Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = the lower Yellow River floodplain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5313 KiB  
Article
Physical Model Research on the Impact of Bridge Piers on River Flow in Parallel Bridge Construction Projects
by Yu Zhang, Bo Chen, Shuo Wang and Xin Zhang
Appl. Sci. 2025, 15(12), 6581; https://doi.org/10.3390/app15126581 - 11 Jun 2025
Viewed by 552
Abstract
In response to the growing demand for improved operational efficiency in road and bridge networks, constructing parallel bridges in complex river sections has become a crucial strategy. This study focuses on a parallel bridge construction project in the Jinan section of the lower [...] Read more.
In response to the growing demand for improved operational efficiency in road and bridge networks, constructing parallel bridges in complex river sections has become a crucial strategy. This study focuses on a parallel bridge construction project in the Jinan section of the lower Yellow River, conducting physical model tests to investigate the unique aspects of the impacts of different pier shapes and spans on the flow characteristics of sediment-laden rivers under real-world engineering scenarios. The experimental results demonstrate that the hydraulic physical model of this river section that was constructed is reliable, with a relative error of <20% in sediment deposition, in the simulation of sediment erosion and deposition, flow velocity patterns, water levels, and riverbed morphological changes during parallel bridge construction in bridge-clustered river sections. The newly constructed bridges have a limited influence on the overall regime of this river section, with their impacts on both banks remaining within controllable limits, and the river flow remains largely stable. In areas with denser pier arrangements, the phenomenon of backwater upstream of the bridges is more pronounced, and under characteristic flood conditions, the newly built bridges amplify the water level differences between the upstream and downstream sections near the bridge sites. The ranges of influence of the water level drop downstream of the bridges increase, particularly in the main flow areas. Flow velocities generally increase in the main channel, while significant fluctuations are observed in the floodplain areas. Flood process experiments reveal that the slope at the junction between the main channel and the floodplain becomes gentler, with noticeable scouring occurring in the main channel. After flood events, the river tends to evolve toward a U-shaped channel, posing certain safety risks to the piers located at the junction of the floodplains and the main channel. This research methodology can serve as a reference for studying flow characteristics in similar parallel bridge construction projects in river sections, and the findings hold significant implications for practical engineering. Full article
Show Figures

Figure 1

21 pages, 5074 KiB  
Article
Research on the Threshold of the Transverse Gradient of the Floodplain in the Lower Yellow River Based on a Flood Risk Assessment Model
by Zhao Zheng, Ming Li, Liyu Quan, Guangzhang Ai, Chaojie Niu and Caihong Hu
Water 2024, 16(17), 2533; https://doi.org/10.3390/w16172533 - 6 Sep 2024
Cited by 1 | Viewed by 1734
Abstract
Due to the influence of water and sediment conditions, engineering projects, channel erosion and siltation, river-related factors, and human activities (such as adjustments in floodplain production structures and village construction), there have been significant variations in the transverse gradient of the floodplain in [...] Read more.
Due to the influence of water and sediment conditions, engineering projects, channel erosion and siltation, river-related factors, and human activities (such as adjustments in floodplain production structures and village construction), there have been significant variations in the transverse gradient of the floodplain in the lower Yellow River. An irrational transverse gradient can lead to the rapid conversion of gravitational potential energy into kinetic energy during the flood evolution process, resulting in increased flow velocity and inundated areas. Exploring reasonable transverse gradients can provide technical support for floodplain management. Using “flood risk assessment” as a keyword, research papers from the Web of Science core database and CNKI published in the past five years were collected. Through a VOS viewer analysis of indicators, a flood risk assessment model based on the “Source–Path–Receptor–Consequence–Resilience” framework was established. A two-dimensional water and sediment model was used to simulate flood inundation scenarios with different transverse gradients in the same flood event, evaluate flood risks in the floodplain, and determine the optimal transverse gradient based on flood risk levels. The results indicate that, compared to low transverse gradients, moderate and high transverse gradients have a more significant driving effect on flood inundation, increasing flood risk opportunities for floodplains. Lower transverse gradients (i.e., TG = 10LG = 1.25‰) are the most favorable for flood protection in the floodplain after flood inundation. Full article
(This article belongs to the Special Issue Socio-Economics of Water Resources Management)
Show Figures

