Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (579)

Search Parameters:
Keywords = the defensive secretion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2667 KiB  
Article
VdSOX1 Negatively Regulates Verticillium dahliae Virulence via Enhancing Effector Expression and Suppressing Host Immune Responses
by Di Xu, Xiaoqiang Zhao, Can Xu, Chongbo Zhang and Jiafeng Huang
J. Fungi 2025, 11(8), 576; https://doi.org/10.3390/jof11080576 (registering DOI) - 1 Aug 2025
Abstract
The soil-borne fungal pathogen Verticillium dahliae causes devastating vascular wilt disease in numerous crops, including cotton. In this study, we reveal that VdSOX1, a highly conserved sarcosine oxidase gene, is significantly upregulated during host infection and plays a multifaceted role in fungal [...] Read more.
The soil-borne fungal pathogen Verticillium dahliae causes devastating vascular wilt disease in numerous crops, including cotton. In this study, we reveal that VdSOX1, a highly conserved sarcosine oxidase gene, is significantly upregulated during host infection and plays a multifaceted role in fungal physiology and pathogenicity. Functional deletion of VdSOX1 leads to increased fungal virulence, accompanied by enhanced microsclerotia formation, elevated carbon source utilization, and pronounced upregulation of effector genes, including over 50 predicted secreted proteins genes. Moreover, the VdSOX1 knockout strains suppress the expression of key defense-related transcription factors in cotton, such as WRKY, MYB, AP2/ERF, and GRAS families, thereby impairing host immune responses. Transcriptomic analyses confirm that VdSOX1 orchestrates a broad metabolic reprogramming that links nutrient acquisition to immune evasion. Our findings identify VdSOX1 as a central regulator that promotes V. dahliae virulence by upregulating effector gene expression and suppressing host immune responses, offering novel insights into the molecular basis of host–pathogen interactions and highlighting potential targets for disease management. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

14 pages, 6271 KiB  
Article
Intestinal Alkaline Phosphatase Expression in Response to Escherichia coli Infection in Nursery Pigs
by Sireethon Maksin, Attapon Kamlangdee, Alongkot Boonsoongnern and Prapassorn Boonsoongnern
Animals 2025, 15(15), 2179; https://doi.org/10.3390/ani15152179 - 24 Jul 2025
Viewed by 191
Abstract
Intestinal alkaline phosphatase (IAP) is a brush border enzyme secreted by enterocytes, playing a crucial role in maintaining gut mucosal defense. This study investigated the expression dynamics of IAP in the small intestine of pigs challenged with Escherichia coli (E. coli) K88, compared [...] Read more.
Intestinal alkaline phosphatase (IAP) is a brush border enzyme secreted by enterocytes, playing a crucial role in maintaining gut mucosal defense. This study investigated the expression dynamics of IAP in the small intestine of pigs challenged with Escherichia coli (E. coli) K88, compared to healthy controls. Five-week-old pigs (n = 8) were orally administered E. coli K88 at a concentration of 2 × 108 CFU/mL, with a dose of 2 mL per pig at 0 and 24 h. Five days post-challenge, tissue samples from the duodenum, jejunum, and ileum were collected for mucosal morphometric analysis and evaluation of IAP expression via immunohistochemistry, Western blotting, and real-time PCR. The results revealed the presence of IAP on the apical surface of villi throughout the small intestine, along with significantly upregulated IAP expression in E. coli-challenged pigs compared to controls. These findings suggest that Gram-negative bacteria such as E. coli can induce IAP expression, likely through lipopolysaccharide (LPS) stimulation, thereby enhancing its enzymatic activity as part of the intestinal defense mechanism. This study provides insight into the protective role of IAP and highlights its potential as a biomarker for assessing gut health and diagnosing enteric infections in animals. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

