu, Ao Huang and Hongqiang Ma
Buildings 2025, 15(20), 3792; https://doi.org/10.3390/buildings15203792 - 21 Oct 2025
Viewed by 216
Abstract
This study focuses on the performance evolution of Engineering Geopolymer Composites (EGCs) in long-term thermal environments, investigating the mechanical properties and microstructural evolution of alkali-activated fly ash–slag composites under sustained 60 °C thermal conditions. The research results indicate that sustained exposure to 60 [...] Read more.
This study focuses on the performance evolution of Engineering Geopolymer Composites (EGCs) in long-term thermal environments, investigating the mechanical properties and microstructural evolution of alkali-activated fly ash–slag composites under sustained 60 °C thermal conditions. The research results indicate that sustained exposure to 60 °C significantly enhances the static and impact loading compressive strength of EGCs; however, single-slag or high-alkalinity systems exhibit strength retrogression due to insufficient long-term thermal stability. After exposure to elevated temperatures, the tensile strain-hardening curve of EGCs becomes smoother, with a reduced number of cracks but increased crack width, leading to a transition from a distributed multicrack propagation pattern to rapid widening of primary cracks. Due to the bridging effect of PVA fibers, sustained elevated temperature significantly enhances the peak impact load stress of the S50-6 sample. Microscopic analysis attributes this improvement to the matrix-strengthening effect caused by accelerated C-(A)-S-H gel polymerization and refined pore structure under continuous heat, as well as the energy dissipation role of the fiber system. The study recommends an optimal EGC system formulation with a fly ash–slag mass ratio of 1:1 and a Na2O concentration of 4–6%. This research provides a theoretical foundation for understanding the performance evolution and strength stability of EGC materials under sustained elevated temperature. Full article
Show Figures

Figure 1

15 pages, 1629 KB  
Article
Networking Strategy of Small Hydropower Microgrid Under Weak Communication Conditions
by Zhifeng Chen, Zifan Zhang, Zhanhong Liang, Yuan Tang and Na Shen
Energies 2025, 18(20), 5518; https://doi.org/10.3390/en18205518 - 20 Oct 2025
Viewed by 146
Abstract
Small hydropower-dominated microgrids enable power exchange with the main grid during grid-connected operation but face frequency stability challenges during sudden islanding (e.g., line faults), requiring prompt generation curtailment or load shedding. In communication-constrained mountainous regions, conventional methods such as high-frequency tripping or low-frequency [...] Read more.
Small hydropower-dominated microgrids enable power exchange with the main grid during grid-connected operation but face frequency stability challenges during sudden islanding (e.g., line faults), requiring prompt generation curtailment or load shedding. In communication-constrained mountainous regions, conventional methods such as high-frequency tripping or low-frequency load shedding often struggle to achieve precise frequency regulation A hierarchical strategy integrating master station centralized decision making and substation local control is proposed. This study theoretically analyzes the post-islanding frequency dynamics of small hydropower microgrids. The master station formulates optimal shedding decisions using regional power flow data, while substations execute decisions via local measurements to mitigate communication issues. A constrained mathematical model is established, solved using a heuristic algorithm, validated through electromagnetic transient simulations, and compared with traditional schemes. The proposed scheme achieves precise surplus capacity shedding, enhancing frequency stability during abrupt islanding with reduced over-/under-tripping compared to that of conventional methods. This hierarchical strategy enhances frequency regulation capability under communication constraints, ensuring reliable operation of small hydropower microgrids during sudden islanding and providing a practical solution for remote regions with limited communication infrastructure. Full article
Show Figures

Figure 1

18 pages, 10816 KB  
Article
From Continuous Integer-Order to Fractional Discrete-Time: A New Computer Virus Model with Chaotic Dynamics
by Imane Zouak, Ahmad Alshanty, Adel Ouannas, Antonio Mongelli, Giovanni Ciccarese and Giuseppe Grassi
Technologies 2025, 13(10), 471; https://doi.org/10.3390/technologies13100471 - 17 Oct 2025
Viewed by 202
Abstract
Computer viruses remain a persistent technological challenge in information security. They require mathematical frameworks that realistically capture their propagation in digital networks. Classical continuous-time, integer-order models often overlook two key aspects of cyber environments: their inherently discrete nature and the memory-dependent effects of [...] Read more.
Computer viruses remain a persistent technological challenge in information security. They require mathematical frameworks that realistically capture their propagation in digital networks. Classical continuous-time, integer-order models often overlook two key aspects of cyber environments: their inherently discrete nature and the memory-dependent effects of networked interactions. In this work, we introduce a fractional-order discrete computer virus (FDCV) model, derived from a three-dimensional continuous integer-order formulation and reformulated into a two-dimensional fractional discrete framework. We analyze its rich dynamical behaviors under both commensurate and incommensurate fractional orders. Leveraging a comprehensive toolbox including bifurcation diagrams, Lyapunov spectra, phase portraits, the 0–1 test for chaos, spectral entropy, and C0 complexity measures, we demonstrate that the FDCV system exhibits persistent chaos and high dynamical complexity across broad parameter regimes. Our findings reveal that fractional-order discrete models not only enhance the dynamical richness compared to integer-order counterparts but also provide a more realistic representation of malware propagation. These insights advance the theoretical study of fractional discrete systems, supporting the development of potential technologies for cybersecurity modeling, detection, and prevention strategies. Full article
Show Figures

Figure 1

Back to TopTop