Figure 1

13 pages, 6609 KiB  
Article
The Correlation between Water–Sediment Index and Floodplain Transverse Slope Based on Wavelet Analysis
by Linjuan Xu, Haifan Xu, Jun Yan, Junhua Li, Zhao Kou and Xiangyu Gao
Water 2024, 16(17), 2418; https://doi.org/10.3390/w16172418 - 27 Aug 2024
Viewed by 868
Abstract
The floodplain transverse slope is a significant parameter reflecting the degree of development of a secondary suspended river, as well as a crucial index of the flood risk in the river channel. Clarifying the factors that influence the evolution of the floodplain transverse [...] Read more.
The floodplain transverse slope is a significant parameter reflecting the degree of development of a secondary suspended river, as well as a crucial index of the flood risk in the river channel. Clarifying the factors that influence the evolution of the floodplain transverse slope has always been a hot and difficult topic for researchers working on the Yellow River management. We took the severe section of the secondary suspended river from Dongbatou to Gaocun in the lower Yellow River as the research object, selecting the annual runoff, annual sediment load, annual sediment coefficient, and the intensity of flood-season flow scouring at the Huayuankou station in the downstream as the water–sediment indexes. The correlation between different water–sediment indexes and the floodplain transverse slope under three modes: interannual, flood season, and flood-season overbank was studied through methods such as cross-wavelet transform and wavelet coherence analysis. The results showed that under the three modes, the annual sediment load and annual sediment coefficient had a high correlation with the evolution cycle of the transverse slope, followed by the intensity of flood-season flow scouring, and the annual runoff had the lowest correlation. Meanwhile, the change in the transverse slope had a good correlation with the flood-season overbank mode, indicating there was a high similarity between the water–sediment characteristics of floodplain flooding and the evolution cycle of the transverse slope; that is, the change in the transverse slope is greatly influenced by floodplain flooding events. Full article
(This article belongs to the Special Issue Restoration Methods and Planning Techniques for River Ecology)
Show Figures

Figure 1

25 pages, 4573 KiB  
Article
Modeling and Evaluating the Socio-Economic–Flood Safety–Ecological System of Landong Floodplain Using System Dynamics and the Weighted Coupling Coordination Degree Model
by Ming Li, Chaojie Niu, Xiang Li, Liyu Quan, Wenzhong Li, Chengshuai Liu, Chen Shi, Shan-e-hyder Soomro, Qike Song and Caihong Hu
Water 2024, 16(17), 2366; https://doi.org/10.3390/w16172366 - 23 Aug 2024
Cited by 4 | Viewed by 1345
Abstract
The lower course of the Yellow River is a “hanging river” across the hinterland of China, and the safety of its flood control measures/systems is closely tied to the stability of the nation. Ensuring high-quality, sustainable development of the lower Yellow River floodplain [...] Read more.
The lower course of the Yellow River is a “hanging river” across the hinterland of China, and the safety of its flood control measures/systems is closely tied to the stability of the nation. Ensuring high-quality, sustainable development of the lower Yellow River floodplain while maintaining flood safety is crucial for the entire Yellow River Basin. Previous studies have primarily focused on the overall development of the Yellow River Basin or the economic–ecological coupling development of cities along the river, often neglecting the flood safety development of the floodplain. This study optimizes the socio-economic–flood-safety–ecological (SFE) system of the typical downstream Landong floodplain within the Yellow River Basin. The system dynamics model (SDM) can simulate the dynamic behavior of SFE systems by constructing mathematical models that incorporate feedback loops and time delays. The primary components include causal loop modules and stock-flow modules. Then, a coupling coordination degree model for the Landong floodplain is established using a comprehensive subjective and objective weighting method, assessing the SFE system’s coordination under five scenarios: inertial development, economic development, environmental protection, flood safety, and sustainable development. The results of historical and validity tests indicate that the SDM can effectively simulate the coupling coordination degree of the SFE system. The study results suggest that the coupling coordination degree increases the most under the sustainable development scenario, indicating that the development of the Landong floodplain should not only focus on socio-economic growth, but should also consider flood safety and ecological concerns. In addition, comprehensive regulation from socio-economic, flood safety, and ecological environment indicators are necessary to achieve high-quality, coordinated development. This study has significant implications for policy formulation and management to achieve high-quality and sustainable development in the downstream floodplain of the Yellow River. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