25 pages, 3050 KiB  
Review
REG3A: A Multifunctional Antioxidant Lectin at the Crossroads of Microbiota Regulation, Inflammation, and Cancer
by Jamila Faivre, Hala Shalhoub, Tung Son Nguyen, Haishen Xie and Nicolas Moniaux
Cancers 2025, 17(14), 2395; https://doi.org/10.3390/cancers17142395 - 19 Jul 2025
Viewed by 424
Abstract
REG3A, a prominent member of the human regenerating islet-derived (REG) lectin family, plays a pivotal and multifaceted role in immune defense, inflammation, and cancer biology. Primarily expressed in gastrointestinal epithelial cells, REG3A reinforces barrier integrity, orchestrates mucosal immune responses, and regulates host–microbiota interactions. [...] Read more.
REG3A, a prominent member of the human regenerating islet-derived (REG) lectin family, plays a pivotal and multifaceted role in immune defense, inflammation, and cancer biology. Primarily expressed in gastrointestinal epithelial cells, REG3A reinforces barrier integrity, orchestrates mucosal immune responses, and regulates host–microbiota interactions. It also functions as a potent non-enzymatic antioxidant, protecting tissues from oxidative stress. REG3A expression is tightly regulated by inflammatory stimuli and is robustly induced during immune activation, where it limits microbial invasion, dampens tissue injury, and promotes epithelial repair. Beyond its antimicrobial and immunomodulatory properties, REG3A contributes to the resolution of inflammation and the maintenance of tissue homeostasis. However, its role in cancer is highly context-dependent. In some tumor types, REG3A fosters malignant progression by enhancing cell survival, proliferation, and invasiveness. In others, it acts as a tumor suppressor, inhibiting growth and metastatic potential. These opposing effects are likely dictated by a combination of factors, including the tissue of origin, the composition and dynamics of the tumor microenvironment, and the stage of disease progression. Additionally, the secreted nature of REG3A implies both local and systemic effects, further modulated by organ-specific physiology. Experimental variability may also reflect differences in methodologies, analytical tools, and model systems used. This review synthesizes current knowledge on the pleiotropic functions of REG3A, emphasizing its roles in epithelial defense, immune regulation, redox homeostasis, and oncogenesis. A deeper understanding of REG3A’s pleiotropic effects could open up new therapeutic avenues in both inflammatory disorders and cancer. Full article
(This article belongs to the Special Issue Lectins in Cancer)
Show Figures

Figure 1

21 pages, 1384 KiB  
Review
Biocontrol Strategies Against Plant-Parasitic Nematodes Using Trichoderma spp.: Mechanisms, Applications, and Management Perspectives
by María Belia Contreras-Soto, Juan Manuel Tovar-Pedraza, Alma Rosa Solano-Báez, Heriberto Bayardo-Rosales and Guillermo Márquez-Licona
J. Fungi 2025, 11(7), 517; https://doi.org/10.3390/jof11070517 - 11 Jul 2025
Viewed by 546
Abstract
Plant-parasitic nematodes represent a significant threat to agriculture, causing substantial economic losses worldwide. Among the biological alternatives for their control, the genus Trichoderma has emerged as a promising solution for suppressing various nematode species. This article reviews key studies on the interaction between [...] Read more.
Plant-parasitic nematodes represent a significant threat to agriculture, causing substantial economic losses worldwide. Among the biological alternatives for their control, the genus Trichoderma has emerged as a promising solution for suppressing various nematode species. This article reviews key studies on the interaction between Trichoderma spp. and plant-parasitic nematodes, highlighting the most studied species such as Trichoderma harzianum, Trichoderma longibrachiatum, Trichoderma virens, and Trichoderma viride, mainly against the genera Meloidogyne, Pratylenchus, Globodera, and Heterodera. Trichoderma spp. act through mechanisms such as mycoparasitism, antibiosis, competition for space in the rhizosphere, production of lytic enzymes, and modulation of plant defense responses. They also produce metabolites that affect nematode mobility, reproduction, and survival, such as gliotoxin, viridin and cyclosporine A. In addition, they secrete enzymes such as chitinases, proteases, lipases, and glucanases, which degrade the cuticle of nematodes and their eggs. Furthermore, Trichoderma spp. induce systemic resistance in plants through modulation of phytohormones such as jasmonic acid, ethylene, salicylic acid and auxins. The use of Trichoderma in integrated nematode management enables its application in combination with crop rotation, organic amendments, plant extracts, and resistant varieties, thereby reducing the reliance on synthetic nematicides and promoting more sustainable and climate-resilient agriculture. Full article
Show Figures