18 pages, 1334 KiB  
Review
Overbank Flow, Sediment Transport, and Channel Morphology in the Lower Yellow River: A Review
by Shasha Han, Lianjun Zhao, Ao Chang, Baichuan Liu, Jingwen Wang and Jie Li
Water 2024, 16(9), 1213; https://doi.org/10.3390/w16091213 - 24 Apr 2024
Cited by 4 | Viewed by 2861
Abstract
As a prerequisite and foundation for studying the evolution mechanism of river channels, an in-depth understanding of the cross-sectional morphology adjustment is required. As a starting point, it is crucial to systematically summarize and generalize the research findings on channel morphological adjustment obtained [...] Read more.
As a prerequisite and foundation for studying the evolution mechanism of river channels, an in-depth understanding of the cross-sectional morphology adjustment is required. As a starting point, it is crucial to systematically summarize and generalize the research findings on channel morphological adjustment obtained to date, particularly in the context of the significant changes in the water and sediment conditions of large rivers that have occurred worldwide. This paper provides a comprehensive review of the research findings on the three following aspects of the Lower Yellow River: the transverse distribution of overbank flow velocity, the transverse distribution of suspended sediment concentration, and the morphological adjustment of the river cross-section. There are various equations available to predict the lateral depth–average flow velocity distribution. These equations are classified into the two following categories: empirical and theoretical formulas. Theoretical formulas are obtained through consideration of the cross-sectional morphology, accounting for inertial force terms caused by secondary flow, and momentum transfer between the main channel and its floodplain. Similarly, empirical equations and theoretical formulas for sediment concentration transverse distribution are also summarized, given the different influencing factors and assumptions. We also discuss the morphological adjustment of river cross-sections based on the analysis of measured data, mathematical model calculation, and the physical model test. In particular, we propose the idea of revealing channel cross-section morphology evolution mechanisms from the theoretical level of water and sediment movement and distribution. This review aims to enhance understanding of overbank flow, sediment transport, and channel morphology in the Lower Yellow River and may also serve to some extent as a reference for the evolution and management of channels in other rivers. Full article
(This article belongs to the Special Issue River Modeling and Riverbed Evolution)
Show Figures

Figure 1

15 pages, 3453 KiB  
Communication
Crop Conversion from Annual to Perennials: An Effective Strategy to Affect Soil Multifunctionality
by Panpan Liu, Dong Wang, Yue Li, Ji Liu, Yongxing Cui, Guopeng Liang, Chaoqun Wang, Chao Wang, Daryl L. Moorhead and Ji Chen
Agronomy 2024, 14(3), 594; https://doi.org/10.3390/agronomy14030594 - 15 Mar 2024
Cited by 3 | Viewed by 2671
Abstract
Although crop conversion from annual to perennial crops has been considered as one path towards climate-smart and resource-efficient agriculture, the effects of this conversion on soil multifunctionality and biomass yields remain unclear. The objective of the study is to enhance soil multifunctionality while [...] Read more.
Although crop conversion from annual to perennial crops has been considered as one path towards climate-smart and resource-efficient agriculture, the effects of this conversion on soil multifunctionality and biomass yields remain unclear. The objective of the study is to enhance soil multifunctionality while exerting a marginal influence on farmer income. Here, we investigated the effects of annual winter wheat (Triticum aestivum L.) and two perennial crops (a grass (Lolium perenne L.), a legume (Medicago sativa L.), and their mixture) on soil multifunctionality and biomass yield on the Yellow River floodplain. Soil multifunctionality was assessed by the capacity of water regulation and the multifunctionality of carbon (C), nitrogen (N), and phosphorus (P) cycles. C cycle multifunctionality index is the average of β-xylosidase, β-cellobiosidase, and β-1, 4-glucosidase. N cycle multifunctionality index is the average of L-leucine aminopeptidase and β-1, 4-N-acetyl-glucosaminidase, and acid phosphatase represented (and dominated) P cycle functions. The results showed that perennial crops enhanced soil multifunctionality by 207% for L. perenne, 311% for M. sativa, and 438% for L. perenne + M. sativa, compared with annual winter wheat (T. aestivum). The effect of perennial crops on soil multifunctionality increased with infiltration rate, dissolved organic C, microbial biomass C, and extracellular enzymatic activities for both C and N acquisition. However, we observed that perennial crops had a lower biomass yield than annual crop. Therefore, the transition of agricultural landscapes to perennials needs to take into account the balance between environmental protection and food security, as well as environmental heterogeneity, to promote sustainable agricultural development. Full article
Show Figures

Figure 1

17 pages, 17790 KiB  
Article
Ponds and Wetlands Landscapes of Flood Management in the Cities of the Lower Yellow River Floodplain—The Case of Huaiyang, China
by Lei Zhang and G. Mathias Kondolf
Water 2024, 16(5), 703; https://doi.org/10.3390/w16050703 - 28 Feb 2024
Cited by 1 | Viewed by 2018
Abstract
As interest has increased in green infrastructure and nature-based solutions, traditional approaches to managing landscapes have emerged as providing useful models for sustainable water and land management. From local gazetteers, archives, oral histories, maps, and satellite images, we documented the historical landscapes of [...] Read more.
As interest has increased in green infrastructure and nature-based solutions, traditional approaches to managing landscapes have emerged as providing useful models for sustainable water and land management. From local gazetteers, archives, oral histories, maps, and satellite images, we documented the historical landscapes of ponds and wetlands back to the 17th century in the historic city of Huaiyang on the lower Yellow River floodplain. Like neighboring cities, Huaiyang was protected by a ring levee. As the floodplain rapidly aggraded, cities within the levee became topographically lower than the surrounding landscape. In this context, ponds and wetlands were essential for flood and storm water retention in the low-lying city. These seasonal waterbodies alternated between drying and wetting, providing a dynamic and diverse background for native habitats and human uses. CORONA satellite images ca. 1960s show ponds and wetlands shrinking in the dry season to 35.6% of their wet season extent, while the farmed area expanded 5.3 times. The multiple uses of wetlands included dry-season farming, harvesting wetland plants, and fishing, each use adapted to the localized topographic and hydrologic conditions of the wetlands. The late 20th century saw massive transformations for modern agriculture and urbanization. Understanding the historical evolution of this landscape can provide inspiration for developing green infrastructure and resilient designs that preserve cultural diversity and sustainably manage water in an urbanizing landscape. Full article
Show Figures

Figure 1

16 pages, 9337 KiB  
Article
Paleoflood Reconstruction in the Lower Yellow River Floodplain (China) Based on Sediment Grain Size and Chemical Composition
by Jinsong Yang, Zhe Liu, Jinhui Yin, Liang Tang, Hua Zhao, Lei Song and Peng Zhang
Water 2023, 15(24), 4268; https://doi.org/10.3390/w15244268 - 13 Dec 2023
Cited by 4 | Viewed by 2246
Abstract
Alluvial sedimentary records in the North China Plain are essential in expanding flood history and understanding hazard patterns in the Yellow River basin where inundation risk exists and would probably increase under future global change. A detailed study of the Longwangmiao profile in [...] Read more.
Alluvial sedimentary records in the North China Plain are essential in expanding flood history and understanding hazard patterns in the Yellow River basin where inundation risk exists and would probably increase under future global change. A detailed study of the Longwangmiao profile in the lower Yellow River floodplain reveals ancient flooding records over the late Holocene. Slackwater deposits are distinguished by typical sedimentary features and share similarities with those in the upper and middle Yellow River. This indicates that the traditional method can still be applied for paleoflood research beyond the gorge. However, unlike confined bedrock gorges, multiphase flood deposits of slackwater and overbank deposits represent different stages of flood events. These sedimentary assemblages recorded six flooding periods, further confirmed by the analysis of grain size and geochemistry. The profile was broadly subdivided into two flood-poor phases (3.7–6.7 ka, 0.8–1.7 ka) and three flood-rich phases (before 6.7 ka, 1.7–3.7 ka, after 0.8 ka) based on the dating results. Compared with the existing related research in the nearby area, the synchronous deposition cycles of floods and inter-floods are mainly controlled by the hydrodynamic conditions of the old Yellow River course. This study provides an analogue of paleoflood research in the lower Yellow River and similar alluvial plains. It explores the potential of interlinking paleoflood records in the whole Yellow River basin. Full article
(This article belongs to the Special Issue Landscape Dynamics and Fluvial Geomorphology)
Show Figures