Figure 1

10 pages, 1121 KiB  
Article
In Experimental Tuberculosis Infection, the Bacteriostatic Function of Macrophages Is Activated by Th1 CD4+ T-Effectors in a Nitrite-Independent Manner
by Vladimir V. Evstifeev, Konstantin B. Majorov, Vadim G. Avdienko, Vladimir V. Yeremeev and Galina S. Shepelkova
Int. J. Mol. Sci. 2025, 26(14), 6573; https://doi.org/10.3390/ijms26146573 - 8 Jul 2025
Viewed by 354
Abstract
The pivotal component in the protection against TB is the tissue macrophages (Mф). These cells have been demonstrated to play a crucial role in the elimination of pathogens and mycobacterial killing. Elucidation of the molecular and phenotypic events that determine the outcome of [...] Read more.
The pivotal component in the protection against TB is the tissue macrophages (Mф). These cells have been demonstrated to play a crucial role in the elimination of pathogens and mycobacterial killing. Elucidation of the molecular and phenotypic events that determine the outcome of infection in Mф is fundamental to understanding the key features of these cells that are so important in fighting infection. Mф activation is driven by cytokines and other inflammatory mediators secreted by T lymphocytes. The interaction between Mycobacterium tuberculosis (Mtb) and host Мф has been the subject of extensive in vitro research. This dynamic interplay represents a pivotal step in the progression of mycobacterial infection because pulmonary macrophages constitute the primary line of defense against the pathogen, thereby serving as the initial immune cells to which Mtb must adapt to establish a replicative foothold within the host. Our studies have demonstrated that highly differentiated Th1 effectors with the CD27low phenotype exhibit superior efficacy in activating both peritoneal (Mф: T cell ratio ranging from 125:1 to 625:1) and pulmonary macrophages (Mф: T cell ratio = 5:1) compared to cells with the CD27high phenotype. Furthermore, our findings indicate that this activation mechanism is not contingent upon the production of reactive nitrogen species. To effectively activate the bacteriostatic function of macrophages, CD27high T lymphocytes must differentiate into effectors with the CD27low phenotype. Full article
Show Figures

Figure 1

27 pages, 1835 KiB  
Review
Investigating the Antimicrobial Activity of Anuran Toxins
by Manuela B. Pucca, Anne Grace A. C. Marques, Ana Flávia M. Pereira, Guilherme Melo-dos-Santos, Felipe A. Cerni, Beatriz C. S. Jacob, Isabela G. Ferreira, Rafael L. Piccolo, Marco A. Sartim, Wuelton M. Monteiro and Isadora S. Oliveira
Microorganisms 2025, 13(7), 1610; https://doi.org/10.3390/microorganisms13071610 - 8 Jul 2025
Viewed by 379
Abstract
Anurans, commonly known as frogs and toads, comprise a diverse group of amphibians distributed across all continents except Antarctica. This manuscript provides a detailed overview of the global anuran fauna, emphasizing their biology, remarkable adaptations, and ecological importance. A particular focus is placed [...] Read more.
Anurans, commonly known as frogs and toads, comprise a diverse group of amphibians distributed across all continents except Antarctica. This manuscript provides a detailed overview of the global anuran fauna, emphasizing their biology, remarkable adaptations, and ecological importance. A particular focus is placed on their specialized cutaneous glands, which are crucial for defense, communication, and survival. These glands secrete a diverse array of bioactive compounds, including peptides, alkaloids, and other secondary metabolites, shaped by evolutionary pressures. Among these compounds, toxins with potent antimicrobial properties stand out due to their ability to combat a broad spectrum of microbial pathogens. We explore the chemical diversity of these secretions, analyzing their modes of action and their potential applications in combating antibiotic-resistant bacteria and other pathogens. By integrating knowledge, this study underscores the importance of anurans as both ecological keystones and a valuable resource for biotechnological innovations. Furthermore, it highlights the urgent need to conserve anuran biodiversity for harnessing their potential in the development of novel antimicrobial agents to address global health challenges. Full article
(This article belongs to the Special Issue Exploring Antimicrobial Properties of Animal Toxins)
Show Figures