Figure 1

15 pages, 5687 KiB  
Article
Shrinking Desert Channel Response to Increasing Human Interferences and Changing Natural Factors in the Upper Yellow River
by Yongshan Li, Xiaopeng Jia, Haibing Wang, Jian Wang and Qimin Ma
Water 2023, 15(24), 4226; https://doi.org/10.3390/w15244226 - 8 Dec 2023
Cited by 1 | Viewed by 1436
Abstract
Many rivers are tightly coupled and intersected with aeolian sand dunes, whose geomorphological evolution involves not only fluvial processes but also aeolian processes that pose a new challenge to fluvial geomorphological studies. However, due to few field studies, our overall understanding of the [...] Read more.
Many rivers are tightly coupled and intersected with aeolian sand dunes, whose geomorphological evolution involves not only fluvial processes but also aeolian processes that pose a new challenge to fluvial geomorphological studies. However, due to few field studies, our overall understanding of the desert channel geomorphic process is limited. In this paper, we present an outstanding example of desert river channel evolution regulated by aeolian–fluvial interactions in the Ulan Buh Desert of the Yellow River, based on a long time series data set (1966–2019) of channel cross-sections. The results indicate that the lateral addition of aeolian sand, the water–sediment relationship and human interference have a significant role at different periods of channel evolution. Before 1986, higher discharge, lower sediment content and greater intensity of aeolian activity caused aeolian–fluvial interactions and a relative scouring and silting balance in the channel, with little human activity. From 1986 to 2000, an increase in large reservoir operation, vegetation coverage and floodplain farming, coupled with water–sediment relationship variation, caused rapid deposition and shrinkage of the river channel. From 2000 to 2014, the channel kept a slight scouring state. With Haibowan reservoir operation beginning in 2014, the talweg experienced rapid scouring and undercut rebound. However, an expanding and stable floodplain accelerated sedimentation on the floodplain and weakened river lateral erosion, indicating that the channel has shown a shrinkage trend. Meanwhile, wavelet analysis results indicate that human interferences and aeolian activities have no significant role in the periodical characteristics of the channel’s longitudinal erosion and deposition. Therefore, on the whole, increasing human interferences and decreasing wind dynamics have driven this desert wandering channel to be stable, and to gradually form a new balance between erosion and sedimentation. Full article
(This article belongs to the Special Issue Landscape Dynamics and Fluvial Geomorphology)
Show Figures

Figure 1

16 pages, 5447 KiB  
Article
Experimental and Numerical Calculation Study on the Slope Stability of the Yellow River Floodplain from Wantan Town to Liuyuankou
by Hao Wang, Qing Hu, Weiwei Liu, Liqun Ma, Zhiying Lv, Hongyu Qin and Jianbo Guo
Toxics 2023, 11(1), 79; https://doi.org/10.3390/toxics11010079 - 14 Jan 2023
Cited by 3 | Viewed by 2249
Abstract
More than two million people live on the floodplains along the middle and lower streams of the Yellow River. The rapid development of industry and agriculture on both sides of the Yellow River has caused serious pollution of the floodplain soil. Erosion by [...] Read more.
More than two million people live on the floodplains along the middle and lower streams of the Yellow River. The rapid development of industry and agriculture on both sides of the Yellow River has caused serious pollution of the floodplain soil. Erosion by water has led to the destruction of the floodplain which has not only compressed people’s living space but also resulted in a large amount of sediment containing heavy metals entering the river, aggravating water pollution. To further study the law governing the release of pollutants in soil, this work, based on field surveys of the Yellow River floodplain slopes from Wantan town to Liuyuankou, was focused on determining the failure mechanism and laws for the floodplain slope through the combination of a flume experiment and numerical calculations. The results showed that the floodplain slopes, composed of clay and silty sand, presented an interactive structure. Under the action of water erosion, the slope was first scoured to form a curved, suspended layer structure, and then the upper suspended layer toppled. The bank stability coefficient decreased by about 65% when the scour width increased from 0.07 m to 0.42 m, and the water content increased from 20% to 40%. For the failure characteristics, the angle of the failure surface was negatively correlated with the scour width, and the distance from the top failure surface to the bank edge was about 2.5 times that of the scour width. Full article
Show Figures

Figure 1

16 pages, 4407 KiB  
Article
Experimental Study on the Characteristics of Sediment Transport and Sorting in Pressurized Pipes
by Yan Li, Jinliang Zhang, Haijue Xu and Yuchuan Bai
Water 2021, 13(19), 2782; https://doi.org/10.3390/w13192782 - 7 Oct 2021
Cited by 9 | Viewed by 4838
Abstract
Sediment transport in pipes is an effective engineering measure used to reallocate water–sediment resources and is widely used in reservoir flooding and sediment discharging, river dredging, floodplain area deposition, as well as other projects. An experimental investigation of sediment transport in pressurized pipes, [...] Read more.
Sediment transport in pipes is an effective engineering measure used to reallocate water–sediment resources and is widely used in reservoir flooding and sediment discharging, river dredging, floodplain area deposition, as well as other projects. An experimental investigation of sediment transport in pressurized pipes, with heterogeneous sediment (d50 = 107 μm) of the lower Yellow River as the experimental material, is presented. This study mainly explored the change law of sediment transport and sorting in pressure pipes with an internal diameter of 0.08 m. The experimental results reveal that the presence of sediment significantly changed the distribution of the flow velocity field. At the same flow rate, the velocity of the lower water body with a high sediment concentration decreased, while that of the upper water body increased. At a low water flow rate, the increase in sediment concentration caused an asymmetric distribution of the cross-sectional velocity. The vertical concentration decreased in height, and the obvious stratification of vertical sediment particles was observed. With the increase in the flow rate, the asymmetry of the velocity distribution significantly decreased, the concentration profile tended towards being uniformly distributed along the vertical direction, and the separation effect of the sediment particles weakened. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

14 pages, 1709 KiB  
Article
Using Bioacoustics to Examine Vocal Phenology of Neotropical Migratory Birds on a Wild and Scenic River in Arizona
by Heather L. Bateman, Sidney B. Riddle and Erin S. Cubley
Birds 2021, 2(3), 261-274; https://doi.org/10.3390/birds2030019 - 2 Aug 2021
Cited by 7 | Viewed by 5563
Abstract
Passive acoustic recorders have been used successfully as automated survey tools to detect terrestrial wildlife. However, few studies have monitored Neotropical migratory bird use of riparian forest habitat using this technology. Within dryland ecosystems, the forests along rivers support high bird diversity. Many [...] Read more.
Passive acoustic recorders have been used successfully as automated survey tools to detect terrestrial wildlife. However, few studies have monitored Neotropical migratory bird use of riparian forest habitat using this technology. Within dryland ecosystems, the forests along rivers support high bird diversity. Many bird species of conservation concern require these floodplain forest habitats for foraging, migration stop-overs, and breeding. Few studies have explored the use of acoustic records in riverine systems designated for conservation for their natural resource value via the Wild and Scenic Rivers Act in the USA. Using acoustic recorders, we document vocal activity of four riparian-obligate species (Bell’s Vireo, Vireo bellii; Summer Tanager, Piranga rubra; Yellow Warbler, Setophaga petechial; and Yellow-billed Cuckoo, Coccyzus americanus) to determine species occurrence along a Wild and Scenic River. We established three study reaches along the perennial Lower Verde River, in the Sonoran Desert of central Arizona, USA. Nine acoustic recorders were used over the period of 80–120 days during the summer of 2018. We measured vegetation composition and structure in 100 m2 plots paired with acoustic recorders. Visualizing vocal activity showed that three species were calling and singing at each reach; whereas, one species, the cuckoo, had fewer recordings and occurred later in the summer. We demonstrate the utility of acoustic monitoring even when applied to rare birds in complex riparian habitats. This information is important for land management and conservation efforts concerning these species of interest and identifying important habitat features in Southwestern US riparian woodlands. Full article
(This article belongs to the Special Issue Feature Papers of Birds 2021)
Show Figures