Figure 1

23 pages, 2062 KiB  
Review
Potential Compounds as Inhibitors of Staphylococcal Virulence Factors Involved in the Development of Thrombosis
by Anna Lichota, Krzysztof Gwozdzinski and Monika Sienkiewicz
Toxins 2025, 17(7), 340; https://doi.org/10.3390/toxins17070340 - 4 Jul 2025
Viewed by 392
Abstract
For many years, staphylococci have been detected mainly in infections of the skin and soft tissues, organs, bone inflammations, and generalized infections. Thromboembolic diseases have also become a serious plague of our times, which, as it turns out, are closely related to the [...] Read more.
For many years, staphylococci have been detected mainly in infections of the skin and soft tissues, organs, bone inflammations, and generalized infections. Thromboembolic diseases have also become a serious plague of our times, which, as it turns out, are closely related to the toxic effects of staphylococci. Staphylococcus aureus, because of the presence of many different kinds of virulence factors, is capable of manipulating the host’s innate and adaptive immune responses. These include toxins and cofactors that activate host zymogens and exoenzymes, as well as superantigens, which are highly inflammatory and cause leukocyte death. Coagulases and staphylokinases can control the host’s coagulation system. Nucleases and proteases inactivate various immune defense and surveillance proteins, including complement components, peptides and antibacterial proteins, and surface receptors that are important for leukocyte chemotaxis. On the other hand, secreted toxins and exoenzymes are proteins that disrupt the endothelial and epithelial barrier as a result of cell lysis and disintegration of linking proteins, which ultimately increases the risk of thromboembolism. In this review, we discuss various virulence factors and substances that may inhibit their activity. Full article
Show Figures

Graphical abstract

32 pages, 5789 KiB  
Article
Phytochemical Evaluation and Antioxidant-Antimicrobial Potential of Lilium spp. Bulbs: Therapeutic and Dermatocosmetic Applications
by Simona Lupșor, Gabriela Stanciu, Radu Emilian Cristache, Emilia Pănuș, Cristiana Radulescu, Radu Lucian Olteanu, Claudia Lavinia Buruleanu and Raluca Maria Stirbescu
Plants 2025, 14(13), 1917; https://doi.org/10.3390/plants14131917 - 22 Jun 2025
Viewed by 437
Abstract
Lilium spp. bulbs are traditionally valued for their medicinal properties, yet their phytochemical profile and biomedical potential remain underexplored. This study aims to assess the antioxidant, antimicrobial, and dermatocosmetic potential of ethanolic macerates from five Lilium spp. cultivars. Bulb macerates were obtained using [...] Read more.
Lilium spp. bulbs are traditionally valued for their medicinal properties, yet their phytochemical profile and biomedical potential remain underexplored. This study aims to assess the antioxidant, antimicrobial, and dermatocosmetic potential of ethanolic macerates from five Lilium spp. cultivars. Bulb macerates were obtained using 70% and 96% ethanol and evaluated for total phenolic content (TPC), total flavonoid content (TFC), condensed tannins (CTC), mineral composition, and antioxidant activity (DPPH assay). Spectroscopic (FTIR) and antimicrobial analyses were also performed. Macerates from Lilium “Dark Secret” (LD-70) and Lilium asiaticum “White” (LA-70) exhibited the highest levels of TPC (225 and 162.5 mg GAE/100 g f.w.), TFC (26.12 and 21.75 mg QE/100 g f.w.), and antioxidant activity (81.5 and 58.75 mg GAE/100 g f.w.). FTIR confirmed the phenolic composition, while mineral analysis revealed a high potassium content and negligible toxic metals. Selective antimicrobial activity was observed against Escherichia coli, Pseudomonas aeruginosa, and Candida albicans, particularly for LD-70 and LA-70 macerates. Based on these findings, stable hydrogel formulations incorporating LD-70 and LA-70 were developed, showing favorable pH, rheology, and sustained antioxidant activity over 60 days. These findings support the integration of Lilium-derived macerates into dermatocosmetic formulations targeting skin protection and microbial defense. Full article
(This article belongs to the Special Issue Plant Extracts for Health Benefits and Nutrition)
Show Figures

Figure 1

21 pages, 1877 KiB  
Review
Puerarin as a Phytochemical Modulator of Gastrointestinal Homeostasis in Livestock: Molecular Mechanisms and Translational Applications
by Jiehong Zhou, Jianyu Lv, Xin Chen, Tian Li, Jianzhong Shen, Zhanhui Wang, Chongshan Dai and Zhihui Hao
Antioxidants 2025, 14(6), 756; https://doi.org/10.3390/antiox14060756 - 19 Jun 2025
Viewed by 786
Abstract
The gut serves as the main site for nutrient digestion and absorption. Simultaneously, it functions as the body’s largest immune organ, playing a dual role in sustaining physiological equilibrium and offering immunological defense against intestinal ailments. Maintaining the structural and functional integrity of [...] Read more.
The gut serves as the main site for nutrient digestion and absorption. Simultaneously, it functions as the body’s largest immune organ, playing a dual role in sustaining physiological equilibrium and offering immunological defense against intestinal ailments. Maintaining the structural and functional integrity of the intestine is paramount for ensuring animal health and productivity. Puerarin, a naturally derived isoflavonoid from the Pueraria species, exhibits multifaceted bioactivities, such as antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties. Emerging evidence highlights puerarin’s capacity to enhance gut health in farm animals through four pivotal mechanisms: (1) optimization of intestinal morphology via crypt-villus architecture remodeling, (2) augmentation of systemic and mucosal antioxidant defenses through Nrf2/ARE pathway activation, and (3) reinforcement of intestinal barrier function by regulating tight junction proteins (e.g., ZO-1, occludin), mucin secretion, intestinal mucosal immune barrier, the composition of microbiota, and the derived beneficial metabolites; (4) regulating the function of the intestinal nervous system via reshaping the distribution of intestinal neurons and neurotransmitter secretion function. This review synthesizes current knowledge on puerarin’s protective effects on intestinal physiology in farm animals, systematically elucidates its underlying molecular targets (including TLR4/NF-κB, MAPK, and PI3K/Akt signaling pathways), and critically evaluates its translational potential in mitigating enteric disorders such as post-weaning diarrhea and inflammatory bowel disease in agricultural practices. Full article
(This article belongs to the Topic Recent Advances in Veterinary Pharmacology and Toxicology)
Show Figures

Figure 1

29 pages, 1900 KiB  
Article
MSC1 Cells Suppress Colorectal Cancer Cell Growth via Metabolic Reprogramming, Laminin–Integrin Adhesion Signaling, Oxidative Stress Resistance, and a Tumor-Suppressive Secretome
by Panagiota-Angeliki Galliou, Niti Argyri, Papaioannou Maria, George Koliakos and Nikolaos A. Papanikolaou
Biomedicines 2025, 13(6), 1503; https://doi.org/10.3390/biomedicines13061503 - 19 Jun 2025
Viewed by 697
Abstract
Background/Objectives: Mesenchymal stem cells (MSCs) possess immunomodulatory properties, tumor-homing, and low immunogenicity, making them attractive for cell-based cancer therapies, but their role in colorectal cancer (CRC) remains controversial. The MSC1 phenotype, a pro-inflammatory, tumor-suppressive state induced by short-term, low-dose LPS activation via TLR4, [...] Read more.
Background/Objectives: Mesenchymal stem cells (MSCs) possess immunomodulatory properties, tumor-homing, and low immunogenicity, making them attractive for cell-based cancer therapies, but their role in colorectal cancer (CRC) remains controversial. The MSC1 phenotype, a pro-inflammatory, tumor-suppressive state induced by short-term, low-dose LPS activation via TLR4, has shown therapeutic promise but remains poorly characterized in CRC. We aimed to elucidate MSC1’s tumor-suppressive mechanisms and validate its activity against CRC cells using an integrated bioinformatics and in vitro approach. Methods: We constructed a high-confidence protein-protein interaction (PPI) network in Wharton’s jelly-derived MSCs (WJ-MSCs) following TLR4 activation to uncover enriched signaling pathways, transcriptional regulators, and secreted factors. Functional and transcriptional enrichment analyses pinpointed key mechanisms. We then co-cultured MSC1 cells with CRC cells to assess effects on proliferation and metabolism. Results: Network analysis revealed six tumor-suppressive mechanisms of MSC1 cells: (i) Metabolic reprogramming via enhanced glucose and lipid uptake, phosphoinositide signaling, and membrane/protein recycling, (ii) Robust antioxidant defenses, including SOS signaling and system xc⁻, (iii) Extracellular matrix stabilization and laminin-111–integrin-mediated adhesion, (iv) Secretome with direct anti-cancer effects, (v) Regulation of survival and cancer-associated fibroblasts (CAFs) formation inhibition through balanced proliferation, apoptosis, and epigenetic signals, (vi) Controlled pro-inflammatory signaling with anti-inflammatory feedback. In vitro, MSC1 cells significantly suppressed CRC cell proliferation and metabolic activity versus controls. Conclusions: This study provides the first mechanistic map of MSC1’s tumor-suppressive functions in CRC, extending beyond immunomodulation to include metabolic competition, ECM stabilization, and anti-cancer secretome activity. These findings establish MSC1 cells as a novel therapeutic strategy for CRC in cell-based cancer therapies. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Graphical abstract