Figure 1

16 pages, 4822 KiB  
Article
Spatial Expansion of Human Settlement during the Longshan Period (~4.5–~3.9 ka BP) and Its Hydroclimatic Contexts in the Lower Yellow River Floodplain, Eastern China
by Kaifeng Li, Wenhua Gao, Li Wu, Hainan Hu, Panpan Gong, Suyuan Li, Rui Jin and Yi Si
Land 2021, 10(7), 712; https://doi.org/10.3390/land10070712 - 6 Jul 2021
Cited by 8 | Viewed by 3889
Abstract
Obvious spatial expansion of human settlement occurred in the lower Yellow River floodplain during the Longshan period, but the external factors driving this expansion remain unclear. In this study, we first delineated the hydroclimatic changes at both regional and local scales within and [...] Read more.
Obvious spatial expansion of human settlement occurred in the lower Yellow River floodplain during the Longshan period, but the external factors driving this expansion remain unclear. In this study, we first delineated the hydroclimatic changes at both regional and local scales within and around the lower Yellow River floodplain and then examined the relationships of human settlements with hydroclimatic settings between the pre-Longshan and Longshan periods. The results indicate that the site distribution, site density and hydroclimatic conditions exhibited significant shifts during the pre-Longshan and Longshan periods. In the pre-Longshan period, the intense East Asian summer monsoon and abundant monsoon-related precipitation caused widespread development of lakes and marshes in the lower Yellow River floodplain. As a result, the circumjacent highlands of the lower Yellow River floodplain contained concentrated human settlements. However, the persistent weakening of the East Asian summer monsoon and consequent precipitation decline, in conjunction with accelerated soil erosion due to decreasing forest vegetation and strengthening of human activities on the upstream Loess Plateau in the Longshan period, are likely to have jointly caused both shrinking and faster filling of preexisting lakes and marshes. Subsequently, a large area of arable land had been created in the lower Yellow River floodplain and thus was occupied by locally rapid increasing population, resulting in the notable spatial expansion of human settlements during the Longshan period. Full article
Show Figures