29 pages, 1659 KiB  
Review
Albumin: Bountiful Arrow in the Quiver of Liver and Its Significance in Physiology
by Ananda Baral
Livers 2025, 5(2), 27; https://doi.org/10.3390/livers5020027 - 19 Jun 2025
Viewed by 933
Abstract
Albumin is the most abundant protein synthesized exclusively by the hepatocytes in the liver. Once secreted into plasma, it helps in the maintenance of osmotic pressure, as well as the exertion of defensive roles such as anti-oxidative and anti-inflammatory functions. Dysregulation in the [...] Read more.
Albumin is the most abundant protein synthesized exclusively by the hepatocytes in the liver. Once secreted into plasma, it helps in the maintenance of osmotic pressure, as well as the exertion of defensive roles such as anti-oxidative and anti-inflammatory functions. Dysregulation in the synthesis and clearance of albumin is observed in various hepatic and extra-hepatic diseases. Abnormal levels of albumin could be either a cause or an effect of various pathological ailments, including hepatic, cardiac, renal, neurological, etc. Owing to its long half-life and multiple binding sites in its heart-shaped structure, it interacts with various internal agents, such as hormones, or external substances like drugs, which is why transportation can be one of its many functions. Additionally, albumin’s drug interactions, as well as displacement of albumin–drug binding, could have serious clinical consequences, and careful considerations should be made in determining an appropriate drug regimen to achieve a desired therapeutic outcome with minimal side effects. Moreover, albumin also undergoes several post-translational modifications that can influence its physiological roles, including drug binding and antioxidant functions. Furthermore, it has a complicated role in physiology, where it can help in maintaining plasma oncotic pressure and prevent endothelial cell apoptosis but can have adverse effects on the lungs and kidneys. These adverse effects are mainly attributed to ER stress and inflammasome activation. This narrative review provides an overview of the general biology of albumin and its effects in physiology, with a focus on its beneficial and adverse effects and the underlying molecular mechanisms. Full article
Show Figures

Figure 1

15 pages, 1363 KiB  
Review
Unveiling the Defenses: A Current and Comprehensive Review of Coleoptera Carabidae Strategies
by Teresa Bonacci
Biology 2025, 14(6), 709; https://doi.org/10.3390/biology14060709 - 17 Jun 2025
Viewed by 554
Abstract
The Carabidae family, or ground beetles, is a wide and ecologically significant group within the Coleoptera order, known for its role as natural predators of agricultural pests and as bioindicators of ecosystem health. These beetles employ a variety of behavioral, morphological, and chemical [...] Read more.
The Carabidae family, or ground beetles, is a wide and ecologically significant group within the Coleoptera order, known for its role as natural predators of agricultural pests and as bioindicators of ecosystem health. These beetles employ a variety of behavioral, morphological, and chemical defense strategies to protect themselves from predators. These mechanisms include gregariousness, stridulation, regurgitation, and chemical defenses, such as the secretion of irritating compounds from specialized glands. The defensive strategies of carabids are classified into passive and active systems, each with varying energetic costs. Chemical substances (e.g., Formic acid, Methacrylic acid, Tiglic acid, Ethacrilic acid, Isovaleric acid, Salicylaldehyde, 1,4-Benzoquinone, Toluquinone, 13-2Kt tridecan-2-one, Undecane, Tridecane, Pentadecane, M-cresol) are particularly important, as they serve to deter predators and combat pathogens like bacteria and fungi. Ground beetles utilize both polar and non-polar compounds in their defense, all contributing to their ecological success. This review explores the array of defensive mechanisms in the Carabidae family, highlighting experimental studies, field observations, and reviews published over the last five decades. The aim is to provide a comprehensive understanding of how these strategies enhance the survival and fitness of carabid beetles in their natural environments. Full article
(This article belongs to the Section Behavioural Biology)
Show Figures

Graphical abstract

21 pages, 2694 KiB  
Article
Isolation and Identification of Endophytic Bacterium B5 from Mentha haplocalyx Briq. and Its Biocontrol Mechanisms Against Alternaria alternata-Induced Tobacco Brown Spot
by Qunying Qin, Boyu Liu, Baige Ma, Xihong Wei, Yi Zhou and Zhengxiang Sun
J. Fungi 2025, 11(6), 446; https://doi.org/10.3390/jof11060446 - 12 Jun 2025
Viewed by 1259
Abstract
The fungus Alternaria alternata, which causes tobacco brown spot disease, poses a serious threat to the tobacco industry. Beneficial microorganisms and their secondary metabolites have emerged as a promising green strategy for disease management. This study recovered 16 endophytic bacterial strains from [...] Read more.
The fungus Alternaria alternata, which causes tobacco brown spot disease, poses a serious threat to the tobacco industry. Beneficial microorganisms and their secondary metabolites have emerged as a promising green strategy for disease management. This study recovered 16 endophytic bacterial strains from Mentha haplocalyx Briq., a therapeutic herb. The study revealed that strain B5, with an inhibition rate of 82.76%, exhibited the highest antifungal activity against A. alternata. This strain exhibited broad-spectrum antifungal activity, with inhibition rates ranging from 66.34% to 87.23%. Phylogenetic analysis of 16S rDNA and gyrA gene sequences identified it as Bacillus velezensis (GenBank: PV168970 and PV173738). Further characterization revealed that strain B5 can secrete cell wall-degrading enzymes, produce IAA, and synthesize siderophores. The growth of mycelium in A. alternata was greatly reduced by both the ethyl acetate extract and the filtered liquid from the sterile fermentation, resulting in marked morphological abnormalities. Multiple antifungal active substances were identified through liquid LC-MS analysis. Greenhouse experiments demonstrated that the B5 fermentation broth effectively suppressed the occurrence of tobacco brown spot disease, achieving a relative control efficacy of 60.66%, comparable to that of 10% difenoconazole water dispersible granule (WDG). Additionally, strain B5 enhances plant disease resistance by activating the activities of key defense enzymes. B. velezensis B5 serves as a safe alternative to chemical fungicides and is highly effective at controlling tobacco brown spot disease. Full article
(This article belongs to the Special Issue Biological Control of Fungal Plant Pathogens)
Show Figures