Figure 1

15 pages, 5522 KiB  
Article
Influence of Floodplain Flooding on Channel Siltation Adjustment under the Effect of Vegetation on a Meandering Riverine Beach
by Junhua Li, Mingwu Zhang, Enhui Jiang, Li Pan, Aoxue Wang, Yafei Wang and Shengqi Jian
Water 2021, 13(10), 1402; https://doi.org/10.3390/w13101402 - 18 May 2021
Cited by 4 | Viewed by 2806
Abstract
Flooding in a sediment-laden floodplain is affected by riverine beach vegetation and the shape of a meandering compound channel. The laws of water and sediment exchange and the deposition distribution in beach troughs are very complex. These factors play a significant role in [...] Read more.
Flooding in a sediment-laden floodplain is affected by riverine beach vegetation and the shape of a meandering compound channel. The laws of water and sediment exchange and the deposition distribution in beach troughs are very complex. These factors play a significant role in the formation and development of secondary suspended rivers, in the adjustment of the beach horizontal gradient, and even in the evolution of the flood control situation. In this study, we used a combination of experimental simulation and theoretical research to carry out a generalized model test of floodplain flooding evolution, analyzed the lateral distribution characteristics of sediment-laden flow and sediment factors in a meandering compound channel under the conditions of beach vegetation, and revealed the pros and cons of beach vegetation on the adjustment of the beach and channel siltation. The model test results of the flooding in the floodplain in the compound channel with meandering vegetation showed that the main stream was not only concentrated in the main channel but also appeared near the foot of the left and right bank levees and formed flood discharges along the embankment. As the riverine beach siltation was mainly concentrated at the riverine beach lip, the vegetation on the riverine beach had a significant effect on slowing down the flow velocity. Whether it was a row or full vegetation on both sides of the bank, this played an important role in the stability of the main channel. When there was no vegetation on the riverine beach, the main channel was easy to move. The arrangement of full vegetation on the riverine beach had a uniform effect on the velocity distribution of the riverine beach, which reduced the phenomenon of excessive velocity at the foot of the riverine beach and increased the velocity effect in the main channel. These results will provide a theoretical basis for the utilization of riverine beach areas and river management in the lower Yellow River and have a great significance for enriching the basic theory of water and sediment movement and promoting the integration of hydraulics, river dynamics, and ecology. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

15 pages, 15726 KiB  
Article
Response of Erosion and Deposition of Channel Bed, Banks and Floodplains to Water and Sediment Changes in the Lower Yellow River, China
by Xiaofei Liu, Changxing Shi, Yuanyuan Zhou, Zhenkui Gu and Huijuan Li
Water 2019, 11(2), 357; https://doi.org/10.3390/w11020357 - 20 Feb 2019
Cited by 15 | Viewed by 4925
Abstract
River channel change can be very sensitive to environmental change and human activities and it has been one of the main research topics in fluvial geomorphology. In this study, repeated channel geometric measurements were used to investigate the channel adjustment to water and [...] Read more.
River channel change can be very sensitive to environmental change and human activities and it has been one of the main research topics in fluvial geomorphology. In this study, repeated channel geometric measurements were used to investigate the channel adjustment to water and sediment changes of the lower Yellow River in China in the past few decades. With a high sediment concentration and large variations of water discharge, the lower Yellow River has a much active channel in its form and location, which has hindered previous research efforts to study long-term differentiated erosion/deposition of different geomorphic units in the channel. In this study, we divided each of four typical channel across-sections at hydrological stations in the lower Yellow River into different units according to the geomorphological features, and give a detailed investigation of erosion/deposition processes of these geomorphic units and the interactions between them besides the influence of incoming water and sediment conditions. The results show that with a significant decreasing trend of both the annual runoff and sediment load of the river and abrupt changes in 1985–1996, the overall siltation trend in the river channel before 1990 had been replaced by a slight erosion trend after 2006. In the earlier period, the siltation in the upstream wandering and transitional reaches mainly occurred on floodplains and that in the downstream straight reaches principally on main channel bed. In the later period, erosion occurred mainly on high and low bank slopes in the wandering reaches and on main channel bed in the transitional reaches. The erosion became weak in the wandering reaches after 2010, continued in the transitional reaches, and was still relatively minor in the straight reaches, reflecting the downstream hysteresis channel response to changes in water and sediment discharges down dams. Our results suggest that the seasonal erosion/deposition of a geomorphic unit of the river channel can be attributed to the changes in water and sediment discharges as well as to the interaction between geomorphic units. Siltation on the main channel bed could be attributed to erosion on the bank slopes in both the sections in the wandering and transitional reaches, and erosion of the main channel bed in flood seasons was negatively related with the mean water discharge at the two sections in the straight reaches. This result implies that fixing the bank slopes in the wandering and transitional reaches and raising the water discharge in the straight reach in flood seasons are favorable options for controlling the development of the two-level perching channel of the lower Yellow River. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Back to TopTop