Figure 1

16 pages, 7509 KiB  
Article
Transcriptomic Analysis of Venom Secretion in Achelura yunnanensis: Lipid Metabolism, Redox Reactions, and Structural Adaptations
by Ping Liu, Hui-Qin Zhu, Si-Ming Wang, Yu-Qian Wang, Zhen-Yuan Ruan, Lu Qiao, Xing-Xing Wu, Qing-Hua Yan, Ya-Ping Lu, Bing Bai and Wei-Feng Ding
Insects 2025, 16(6), 588; https://doi.org/10.3390/insects16060588 - 3 Jun 2025
Viewed by 524
Abstract
As a key pest damaging urban greenery in Yunnan, China, Achelura yunnanensis larvae secrete venom for defense, yet the molecular basis of this process remains poorly understood. This study aimed to uncover the molecular mechanisms of venom secretion by comparing the dorsal epidermis [...] Read more.
As a key pest damaging urban greenery in Yunnan, China, Achelura yunnanensis larvae secrete venom for defense, yet the molecular basis of this process remains poorly understood. This study aimed to uncover the molecular mechanisms of venom secretion by comparing the dorsal epidermis tissue (LDET) with the larval proleg tissue (LP). We performed transcriptomic analysis using RNA sequencing to identify differentially expressed genes between LDET and LP (10 biological replicates per tissue type), followed by functional enrichment and gene expression correlation analyses to explore tissue-specific characteristics. LDET exhibited significant upregulation of pathways related to lipid metabolism, redox reactions, and surface protective structure formation, suggesting their roles in venom stabilization, activation, and safe secretion. Conversely, genes linked to non-venom-related functions, such as extracellular matrix organization and epidermal development, were downregulated in LDET, indicating resource reallocation toward venom production. These findings reveal a multi-component mechanism in LDET that supports venom secretion through metabolic and structural adaptations, with lipid metabolism genes constituting 18.3% of total differentially expressed genes, highlighting evolutionary trade-offs in insect defense. This study provides new insights into insect venom secretion and offers potential targets for pest control strategies. Full article
(This article belongs to the Special Issue Insect Transcriptomics)
Show Figures

Figure 1

14 pages, 2575 KiB  
Article
Lactic Acid Bacteria (LAB) and Their Bacteriocins for Applications in Food Safety Against Listeria monocytogenes
by Cristian Piras, Alessio Soggiu, Viviana Greco, Pierluigi Aldo Di Ciccio, Luigi Bonizzi, Anna Caterina Procopio, Andrea Urbani and Paola Roncada
Antibiotics 2025, 14(6), 572; https://doi.org/10.3390/antibiotics14060572 - 3 Jun 2025
Viewed by 939
Abstract
Background/Objectives: Listeria monocytogenes is a major foodborne pathogen responsible for listeriosis, a serious illness with high morbidity and mortality, particularly in vulnerable populations. Its persistence in food processing environments and resistance to conventional preservation methods pose significant food safety challenges. Lactic acid bacteria [...] Read more.
Background/Objectives: Listeria monocytogenes is a major foodborne pathogen responsible for listeriosis, a serious illness with high morbidity and mortality, particularly in vulnerable populations. Its persistence in food processing environments and resistance to conventional preservation methods pose significant food safety challenges. Lactic acid bacteria (LAB) offer a promising natural alternative due to their antimicrobial properties, especially through the production of bacteriocins. This study investigates the competitive interactions between Lactococcus lactis and L. monocytogenes under co-culture conditions, with a focus on changes in their secretomes to better understand how LAB-derived bacteriocins can help mitigate the Listeria burden. Methods: Proteomic approaches, including Tricine-SDS-PAGE, two-dimensional electrophoresis, and shotgun proteomics, were employed to analyze the molecular adaptations of both species in response to bacterial competition. Results: Our results reveal a significant increase in the secretion of enolase by L. monocytogenes when in competition with L. lactis, suggesting its role as a stress-responsive moonlighting protein involved in adhesion, immune evasion, and biofilm formation. Concurrently, L. lactis exhibited a shift in the production of its bacteriocin, nisin, favoring the expression of Nisin Z—a variant with improved solubility and diffusion properties. This differential regulation indicates that bacteriocin production is modulated by bacterial competition, likely as a defensive response to the presence of pathogens. Conclusions: These findings highlight the dynamic interplay between LAB and L. monocytogenes, underscoring the potential of LAB-derived bacteriocins as natural biopreservatives. Understanding the molecular mechanisms underlying microbial competition could enhance food safety strategies, particularly in dairy products, by reducing reliance on chemical preservatives and mitigating the risk of L. monocytogenes contamination. Full article
Show Figures

Figure 1

Back to TopTop